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ABSTRACT

We propose an exhaustive extension to graph cut-based coro-
nary artery reconstruction from multiple views of a rotational
angiography sequence. The reconstruction is formulated as
an energy minimization problem that is solved using the
α-expansion algorithm. We enforce reprojection-based data
consistency and completeness conditions on the reconstructed
centerline. The proposed strategy omits the need for selection
and manual refinement of a reference view.
A phantom study is used to assess the performance in 2D
and 3D. The average reprojection error decreased from
1.32± 0.99 mm to 0.54± 0.02 mm. Moreover, an increase in
Dice score from 0.50± 0.04 mm to 0.59± 0.00 mm was ob-
served, indicating superior volumetric reconstruction quality.
The results suggest that the proposed extension removes the
susceptibility to reference frame selection and manual inter-
action, while increasing reconstruction quality.

Index Terms— Graph Cut, Symmetrization, Cardiac
Imaging, Epipolar Geometry, Cardiac Dynamics, C-arm CT

1. INTRODUCTION

To date, the diagnosis of cardiovascular disease relies on the
analysis of X-ray coronary angiography [1]. To assess the
complex structure of the coronary artery tree from 2D projec-
tion images, multiple frames have to be acquired from various
viewing angles. Different magnifications, superimposition ef-
fects, and foreshortening complicate the assessment [2, 3].
Above-mentioned drawbacks can be overcome by 3D recon-
struction of the coronary arteries from rotational angiogra-
phy, improving assessment and guidance [4]. Due to the low
temporal resolution of C-arm CT scanners straightforward
reconstruction is unrewarding. Therefore, motion compensa-
tion strategies such as ECG-gating have to be incorporated
into the reconstruction. However, ECG-gating yields sparse
data leading to a strongly ill-posed reconstruction problem
[5]. In backprojection-type reconstruction this issue is com-
pensated for by use of a temporal window around the selected
motion state [1]. While reducing undersampling artifacts this

strategy introduces residual motion that corrupts image qual-
ity [1]. When using strict ECG-gating backprojection-type
reconstruction becomes imperative as only few views remain.
Blondel et al. proposed a method based on triangulation to
reconstruct coronary artery centerlines from few projections
[3]. They imposed a hard epipolar constraint to reduce the
number of correspondence candidates and consequently com-
putational complexity. Enforcing a hard epipolar constraint,
however, is unfavorable for centerlines that are partially in-
complete or coinciding with the epipolar line.
Liao et al. formulated coronary artery reconstruction as
an energy minimization problem [6]. The energy function
comprises a soft epipolar constraint and a 3D smoothness
regularization, and can be efficiently optimized using the α-
expansion algorithm based on graph cuts [6, 7]. However, this
approach requires the selection and manual editing of a ref-
erence view that should exhibit minimal foreshortening and
overlap, making the reconstruction susceptible to the choice
of the reference frame. In order to overcome this limitation
we propose an exhaustive extension to graph cut-based coro-
nary artery reconstruction. We present quantitative results of
a phantom study using Cavarev [8].

2. METHODS

2.1. Gating, 2D segmentation, and centerline extraction

In a typical rotational angiogram 133 frames covering 200◦

and the corresponding ECG-signal are acquired. ECG-gating
for reference phase ht relies on the cosine-based gating func-
tion λa(ht) defined as

λa(ht) =

{
cosb

(
d(ha,ht)

w π
)

if d (ha, ht) <
w
2

0 else,
(1)

where ha is the heart phase in the ath projection image,
w ∈ [0, 1[ controls the width and b ≥ 0 controls the shape
of the gating function [1]. We only retain frames with
λa(ht) > 0.94 yielding 5-8 frames depending on ht, the
scan duration, and the patient’s heart rate.



Fig. 1. Planes of equal depth are defined within the 3D field
of view between the optical centerO(r)

c and the detector plane
of the reference view Ir. A centerline point p ∈ Qr can then
be reconstructed if its depth label fp is known.

The coronary arteries are segmented in the remaining projec-
tions I ′a, a = 1, . . ., A. Contrasted vessels appear as small
tubular structures with a larger scale background. Therefore,
a morphological top-hat filter with a circular structuring ele-
ment with radiusR is used to remove all structures larger than
the structuring element [1, 9]. We combine the top-hat filtered
image ITH

a (u) with the output IV
a (u) of a multi-scale Hessian-

based method to suppress responses from non-tubular struc-
tures [10]. The enhanced image is given as:

Ia(u) =

{
IV
a (u) if IV

a (u) > tV ∧ ITH
a (u) > 0

0 else
, (2)

where tV is an empirically determined threshold. The image
is then binarized by hysteresis thresholding.
The set of points Qa defining the centerline in view a is ob-
tained using morphological thinning followed by line segment
pruning [11]. The strategy works well for the Cavarev data
set. However, few line segments originating from non-vessel
structures such as cortical rib bone persist in some views.

