
DYNAMIC PIXEL BINNING ALLOWS SPATIAL AND ANGULAR RESOLUTION
TRADEOFFS TO IMPROVE IMAGE QUALITY IN X-RAY C-ARM CT

Alexander Steg, Marc Reichenbach, Christopher Söll, Lan Shi, Andreas Maier, Christian Riess
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ABSTRACT

When designing an acquisition protocol for a C-arm CT, a tradeoff
has to be made between scan time and the amount of acquired data.
Increased scan time allows data acquisition with higher spatial and
angular resolution. Fixed scan time implies a reduction of either spa-
tial and angular resolution, which may either lead to oversmoothing
or to artifacts from angular undersampling.

In this work, we investigate smart sensors for pushing the bound-
ary for this bottleneck considerably further. Detector pixels are en-
hanced by processing units that are able to perform a limited amount
of local operations. This allows an online, dynamical adaptation
of the pixel binning, depending on whether a local neighborhood
is smooth or not. We demonstrate on phantom data that this ap-
proach allows to save about 75% of the data, obtaining a reconstruc-
tion quality comparable to 1 × 1 binning at a data rate comparable
to 2× 2 pixel binning.

Index Terms— Pixel Binning, X-ray detector, C-arm recon-
struction, Dynamic Pixel Binning, X-ray C-arm CT

1. INTRODUCTION

An ongoing challenge in X-ray CT reconstruction is to compute
high-quality, sharp anatomic volumes. Patient motion during the
scan can severely distort the reconstruction result [1]. Thus, man-
ufacturers aim to keep the scan time at a minimum. In practice,
particularly for C-arm CT systems, the scanning protocol is expe-
dited by limiting the transfer of the data, such that a volume scan
can be finished within a few seconds. This data limitation can ei-
ther be realized a) by reducing the pixel resolution at the detec-
tor via binning, or b) by acquiring a lower number of projections,
which comes at the expense of a decreased tomographic angular
sampling, and hence stronger artifacts in the reconstruction. To il-
lustrate this with numbers, a typical C-arm CT scan protocol is to
acquire 493 projections with 1024 · 768 pixels resolution. An al-
ternative is to use very coarse angular sampling, e. g. 123 projec-
tions with a much higher image resolution of 2048 · 1536 pixels.
Thus, by a back-of-the-envelope calculation, one may reasonably
speculate that the maximum data transfer of such a system is about
800MB per scan (by using, e. g., the latter configuration, and com-
puting 123 · 2048 · 1536 · 2 byte = 773, 849, 088 byte).

We build on recent advances in detector technology to explore
a new approach to tradeoff angular and spatial resolution. The key
concept to reduce the data amount is to process part of the informa-
tion right after signal acquisition, as described in [2]. This leads to
the concept of smart cameras or smart sensors, meaning processing
hardware placed close to the image sensor. By using a smart camera,

a hardware device is connected directly to the data stream, to process
the incoming information and reduce the amount of data for transfer.
A good overview about the major development in the smart camera
topic is presented in [3]. Moreover, a prototype of such a camera in
the medical environment has been displayed in [4].

In this work, we demonstrate that performing a limited set of
pixel-local operations on the detector makes it possible to employ
a dynamic binning scheme. Strongly varying areas are stored with
1 × 1 pixel binning, while mostly homogeneous areas are stored
with a binning of 2× 2 pixels or larger. We demonstrate in a proof-
of-principle investigation the feasibility of obtaining reconstructions
of comparable quality with a much reduced amount of data. These
findings can be further developed to either relieve the data bottleneck
for allowing faster scanning protocols, or to improve reconstruction
quality with time- and data budgets similar to current protocols.

2. RELATED WORK

There exist already strategies to limit scan time and data volume on
C-arm CT systems while maintaining high-quality reconstructions.
Long scan times may lead to (involuntary) patient motion or organ
motion during acquisition. For such situations, one may use a data-
driven compensation of motion artifacts after the acquisition [5].
One approach to faster acquisitions is angular projection undersam-
pling, together with iterative reconstruction [6, 7]. Here, radiation
dose is the main motivation for reducing the number of projections.
The main drawback of such approaches is that the reconstruction is
computationally an order of magnitude more complex. Furthermore
these algorithms rely on relatively strict smoothness assumptions.

