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Purpose: Detailed analysis of cardiac motion would be helpful for supporting clini-
cal workflow in the interventional suite. With an angiographic C-arm system, multi-
ple heart phases can be reconstructed using electrocardiogram gating. However, the
resulting angular undersampling is highly detrimental to the quality of the recon-
structed images, especially in non-ideal intraprocedural imaging conditions. Motion-
compensated reconstruction has previously been shown to alleviate this problem, but
it heavily relies on a preliminary reconstruction suitable for motion estimation. In
this work, we propose a processing pipeline tailored to augment these initial images
for the purpose of motion estimation, and assess how it affects the final images after
motion compensation.
Methods: The following combination of simple, direct methods inspired by the core
ideas of existing approaches proved beneficial: (a) Streak reduction by masking high-
intensity components in projection domain after filtering. (b) Streak reduction by
subtraction of estimated artifact volumes in reconstruction domain. (c) Denoising
in spatial domain using a joint bilateral filter guided by an uncompensated recon-
struction. (d) Denoising in temporal domain using an adaptive Gaussian smoothing
based on a novel motion detection scheme.
Results: Experiments on a numerical heart phantom yield a reduction of the rela-
tive root-mean-quare error from 89.9 % to 3.6 % and an increase of correlation with
the ground truth from 95.763 % to 99.995 % for the motion-compensated reconstruc-
tion when our processing is applied to the initial images. In three clinical patient
data sets, the signal-to-noise ratio measured in an ideally homogeneous region is in-
creased by 37.7 % on average. Overall visual appearance is improved notably and
some anatomical features are more readily discernible.
Conclusions: Our findings suggest that the proposed sequence of steps provides a
clear advantage over an arbitrary sequence of individual image enhancement meth-
ods and is fit to overcome the issue of lacking image quality in motion-compensated
C-arm imaging of the heart. As for future work, the obtained results pave the way
for investigating how accurately cardiac functional motion parameters can be deter-
mined with this modality.

I. INTRODUCTION

Comprehensive functional analysis of heart mo-
tion during catheter-based interventions could prove
a valuable asset. For instance, in case of asyn-
chronous motion, it would allow cardiologists to
identify a ventricle’s region of latest contraction1.
Presently, in clinical practice, functional analysis in
the cath lab is usually based on echocardiography,
which is inconvenient to perform interventionally, or
2-D X-ray ventriculography using an angiographic C-

arm device, which inherently offers only a limited
view of the organ motion.

To overcome this limitation, such a device can
also be used to perform a volumetric reconstruc-
tion of multiple heart phases by means of rotational
angiography and cone-beam computed tomography
(CBCT) techniques. As the C-arm rotation is not
fast enough to achieve the temporal resolution re-
quired for imaging the beating heart directly, multi-
segment electrocardiogram (ECG) gating is intro-
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duced to select or weight the projection data for each
cardiac phase to be reconstructed. This leads to a
strong undersampling that constitutes the main chal-
lenge for the practical application of this technique.

Early approaches used multi-sweep protocols with
as many as four rotations of the C-arm to acquire
sufficiently sampled data2,3. However, the long ac-
quisition time results in an increased radiation dose
and the need for an extended breath-hold period in
addition to a longer delay of the actual procedure.
A more recent single-sweep protocol alleviates these
problems by shortening the acquisition duration to
about 14 s, using electrophysiologic pacing to ensure
a sufficiently high heart rate so that enough dis-
tinct views are observed for each cardiac phase4. It
has been successfully applied in porcine models5,6 as
well as in humans7. In the work of Müller et al.5,
a motion-compensated reconstruction technique was
employed in order to achieve good image quality.

In this paper, we propose to enhance this state-
of-the-art motion compensation framework with sev-
eral additional processing steps applied to the ini-
tial, ECG-gated images in order to cope with the
challenges posed by clinical patient data sets. These
challenges consist mainly in a dramatically increased
amount of artifacts caused by high-density objects,
aggravated by the strong undersampling, as well as
overall worse contrast due to the larger amount of
tissue to traverse, especially in lateral direction due
to acquisition of the patients with both arms resting
beside the torso.

Countless methods have been employed in the
past for the purpose of artifact reduction and denois-
ing in (dynamic) C-arm CT reconstruction. Preva-
lent approaches to avoid streaking rely on the iden-
tification and removal of high-density objects8,9 and
the use of iterative reconstruction methods with var-
ious types of regularization10–12. Denoising is com-
monly performed with non-linear low-pass filters with
edge-preserving capabilities13–15. The rationale be-
hind some existing methods and how they relate to
our processing steps is detailed in the corresponding
parts below (sections II.B and II.C). We have found
the proposed combination and order of steps to be
favorable as the parts complement each other.