2.2. 3D centerline reconstruction

We assume that the projection matrices Pa ∈ R3×4 corre-
sponding to the views Ia are known. Using the matrices Pa

we can calculate the optical centers O(a)
c . A reference view

Ir is selected and the field of view between the optical cen-
ter O(r)

c and the detector plane is divided into l ∈ L planes
of equal depth [6]. A schematic of the geometry is shown in
Fig. 1. A 3D centerline point projected onto p ∈ Qr must lie

on the ray rp = O(r)
c p3D connecting the optical center and

the 3D position of the centerline point p ∈ R2. Therefore, if

the depth label fp of point p is known its 3D reconstruction
mp ∈ R3 is given by

mp = (p, fp) = Oc +
rp
η
·∆L · fp, (3)

where η = (r>p rp0
)/(r>p0

rp0
), p0 is the center pixel, and

∆L is the plane spacing.
We now want to find an optimal set of depth labels f ∈ R|Qr|

such that the reconstructed 3D points are in good agreement
with the remaining views Ia6=r and piecewise continuous. The
mapping f satisfying these requirements is obtained by mini-
mization of an energy function:

E(f) =
∑
p∈Qr

Dp(fp) + β
∑

(p,q)∈N

Vp,q (fp, fq) . (4)

Dp encodes the soft epipolar constraint. To properly define
projections we use underline notation to denote points ex-
pressed in homogeneous coordinates. Using v

(a)
p =Pa mp

Dp(fp) =
1

A− 1

∑
a6=r

min
(
‖v(a)

p − ca(mp)‖2, k1
)
, (5)

where ca(mp) =
{
q ∈ Qa | minq ‖v(a)

p , Qa‖2
}

is the cen-

terline point q ∈ R2 in view a closest to the projected point,
and k1 is a constant. The smoothness term Vp,q is defined
over N , the set of all 4-connected neighbors in Qr:

Vp,q (fp, fq) =

{
min (‖fp, fq‖2 , k2) , if p,q ∈ B
min (‖fp, fq‖2 , k3) , else

, (6)

where B is the set of all branching points in Qr, and k2 < k3
are constants. A smaller k2 allows for discontinuities ac-
counting for branching points that arise from projective sim-
plifications. An efficient way of minimizing Eq. 4 is the
α-expansion algorithm on graph cuts [6, 7]. A depth label
mapping f lies within one α-expansion of f ′ if fp = f ′p ∨
fp = α ∈ L ∀p ∈ Qr. Put concisely, for all labels α ∈ L we
seek to find f̂ = arg minE(f ′) within one α-expansion of the
current mapping f . As for particular points p ∈ Qr the depth
label fp either changes to α or stays the same, each move
is essentially a partitioning problem that can be efficiently
solved using a graph cut [7]. A comprehensive description of
the algorithm can be found in [6, 7].

2.3. Exhaustive extension and outlier removal

The method described above is robust against incomplete or
inaccurate centerlines Qa6=r. Selection of the reference frame
Qr, however, drastically influences the reconstruction result.
On the one hand only the centerline points present in Qr

can be reconstructed, suggesting best performance for views
with minimal foreshortening and overlap. On the other hand
all points in the reference view will be reconstructed favoring



views without redundant segmentations. Liao et al. addressed
this issue by requiring manual selection and refinement of a
reference frame. Instead, we propose an exhaustive extension
to the reconstruction method that only marginally depends on
the reference frame while being robust against incomplete or
inaccurate centerlines in all views Qa.
(i) Similarly to [3] we claim that correctly reconstructed
points are in agreement with the majority of observations Qa.
This property is enforced by requiring med(mpa

) ≤ t2D,
where t2D is a constant, mpa

is reconstructed from view a
following the method described in Sec. 2.2, and

med(mpa)=median
{
‖v(j)

pa
−cj(mpa)‖2 | j 6=a

}
.

Removing non-compliant points introduces robustness to-
wards segmentation errors.
(ii) While the remaining points are in agreement with the
majority of the views, the completeness of the reconstruction
is not yet guaranteed. Therefore, we propose to incorporate
all points H(a) = {(pa, fpa

) |pa∈Qa \ {ca(m),m∈M}}
fulfilling (i) into the reconstruction. M denotes the current
set of reconstructed centerline points.
In practice, an initial reconstruction is performed from an
arbitrary centerline Qa1 and all points with med(m) > t2D,
m ∈M are removed. Then, either in a random or fixed order,
the remaining centerlines Q = {Qa |a = 1, . . ., A} \ {Qa1

}
are used to complete the set of reconstructed points. In each
step i, H(ai) is determined according to (ii) and added to the
set of reconstructed pointsM =M∪̇H(ai), Q = Q \ Qai .
The procedure stops when Q = ∅. Finally, points form-
ing isolated point clusters of size nc that lived through the
refinement due to small reprojection errors are removed by
requiring at least nc

2 neighbors within a nc

2 ∆L neighborhood.