X-ray detectors in current C-arm CT products are operated with
a fixed binning size, for instance 1×1, 2×2, or 4×4 pixel binning,
which is set prior to acquisition. However, there are several groups
working on more intelligent detectors. Here, logic circuits are added
on top of one or more neighbored pixels, such that the detector, act-
ing as a smart camera, can perform a limited set of computational
operations. Smart camera applications have been presented in vari-
ous prior works. Astrom et al. developed an image sensor which is
able to process local operations, such as gradient calculation and me-
dian filtering [8]. For a more coarse-grained processing, Albani et al.
presented presented the integration of a RISC processor, as well as
parallel co-processor, on the image sensor die to allow arbitrary im-
age processing operations [9]. Moreover, high speed smart sensors
have been developed as shown by Dubois et al. [10]. They built
a 10000 fps image sensor with preprocessing capabilities such as
edge detection, which can be used for pixel binning among other op-
erations. One general limitation of data processing directly on the
detector is that almost all operations have to be spatially local.



3. METHODS

We propose a sequence of local operations to dynamically adapt
the detector binning. We are seeking a tradeoff between artifacts
from spatial and angular undersampling. The proposed method pre-
serves high spatial resolution in non-smooth areas exhibiting high
frequency components by applying a 1×1 pixel binning. We reduce
the spatial resolution in smooth areas (i. e., where a high resolution
is less critical) by applying larger binning. As a result, the recon-
structed volume provides better image quality than uniform 2 × 2
binning projections with a comparable amount of data.

3.1. Calculation of Dynamic Bins

When a projection image is acquired, each pixel creates a local copy
of the captured intensity. We subdivide the pixels into a grid of
N ×N pixels cells, and use the local copy to determine whether the
pixels in a grid cell neighborhood are smooth or non-smooth. Upon
detector readout, we report for non-smooth areas the exact original
pixel value (i. e., perform local 1× 1 binning). If the area is smooth,
the pixel becomes part of aN ×N bin, and only an average value of
the neighborhood is reported (corresponding to a binning of 2 × 2,
3× 3, or more pixels).

To determine whether the neighborhood is smooth, we first ap-
ply bilateral filter on the copied pixels to remove small amounts of
noise [11]. Then, we compute on this filtered image the edges using
a Sobel filter to enhance structural variations. The smoothness of the
area is determined by computing the standard deviation of the edge
map. If the standard deviation is below a threshold t, the neighbor-
hood is assumed to be smooth. An important property of all these
operations is that none of them requires global information, and can
be readily built in hardware [11].

The data reduction is achieved by encoding each of the averaged
pixels only once. For example, if a pixel is part of a 3× 3 pixels bin,
its net storage size is less than 15% of a 1× 1 binned pixel.

3.2. Smoothness Information in Consecutive Projections

Given that the filtering steps on the detector require a short, but mea-
surable amount of time, we implement the smoothness test and the
data compression in parallel. During tomographic acquisition, we
use the smoothness test from the previous projection for encoding
the binning of the current projection: if there is a non-smooth pixel
in the previous projection, its maximum possible shift in the current
projection is bounded by the CT geometry, the angular sampling,
and the width of the patient. In a typical setup, this maximum shift
is only a few pixels, which are added as an additional safety margin
for which the 1× 1 binning is also applied.

3.3. Decompression of Dynamically Binned Images

At the workstation, each pixel intensity is restored by decompress-
ing the image buffer. 1 × 1-binned pixels are exactly restored. A
pixel from a N ×M -binning region is interpolated from itself and
its immediate neighboring pixels using a Gaussian weight mask, to
reduce sharp edges and to reduce artifacts in the reconstruction.