II. METHODS

This work is concerned with improving the qual-
ity of initial gated reconstructions needed for mo-
tion estimation within the motion-compensated re-
construction framework summarized in section II.A.
This endeavor is worthwhile since it has been estab-
lished that artifacts in the initial images propagate
through the steps of motion estimation and compen-
sation, thus strongly influencing the final images5.
The focus lies on straight-forward direct methods ad-
dressing the major problems faced in rotational an-

giograms strongly undersampled due to the use of
ECG gating. Successful concepts are identified in
established approaches and reduced to their essential
ideas to design effective components which hardly re-
quire prior knowledge about the object or acquisition
and do not rely on iterative optimization schemes.
The four automated steps cover streak reduction in
the projection (section II.B.1) and the reconstruction
domains (II.B.2), as well as edge-preserving spatial
(II.C.1) and adaptive temporal smoothing (II.C.2).

II.A. Motion Compensation Framework

Initial Image Reconstruction. A temporal se-
quence of initial images is generated using the
Feldkamp-Davis-Kress (FDK) method16 combined
with retrospective ECG gating17 using a rectangular
window, i. e. for each heart phase to be reconstructed,
a subset of the available projections is used depend-
ing on their position in the cardiac cycle as indicated
by the ECG.

Motion Estimation. The motion between all
pairs of reconstructed cardiac phases is then esti-
mated by 3-D/3-D image registration using a uni-
form cubic B-spline motion model with an isotropic
control point spacing of 8 mm and a normalized
cross-correlation similarity metric5. Optimization is
restricted to a region of interest (ROI) Ω around
the heart and performed on a multi-resolution pyra-
mid with three levels. In each iteration, 10,000
random image samples are evaluated within Ω to
compute a quasi-Newton update step using the
limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm18. Our implementation uses
elastix, a toolbox for nonrigid registration of med-
ical images19.

Motion-compensated Reconstruction. The re-
sulting B-spline motion model is evaluated on the
image grid to obtain a dense deformation field, which
is incorporated into a voxel-driven FDK reconstruc-
tion that compensates for motion by shifting the cur-
rently considered voxel according to the deformation
field during the back-projection step20.

II.B. Reduction of Streak Artifacts

Streak artifacts in the initial images typically ap-
pear due to the angular undersampling. The most
prominent streaks are caused by high-density objects
not only inside, but also outside of the reconstruction
field-of-view (FOV) as the imaged object is highly
truncated. Additionally, many other effects can cause
raw data inconsistency that leads to—usually slightly
more subtle, blurred and less pronounced—streaks,
such as motion, noise, photon starvation, beam hard-
ening, overexposure, truncation and scatter. In our
pipeline, a projection-domain method to alleviate the
strong influence of high-density objects is followed by
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a reconstruction-domain approach to further reduce
streaking.

II.B.1. Projection-Domain Artifact Reduction

In many cases, artifacts caused by high-density
objects are dealt with by segmenting the objects and
removing them from the projection images, e. g. by
replacing them with values interpolated from sur-
rounding regions. If segmentation of these objects
directly in the projection images turns out not to
be feasible, a preliminary reconstruction may be per-
formed in order to segment the objects in the target
domain and then project the segmentation forward
again8. However, this naturally does not work for
objects outside of the FOV. In an interventional set-
ting, cables, electrodes and other large objects out-
side the body such as scissors may be visible in some
projections only. As shown by Haase et al., proper-
ties arising from the fact that these objects are far
away from the isocenter can help identify them more
reliably in the projections9.

Rohkohl et al. proposed a different approach to
streak reduction21 that does not rely on segmenta-
tion or prior knowledge, but follows a rather prag-
matic notion, starting from the undesired effect ob-
served in the reconstructed images: During the back-
projection step of FDK reconstruction, the extreme,
i. e. the highest and lowest, contributions to each
voxel are those that ultimately constitute streaking
in the image when they are not canceled out by their
corresponding counterparts from missing nearby an-
gulations. Therefore, they simply ignore these con-
tributions altogether, i. e. leave out a fixed number
of values to be back-projected, determined on a per-
voxel basis. This method, which has previously been
used in coronary tree reconstruction22, has the down-
side that the implementation of the back-projection
algorithm itself has to be modified and additional
memory and run time burdens are introduced that
increase with the desired level of reduction.