4. EXPERIMENTS AND DISCUSSION

A prototype implementation is done in the CONRAD reconstruction
framework [12]. We simulate a cone-beam CT scan with a source-
to-detector distance of 1200mm. We use two datasets based on

Fig. 1. Line profiles for MTF and ROI for σsd calculation.

the geometry of the FORBILD head phantom [13]. In contrast to
the original FORBILD phantom, our version is rendered with actual
material definitions from the NIST database [14]. The first dataset is
noise-free, the second dataset is simulated with 50000 photons using
a monochromatic energy of 80 keV for moderate noise, as in [15].
The simulated detector size is 640 × 480 pixels with a pixel spac-
ing of 1.2mm in both x and y direction. The phantom is located
exactly in the center between X-ray source and detector. The trajec-
tory rotates around the z-axis with 248 projections, corresponding
to an angular increment of 0.869◦. The reconstructed volume con-
sists of 512 × 512 × 512 voxels with a spacing of 0.5mm. For
reconstruction, the FDK cone beam algorithm is used [16], applying
a Ram-Lak ramp filter with cosine and Parker weights.

For our experiments we only use quadratic binning masks of 2×
2, 3×3 and 5×5 pixels (although one may also think, e. g., of 1×N
or N ×M masks). The bilateral filter operates on 5× 5 pixels with
a photometric distance of 0.001 and a geometric distance of 2.0 , the
Sobel kernel operates on 3× 3 pixels. Multiple binning kernel sizes
are compared to two reference images, namely the reconstructed 1×
1 binning (full resolution) volume and a 2 × 2 binned volume, as it
is the current standard for scans with high angular resolution.

We evaluate several evaluation metrics. We use the structural
similarity index (SSIM) [17] to quantify the image quality. Addi-
tionally, we compute the standard deviation σsd in a homogeneous
box of 25mm side length. The position of the box is shown in Fig. 1.
The reduction in the amount of data r is computed as

r = 1− d

f
, (1)

where f is the total amount of data for uniform 1× 1 binning, and d
is the required data for dynamic binning. For example, uniform 1×1
pixel binning yields 0% saved data, and uniform 2×2 pixels binning
yields 75% saved data. For dynamically binned data, each N ×N -
binned region has one additional bit attached, indicating whether this
region is binned. Thus, the theoretical maximum data reduction,
e. g., for dynamic 2 × 2 binning, is 73.43% (we did not investigate
bitmask compression). The resolution of the reconstructed central
slice is calculated with the modulation transfer function (MTF) taken
from a mean line profile of 270 lines across the inner edge of the
skull bone as shown in Fig. 1. The achieved resolution is the spatial
frequency which corresponds to 10% of the normalized MTF.

Table 1 and Tab. 2 summarize our quantitative results. The
columns indicate the size of the binning kernel, the dynamic binning
threshold t, the data reduction rate r, SSIM compared to uniform



Bins t r SSIM(1) SSIM(2) MTF σsd

Uniform
1× 1 0 1 0.839 1.114 0.238
2× 2 75 0.839 1 0.702 0.222

Dynamic
3× 3 0.01 75 0.950 0.831 1.118 0.236
2× 2 0.03 65 0.982 0.837 1.092 0.236

Table 1. Settings and quantitative results on noise-free data

Bins t r SSIM(1) SSIM(2) MTF σsd

1× 1 0 1 0.773 1.112 0.242
2× 2 75 0.773 1 0.712 0.223
3× 3 0.07 75 0.893 0.783 1.108 0.239
5× 5 0.08 80 0.934 0.781 1.073 0.242

Table 2. Settings and quantitative results on noisy data

1× 1 and 2× 2 pixel binning (denoted SSIM(1) and SSIM(2)), the
spatial frequency at 10% of the MTF, and the standard deviation σsd.

Results on the noise-free phantom are shown in Fig. 2. Fig-
ure 2 (a) and Fig. 2 (b) show uniform 1 × 1 and 2 × 2 binning,
respectively. As expected, the reconstruction from uniform 2 × 2
binning is blurred and shows considerably less details. This is best
seen in the inner ear and in the rectangular bone box of the frontal
sinus. The visual impression is confirmed by quantitative results in
Tab. 1. Here, 2 × 2 binning exhibits a lower resolution and a lower
structural similarity index compared than 1× 1 binning.