We employ a purely projection-domain based
method similar to this approach as a preprocess-
ing step immediately before back-projection. Let
P F (i,u) denote the ramp-filtered, redundancy-
and cosine-weighted projection images, where i ∈
{1, . . . , N} is the projection number and u ∈ Ωu ⊂
R2 a coordinate with Ωu the set of all pixel positions
on the detector and |Ωu| its cardinality, i. e. the num-
ber of detector pixels. We apply a two-sided thresh-
olding and set all outside values to zero,

P ∗F (i,u) =

{
0 if |P F (i,u)− µ∗| > 1.75σ∗,

P F (i,u) else,
(1)

Fig. 1 Color-coded visualization of a ramp-filtered

projection image before (left) and after (right) the

threshold-based masking described in section II.B.1.

Extreme contributions of several high-density objects

have been removed, leading to a distinctly streak-

reduced reconstruction as seen in Fig. 5a.

µ∗ =

∑
i,u P F (i,u)

N · |Ωu|
,

σ∗ =

∑
i,u

(
P F (i,u)− 1

|Ωu|
∑

u′ P F (i,u′)
)2

N · (|Ωu| − 1)
.

This means that we also ignore extreme contribu-
tions. At the same time, it can be considered a
simple, threshold-based segmentation of the critical
object edges, which are the cause of the problem,
in the relevant high-pass domain that further ampli-
fies them, rendering their separation from the back-
ground easier (cf. Fig. 1). Note that µ∗ and σ∗

are estimated from all data to avoid inconsistency of
thresholds between individual projections. The pro-
cessed images P ∗F (i,u) can simply be reused should
an additional reconstruction be required in the re-
mainder of the pipeline.

II.B.2. Reconstruction-Domain Artifact Reduction

As mentioned above, any remaining streaks may
be caused by various effects, with many dedicated
methods available and in place to reduce them. How-
ever, the streaks have in common that they are vastly
enhanced by undersampling, whereas the reconstruc-
tion from fully sampled data (“uncompensated recon-
struction”) exhibits satisfactory image quality apart
from the motion blur.

Therefore, they can be found and eliminated in
reconstruction domain with a method based on an
algorithm by McKinnon and Bates23 that makes use
of the information provided by the uncompensated
reconstruction. As a slight variation to the original
formulation, we reconstruct volumes containing only
the artifacts caused by undersampling and subtract
these from the original reconstructions. The proce-
dure is illustrated in Fig. 2. In our notation, ungated
FDK reconstruction reads,

Î(x) =
∑
i

w(i,x) · P ∗F (i,Ai(x)), (2)
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with w(i,x) the distance weight of x ∈ R3 for projec-
tion image i and Ai(x) the projection of x onto the
detector plane. Similarly, the gated reconstructions
are denoted as,

It(x) =
∑
i

λ(i, t)

ν(t)
· w(i,x) · P ∗F (i,Ai(x)), (3)

where λ(i, t) is the gating weight for projection i and
cardiac phase t, and ν(t) =

∑
i λ(i, t)/N , ensuring

a common intensity scale. We forward-project Î(x)
to all acquired views to obtain a set of consistent
projection images Pcons(i,u) and perform weighting,
ramp-filtering and thresholding as described above
to get P ∗F,cons(i,u). We then perform another gated
reconstruction for these images,

Itcons(x) =
∑
i

λ(i, t)

ν(t)
· w(i,x) · P ∗F,cons(i,Ai(x)).

(4)

The difference between Itcons(x) and Î(x) consists of
undersampling artifact patterns that we can subtract
from the original gated reconstructions It(x) to ob-
tain the corrected images,

Itcorr(x) = It(x)− (Itcons(x)− Î(x)). (5)

In the original paper, gated reconstruction is per-
formed after finding the difference between the origi-
nal and consistent (projection) data, which would be
equivalent given an idealized linear reconstruction,
but has led to concerns regarding susceptibility to
noise24. In our experience, computing the artifacts
in volume domain after reconstruction behaves ro-
bustly. A similar idea has also been applied previ-
ously for finding 3-D artifact motion fields for better
robustness of motion estimation25.

II.C. Suppression of Noise and Temporal Inconsistency

After streak removal, noise and smaller artifi-
cial structures can be eliminated by smoothing both
spatially and temporally. We limit ourselves to
the reconstruction domain since noise in the projec-
tions is typically handled by an appropriately cho-
sen apodization window for the ramp-filter. Also,
non-linear filtering in projection images may intro-
duce data inconsistency and was previously shown to
yield no major benefits compared to similar volume-
domain filtering26.

II.C.1. Edge-Preserving Spatial Denoising

A popular choice for denoising is edge-preserving
smoothing via bilateral filtering27. However, the
standard bilateral filter struggles in case of a low
signal-to-noise ratio (SNR) as the intensity-based
(range) component can hardly discriminate between
structure and noise. Again, the key idea is to make

use of the fact that we have the fully sampled recon-
struction Î(x) which has a much better SNR. Using
an image to guide filtering of another is the epony-
mous idea of the guided filter proposed by He et al.15,
but the core idea has earlier been introduced as joint
bilateral filtering28 and found applications in medi-
cal imaging, for instance in perfusion imaging13. Our
bilateral filter kernel kx(x′) has two Gaussian com-
ponents based on proximity in space and intensity
distance in the guidance image Î(x),

ItS(x) =

∑
x′∈N(x) I

t
corr(x

′) · kx(x′)∑
x′∈N(x) kx(x′)

, (6)

kx(x′) = exp

(
−‖x− x′‖22

2σ2
S

− (Î(x)− Î(x′))2

2σ2
I

)
,

with σS and σI the standard deviations in the spatial
and intensity domain, respectively. N(x) is the lo-
cal neighborhood around x with |N(x)| = 73 voxels.
In our experiments, even though it mostly circum-
vents the weighting of spatial proximity, we choose
σS � 3

√
|N(x)| to increase the smoothing effect with-

out having to choose a larger N(x), and use a narrow
intensity window (σI = 3 HU) to preserve the dis-
tinction between contrasted blood and surrounding
tissue even in the presence of motion blur. Note the
conceptual similarity to applications of the widely
known prior image constrained compressed sensing
(PICCS) method in which the uncompensated im-
age guides iterative reconstruction10,29, as well as the
fact that it is commonly combined with total varia-
tion regularization30 which in turn has been shown to
yield results comparable to bilateral filtering in some
cases14.

II.C.2. Adaptive Temporal Smoothing

Although each individual phase now has a smooth
appearance, remaining artifact patterns are usually
inconsistent in the temporal domain, i. e. they appear
to be moving due to their occurrence at different po-
sitions. The joint bilateral smoothing introduced in
the previous section, however, cannot be extended
to the temporal domain trivially as by definition, the
guidance image Î(x) has no temporal resolution. For
this reason, other information is needed to determine
where smoothing can be performed safely and where
we risk blurring structures in motion, in order to
adapt the smoothing filter accordingly.

Previously, we presented a novel 3-D motion de-
tection method based on frequency analysis of the
acquired projection images31. It can be used to es-
timate the amount of periodic motion corresponding
to the heart rate for each voxel, resulting in a volume
image M(x) that holds the relative spatial distribu-
tion of expected motion magnitudes (“motion map”).
Fig. 3 gives a schematic overview of the procedure.
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Fig. 2 Reconstruction-domain few-view artifact reduction for cardiac imaging in analogy to the approach

by McKinnon and Bates23.

We follow the forward-projection of x over the se-
quence of acquired projection images, P (i,Ai(x)),
and consider the sequence of line integral values as a
temporal profile. We are interested in a Fourier anal-
ysis of this profile w. r. t. a single frequency compo-
nent, the heart rate fH . The spectral power for fH is
found using the Goertzel algorithm32, which employs
a two-stage recursive filter to efficiently compute the
discrete Fourier transform (DFT) for one frequency,

Si(x) = Si−1(x) · 2 cos(2πfH)− Si−2(x) +

W (i) · P (i,Ai(x)), (7)

M(x) = |SN (x)− e−2πifHSN−1(x)|, (8)

where W (i) is the “exact Blackman” apodization
window33 and the filter stages are initialized as
Sk(x) = 0 ∀k ≤ 0. The value range of the pro-
jection images P (i,Ai(x)) has been clamped to re-
duce the influence of high-density objects, similar to
the thresholding described in section II.B.1. M(x) is
subsequently cropped to the ROI Ω, i. e. outside re-
gions are set to zero, effectively assuming no motion,
and is rid of outliers and noise by a 3× 3 median
filter and a blur filter with 1.5 mm standard devia-
tion, respectively. Finally, its values are normalized
to weights,

Mw(x) =

{
M(x)

M
if M(x) ≤M ,

1 else,
(9)

where M = 1
|Ω|
∑

x∈Ω M(x), thereby linearly map-

ping [0;M ] to the range [0; 1] clamping higher values

to 1. Mw(x) is in turn used to adapt the width σ(x)
of a Gaussian kernel for temporal smoothing,

ItT (x) =
∑
t′

It
′

S (x)

σ(x)
√

2π
exp

(
−dist2(t, t′)

2σ2(x)

)
, (10)

where dist(t, t′) denotes the distance of cardiac
phases t and t′, taking periodicity into account, and
σ(x) is found by linear interpolation between σmax =
50 % and σmin = 1 % of the cardiac cycle,

σ(x) = σmin ·Mw(x) + σmax · (1−Mw(x)). (11)

Where little motion occurs, artifacts are further re-
duced by stronger smoothing, while motion-intensive
areas are preserved due to a very narrow smoothing
kernel. To achieve a stronger effect, the filtering step
can be repeated; in our experiments, we used three
iterations.