Figure 2 (c) and Fig. 2 (d) illustrate the impact of dynamic bin-
ning. Compared to uniform 2 × 2 binning, much more details are
preserved, leading to an overall sharper image. Figure 2 (c) for dy-
namic 2×2 binning shows that we can almost achieve the quality of
the uniform 1 × 1 binning image. Some artifacts were introduced,
which we assume to originate from the undersampling at binned-
to-non-binned discontinuities of the decompressed projections. Ta-
ble 1 quantitatively confirms these observations. Particularly, dy-
namic 3 × 3 pixels bins with t = 0.01 saves 75% of data, which
is the same amount like uniform 2 × 2 pixel binning. Yet, this im-
age has a much higher SSIM(1) compared to uniform 2× 2 binning.
Overall, the standard deviation and the 10% MTF are in the same
order of magnitude for uniform 1× 1 binning and dynamic binning,
with a SSIM greater than 95%.

Using the same reconstruction pipeline, Tab. 2 and Fig. 3 show
results on the noisy dataset. Analogously to the noise-free dataset,
the uniformly 2 × 2 binned image shows less detail in the inner ear
and blurs around sharp edges (cf. Fig. 3 (b)). While keeping the
same data saving factor r = 75% like uniform 2 × 2 binning, dy-
namic 3 × 3 binning increases the SSIM(1) by almost 16% and the
resolution by 64%. Due to the image noise, t was set to 0.07. Ap-
plying a 5 × 5 binning, we saved 80% of the data using a threshold
t = 0.08. However, this comes at the expense of a slightly reduced
resolution and a structural similarity of 0.93, which shows in some
streaks in the frontal sinus in Fig. 3 (d).

As a general note, the percentage of reduced data strongly de-
pends on the homogeneity of the object. We expect that the data
reduction on real data turns out to be considerably lower than on
phantom data, which we will investigate in future work. However,
we see this work as a proof-of-concept implementation, demonstrat-
ing that dynamic pixel binning has the potential to greatly reduce the
amount of projection data while providing reconstructed volumes

(a) uniform 1× 1 binning, r = 0%, SSIM(1)= 1

(b) uniform 2× 2 binning, r = 75%, SSIM(1) = 0.839

(c) dynamic 3× 3 binning, r = 75%, SSIM(1) = 0.950

(d) dynamic 2× 2 binning, r = 65%, SSIM(1) = 0.982

Fig. 2. Qualitative results on noise-free phantom data. Simulation
parameters and quantitative metrics are listed in Tab. 1. Window:
C=60HU, W=500HU. See text for details.

with an excellent level of detail.

5. CONCLUSION

Data transfer times from the detector to the workstation limit the
practically achievable angular and spatial resolution of C-arm CT
projections. Adaptive pixel binning on smart detector pixels may be
a viable way to push the data limit considerably higher. We have
shown that an adaptive binning strategy increases the quality of the
reconstructed volumes, while saving similar amounts of data as ap-
plying uniform 2 × 2 binning methods. This is achieved by per-
forming spatially local processing operations at the detector itself,
leading to dynamic pixel binning for each projection. Results show
that the proposed method is able to create high-quality reconstruc-
tions on noisy data. This is preliminary work. In the future, we aim
to evaluate its performance on real patient data. Furthermore, we
hope that this method opens the door to a new, integrated acquisition-
reconstruction pipeline, where the saved data is used to dynamically



(a) uniform 1× 1 binning, r = 0%, SSIM(1)= 1

(b) uniform 2× 2 binning, r = 75%, SSIM(1)= 0.773

(c) dynamic 3× 3 binning, r = 75%, SSIM(1)= 0.893

(d) dynamic 5× 5 binning, r = 80%, SSIM(1)= 0.934

Fig. 3. Qualitative results on noisy phantom data. Simulation pa-
rameters and quantitative metrics are listed in Tab. 2. Window:
C=60HU, W=500HU. See text for details.

vary the angular sampling to significantly improve the quality the
reconstructed volumes.
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