For the purpose of registration, Ω is narrowed
down by removing voxels for which M(x) ≤ 0.5M .
This improves convergence speed as the random im-
age samples drawn in each iteration will be more con-
centrated in regions with motion.

In recent literature, temporal smoothing is of-
ten used as a regularization term during alge-
braic reconstruction12. Similarly, we have previ-
ously proposed iterating motion estimation, motion-
compensated (analytical) reconstruction and spatio-
temporal filtering to improve convergence34. Such
iterative methods, while fairly successful, are sev-
eral orders of magnitude slower than the adaptive
smoothing described above.
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Fig. 3 For each 3-D position x, the energy M(x) of the heart rate is computed from the line integral

images.

III. EXPERIMENTS

III.A. Data

III.A.1. Numerical Phantom Model

We utilize a 4-D numerical phantom model based
on the XCAT phantom35,36 for quantitative evalua-
tion. It is generated from segmentations of human
acquisitions and highly flexible. For instance, physi-
ological parameters such as the heart rate can readily
be adapted. We generated 381 projection images us-
ing a discretized polychromatic spectrum with energy
bins of width 2.5 keV from 25 keV to 120 keV (peak
energy) and a time-current product of 2.5 mAs per
X-ray pulse. Mass attenuation coefficients of bones
and bone marrow were taken from the NIST X-ray
table37. Material properties of other structures were
modeled with the absorption behavior of water at
modified densities. The contrasted left ventricular
blood pool, the contrasted blood in the aorta and the
myocardium had densities of 2.5 g/cm3, 2.0 g/cm3

and 1.5 g/cm3, respectively. For reconstruction of a
ground truth image, denoted as Ĩ(x), a complete set
of projection images for a single phase at 30 % of
the cardiac cycle w. r. t. end-diastole was simulated

(static phantom). Other properties related to the ac-
quisition, such as size and resolution of the images
and the number of heart beats observed during the
scan, were chosen identical to the clinical data sets
detailed below. An archive of all data required to re-
produce our phantom study for other reconstruction
algorithms is available on our website38.

III.A.2. Clinical Patients

Three data sets of clinical patients were acquired
with an Artis zeego system (Siemens Healthcare
GmbH, Forchheim, Germany). In a single C-arm
sweep of 14 s duration, 381 projection images were
captured at approx. 30 Hz with an angular increment
of 0.52◦. A detector size of 1240 × 960 pixels with
an isotropic resolution of 0.31 mm/pixel (0.21 mm in
isocenter) was used. Based on prior dose measure-
ments carried out for comparable protocols39, an es-
timate of the effective dose applied during our acqui-
sition can be given as 2.3 mSv. Reconstruction was
performed on a grid of 2563 voxels with an isotropic
resolution of 1.0 mm/voxel. At a speed of 7 ml/s,
91 ml of undiluted contrast agent was administered
in the pulmonary artery. The appropriate X-ray de-
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Table I Labeling scheme used in the experiments.

For any pipeline step, ♦ = 1 / 0 signifies that it is

activated / deactivated in a given configuration.

Label Section Method

〈♦, ·, ·, ·〉 II.B.1 Streak red. (projections)

〈·,♦, ·, ·〉 II.B.2 Streak red. (reconstruction)

〈·, ·,♦, ·〉 II.C.1 Spatial denoising

〈·, ·, ·,♦〉 II.C.2 Temporal smoothing

lay was determined using a prior test bolus injection.
A heart rate of 115 bpm was enforced by right ven-
tricular pacing. Ten gating windows were used, each
covering 10 % of the cardiac cycle, resulting in ten
volumes per data set for the initial images. Motion-
compensated reconstruction was subsequently per-
formed for the same phases.

III.B. Experimental Setup

For the sake of conciseness, we restrict our evalua-
tion to the below-listed combinations of the four pro-
posed steps corresponding to sections II.B.1, II.B.2,
II.C.1 and II.C.2. To show the progression through
the processing pipeline, initial reconstructions for all
data sets were performed without any of the process-
ing steps (label: 〈0, 0, 0, 0〉), with only the first one,
two, and three steps applied (〈1, 0, 0, 0〉, 〈1, 1, 0, 0〉,
〈1, 1, 1, 0〉), as well as with all four (〈1, 1, 1, 1〉). To
highlight the effect of each individual step, additional
variants in which just this particular step is missing
were generated (〈0, 1, 1, 1〉, 〈1, 0, 1, 1〉, etc.). The la-
beling scheme is shown in Tab. I for quick reference.
For all variants, motion estimation and compensation
as summarized in section II.A were performed based
on the respective initial images to obtain the final
reconstruction. We use the shorthands “Initial” and
“MoCo” to distinguish between initial and motion-
compensated reconstructions.

Our implementation was written in C++ and has
not been specifically optimized for high performance
apart from GPU-based bilateral filtering as well as
projection and back-projection operators, as they
typically constitute the computational bottlenecks.
We measured the run times of all proposed steps on
a machine equipped with a quad-core 2.93 GHz CPU,
12 GB of RAM and an Nvidia Quadro FX 5800 GPU.

III.C. Evaluation Measures

For the phantom experiment, we assess the root-
mean-square error (RMSE) in HU to the ground
truth reconstruction Ĩ(x) over the ROI Ω,

εRMS =

√
1

|Ω|
∑
x∈Ω

(
ItrefC (x)− Ĩ(x)

)2

, (12)

where tref is the cardiac phase of the static ground
truth and ItrefC denotes the corresponding motion-
compensated final image. To obtain a relative
RMSE, εRMS is divided by the maximum voxel in-
tensity occurring in Ω for the reference image. Addi-
tionally, the correlation of both images is measured
using the Pearson correlation coefficient (CC),

ρCC =

∑
x∈Ω(ItrefC (x)− µΩ) · (Ĩ(x)− µ̃Ω)√

ζΩ · ζ̃Ω
, (13)

ζΩ =
∑
x∈Ω

(ItrefC (x)− µΩ)2,

ζ̃Ω =
∑
x∈Ω

(Ĩ(x)− µ̃Ω)2,

µΩ =
1

|Ω|
∑
x∈Ω

ItrefC (x), µ̃Ω =
1

|Ω|
∑
x∈Ω

Ĩ(x),

as well as the universal image quality index (UQI)
proposed by Wang and Bovik40,

ρUQI =
1

NB

NB∑
i=1

4 · µBi
· µ̃Bi

· ςBi

(µ2
Bi

+ µ̃2
Bi

) · ζBi

, (14)

ςBi =
∑
x∈Bi

(ItrefC (x)− µBi) · (Ĩ(x)− µ̃Bi),

ζBi =
∑
x∈Bi

(ItrefC (x)− µBi)
2 + (Ĩ(x)− µ̃Bi)

2,

µBi =
1

|Bi|
∑
x∈Bi

ItrefC (x), µ̃Bi =
1

|Bi|
∑
x∈Bi

Ĩ(x),

where the Bi ⊂ Ω, i ∈ {1, . . . , NB}, are all regular
blocks of size (16 mm)3 that completely fit inside Ω.
In our case, this resulted in NB = 9 blocks in total.
Computation was performed blockwise as it makes
the measure more sensitive than the global correla-
tion coefficient40. For both CC and UQI, the ob-
tained values are in the range [−1, 1], with the maxi-
mum value of 1 corresponding to perfect correlation.

For both phantom and clinical patient data sets,
SNR values are estimated to assess the magnitude of
artifact patterns. For this purpose, a region ΩS ⊂ Ω
in the uncontrasted right heart, which should appear
mostly homogeneous and static, is identified in each
data set. The spatial SNR is then calculated as

SNRspat =
1

NT

NT∑
t=1

µtΩS√
σ2t

ΩS

, (15)

σ2t
ΩS

=
1

|ΩS | − 1

∑
x∈ΩS

(ItC(x)− µtΩS
)2,

µtΩS
=

1

|ΩS |
∑
x∈ΩS

ItC(x).

Similarly, we compute a temporal SNR, averaged
over ΩS , by looking at intensity statistics w. r. t. the
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Fig. 4 Motion-compensated reconstructions of the

phantom data set for configurations demonstrat-

ing the progression through the processing pipeline

(cf. section III.B), and the static ground truth recon-

struction (GT). Corresponding quality measures are

listed in Tab. II. All images are displayed with the

same window at [center,width] = [340, 2680] HU.

NT cardiac phases,

SNRtemp =
1

|ΩS |
∑
x∈ΩS

µ(x)√
σ2(x)

, (16)

σ2(x) =
1

NT − 1

NT∑
t=1

(ItC(x)− µ(x))2,

µ(x) =
1

NT

NT∑
t=1

ItC(x).

IV. RESULTS

Quantitative results for the phantom study are
listed in Tab. II, with some corresponding slice im-
ages displayed in Fig. 4. Please note that all of the
compared images are reconstructed from the same
raw data with a motion-compensated filtered back-

projection. Differences in the images are caused
solely by the varying quality of the motion estimate
for different configurations.

A comprehensive visual overview of the various
configurations for one of the clinical data sets is found
in Fig. 5. Figure 6 shows a comparison of configu-
rations 〈0, 0, 0, 0〉 (no processing) and 〈1, 1, 1, 1〉 (full
pipeline) for motion-compensated reconstructions of
all three data sets. We highly recommend the reader
to take a look at the animated versions of these fig-
ures on our website41 where differences in the tem-
poral domain become evident. Corresponding SNR
measurements are displayed in Fig. 7.

With our implementation, projection-domain
streak reduction takes 0.42 s for all projection im-
ages. For ten heart phases, reconstruction-domain
streak reduction and spatial denoising are run in 98 s
and 17 s, respectively. Temporal smoothing takes 66 s
in total, of which 34 s are spent on motion detection
and 32 s on the actual smoothing.

V. DISCUSSION

V.A. Discussion of the Results

In the phantom study, each measure is consis-
tently improved with every pipeline step apart from
a single exception in the case of UQI for 〈1, 1, 0, 0〉.
From the configurations where singular steps are
omitted, it can be seen that if either of both com-
plementing streak reduction methods or the spatial
denoising is missing, the error does not decrease much
more than if we were to skip the remainder of the
steps entirely. More precisely, without projection-
domain streak reduction applied beforehand, the
McKinnon-Bates approach alone fails to remove the
artifacts reliably enough to keep them from mislead-
ing the motion estimation. If applied consecutively,
however, it nearly halves the error. Similarly, spatial
denoising may not improve the images by much as
long as the streaks are still so prominent that they
are mistaken for structure by the edge-stopping term
of the kernel, yet reduces the error substantially oth-
erwise (35.3 % to 4.1 %). The effect of the temporal
smoothing is minor here. However, the UQI, which
is much more sensitive to differences in the low-error
range, still reports an increase of about 14 %.

Visually, it can be confirmed that artifacts are
strongly reduced. Some anatomical features such as
the papillary muscles appear sharper, especially in
patients 1 and 2 (cf. Fig. 6). Artifacts in the initial
images, even when they only occupy nearby static re-
gions, influence how accurately the dynamics of mov-
ing parts can be captured by typically non-local mo-
tion estimation methods such as the B-spline model
based algorithm used in our framework. By reducing
these artifacts, a more robust motion estimate is ob-
tained and motion blur is eliminated more effectively.
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Table II Quality measures computed for motion-compensated reconstructions of the phantom data set for

all tested configurations: Root-mean-square error (RMSE), correlation coefficient (CC), and universal image

quality index (UQI) w. r. t. the reference reconstuction, as well as spatial and temporal SNR; cf. section III.C.

Config. RMSE [HU] ([%]) CC [%] UQI SNRspat SNRtemp

〈0, 0, 0, 0〉 6685.0 (89.8) 95.736 0.0055 8.96 1.08

〈1, 0, 0, 0〉 3125.3 (66.1) 98.991 0.0139 10.18 1.64

〈1, 1, 0, 0〉 1132.5 (35.3) 99.854 0.0097 10.99 2.39

〈1, 1, 1, 0〉 96.00 (4.1) 99.994 0.8231 14.80 19.44

〈1, 1, 1, 1〉 85.00 (3.6) 99.995 0.9392 20.46 229.31

〈0, 1, 1, 1〉 6684.2 (89.7) 95.725 0.0048 17.43 71.36

〈1, 0, 1, 1〉 3118.9 (65.9) 98.993 0.0073 17.63 105.92

〈1, 1, 0, 1〉 1126.7 (35.1) 99.857 -0.0057 14.94 265.14

In
it

ia
l

M
oC

o

(a) From left to right, the progression through the processing pipeline is demonstrated.

In
it

ia
l

M
oC

o

(b) Each individual pipeline step is omitted to show its individual effect.

Fig. 5 Initial and motion-compensated reconstructions of clinical patient data set 1 for various configura-

tions (see section III.B for details). Corresponding SNR measurements are shown in Fig. 7. All images are

displayed with the same window at [center,width] = [210, 2420] HU. Note that initial images generated with

projection-domain streak reduction appear darker as we do not compensate for the object mass lost due to

the thresholding operation (cf. sec. II.B.1).
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〈1
,1
,1
,1
〉
〈0
,0
,0
,0
〉

Patient 1 Patient 2 Patient 3

Fig. 6 Long-axis and short-axis views in motion-compensated reconstructions of three clinical patient data

sets. Reconstructions were performed with (bottom row) and without (top row) the processing pipeline. All

images are displayed with the same window at [center,width] = [500, 1000] HU.
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(a) Configurations demonstrating the progression through the processing pipeline.
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(b) Omission of each pipeline step to show its individual effect.

Fig. 7 Spatial and temporal SNR measurements as described in section III.C, averaged over the evaluated

clinical data sets. The temporal SNR values are shown on a logarithmic scale due to their large range.
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In Fig. 7a, a rise in SNR values can be observed
when progressing through the pipeline. The rela-
tive improvement is less pronounced for the final
images as the motion compensation by itself helps
achieve a high SNR, which is then further improved
by more robust motion estimates, whereas the initial
images benefit from the processing directly. Judg-
ing solely from the SNR measurements for config-
uration 〈1, 1, 1, 1〉, one may be tempted to assume
that with all of the processing steps performed, mo-
tion compensation provides no further benefit or may
even be detrimental. However, it has to be kept in
mind that some details may be removed in the ini-
tial images and, albeit well suited for motion esti-
mation, their rather unnatural appearance is inferior
in terms of visual impression. Activating the last
step increases the temporal SNR by about an order
of magnitude—regardless of the remaining configu-
ration (cf. Fig. 7b). This is mainly due to motion
detection correctly identifying the region selected for
evaluation as showing only little movement.

V.B. Caveats and Limitations

Regarding projection-domain streak reduction,
the threshold in Eq. 1 in units of σ∗ is chosen heuris-
tically such that predominantly non-organic high-
density objects are affected (cf. Fig. 1). In our expe-
rience, this is feasible without a sophisticated param-
eter search as the attenuation of such objects is much
stronger than that of the contrasted ventricle. How-
ever, with an inappropriately chosen threshold, the
ventricle boundary could potentially become blurred.

For reconstruction-domain streak reduction, no
parameters had to be adjusted. A limitation of the
algorithm is that not all streaks might be found: If an
object edge is strongly affected by motion blur in the
uncompensated reconstruction, the streaks it causes
are blurred as well and are not detected as accurately
in the artifact images, leading to an undercorrection.

Such as with any smoothing filter, there is a po-
tential risk for blurring anatomical details in the de-
noising step. By design, the conservatively parame-
terized range component of the joint bilateral filter
reduces this risk substantially. In addition, as it is
only applied to the initial images, no blur is intro-
duced in the final images other than that caused by
motion which could not be compensated for perfectly.

In its current form, the motion detection step re-
lies on the periodicity of the heart motion for fre-
quency analysis. For applications where data are ac-
quired without pacing, one may need to adapt this
step to cope with a change in heart rate. One con-
ceivable approach would be a short-time Fourier anal-
ysis, i. e. applying the Goertzel algorithm on several
smaller windows with different associated heart rates.

Pacing is frequently used during therapeutic pro-
cedures in the catheter laboratory treating structural

heart disease. Traversing the venous blood system,
the pacing electrode is easily placed into the right
heart chambers. Whereas extremely high frequencies
above 200 bpm entail the risks of circulation collapse
and tachycardia, a frequency of 115 bpm as used in
our experiments appears harmless. We employ pac-
ing to obtain a sufficient number of distinct projec-
tion angles for each heart phase while avoiding im-
practicably long scan times. It also ensures period-
icity of the motion which is helpful for gated recon-
struction. With continued development of dynamic
reconstruction algorithms, the number of gated pro-
jection views required may be further reduced.

VI. CONCLUSIONS AND OUTLOOK

In summary, we propose a sequence of four
straight-forward, complementary processing steps to
improve the quality of initial images for motion-
compensation in cardiac CBCT. In combination they
achieve a high SNR, which may be helpful for seg-
mentation, and visual inspection reveals a distinct re-
duction of artificial motion patterns. This is reflected
by the lower RMSE and better correlation with the
ground truth found in our phantom study. Evaluated
over various configurations, these figures of merit also
suggest that the proposed order of steps provides a
clear advantage over an arbitrary sequence of indi-
vidual image enhancement methods.

It may be worthwhile to compare our method
to sophisticated algebraic reconstruction algorithms
with spatial and temporal regularization in the fu-
ture. However, the fact that ideal parameterization
of such a method is rather complex renders a fair
comparison challenging. Encouraged by promising
results accomplished for both phantom and patient
data, we consider a task-based evaluation of cardiac
function analysis based on C-arm CT feasible.
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