2.4. Symbolic reconstruction

The 3D centerline is reconstructed following Sec. 2.3 and a
radius value is calculated automatically from the segmenta-
tions for each centerline point r = median{ra|a = 1, . . ., A},
taking into account the magnification factor arising from the
geometry. The symbolic representation is splatted into a vol-
umetric grid to enable Dice score-based evaluation [8].

2.5. Experiments

The method introduced in Sec. 2.2 with and without its ex-
haustive extension were evaluated with respect to reconstruc-
tion accuracy, and overall quality, including completeness.
Accuracy was assessed using the 2D reprojection error in a
leave-one-out approach. The ground truth segmentation was
obtained manually. Overall quality of the symbolic recon-
struction was assessed using the Q3D measure based on the
Dice coefficient [8], implicitly estimating the completeness
of the reconstruction. The number of depth labels was cho-
sen such that ∆L = 0.5 mm. The constants were fixed to

(a) (b) (c)

Fig. 2. Volume renderings of the symbolic reconstruction at
ht = 0.9 obtained using the original and the proposed method
in Fig. 2a and 2b, respectively, and the ground truth Fig. 2c.

k1 = 20 · σ = 6.2 mm, k2 = 9.6 mm, k3 = 32 mm, t2D =
2 · σ = 0.62 mm, and nc = 11, where σ is the isotropic pixel
spacing of the Cavarev data set. All reconstructions were per-
formed at end diastole with ht = 0.9.

3. RESULTS AND DISCUSSION

Results for the 2D reprojection error are shown in Table 1.
Each column represents the error with respect to the projec-
tion excluded from the set used for the particular reconstruc-
tion. We stated the average reprojection errors, derived from
the reconstruction of every remaining view as reference or
initial frame. We found substantial reductions in both, the re-
projection error and its standard deviation when applying the
proposed extension. Low reprojection errors indicate proper
reconstructions of the underlying 3D scenes. The discrepancy
in the mean reprojection error between both methods likely
arises from segmentation artifacts in the reference frame that
propagated through the reconstruction. The method proposed
here incorporates an outlier rejection step and a consistency
condition med(m) ≤ t2D introduced in Sec. 2.3 that auto-
matically mitigates such effects, while the original method
required manual preprocessing [6]. Moreover, the standard
deviation of the error for reconstructions from different views
drastically decreased from 0.99±0.61 mm to 0.02±0.01 mm
when using the proposed method. We believe that this result
is more important, as it indicates that the reconstruction accu-
racy is independent from the reference frame. Nevertheless,
some views contain more relevant information for the recon-
struction than others. This property can be understood when
comparing the reprojection errors stated in each column of
Table 1, as they represent the results obtained by excluding
distinct frames from the reconstruction.
The quality of the symbolic reconstruction was evaluated
using Q3D, a two-sided measure assessing the spatial over-
lap of the volumetric reconstruction and the ground truth
[8]. The proposed method resulted in an average Q3D of
0.59 ± 0.00 mm being superior to the result obtained using
the original method yielding 0.50 ± 0.04 mm. Points re-
constructed with the original method Morig are included in



Omitted frame 0 1 2 3 4 5 6

Original method [mm]
0.84
±0.18

1.24
±0.63

1.25
±1.38

1.60
±1.75

1.82
±1.60

1.47
±0.97

0.99
±0.38

Exhaustive extension [mm]
0.62
±0.01

0.63
±0.02

0.53
±0.02

0.48
±0.02

0.46
±0.02

0.46
±0.00

0.60
±0.02

Table 1. Reprojection errors obtained using the leave-one-out scheme described in Sec. 2.5 for the original and exhaustive
method. The error was averaged over the results of the reconstructions obtained from all possible reference frames.

the reconstruction result of the proposed extension,Morig ⊂
Mproposed. Therefore, a higher Q3D value indicates a more
complete reconstruction. Renderings of the symbolic vol-
umetric reconstructions of both methods can be found in
Fig. 2. The symbolic reconstruction obtained using the pro-
posed method shown in Fig. 2b is in better agreement with the
ground truth coronary artery tree shown in Fig. 2c. Liao et al.
proposed the use of a minimum spanning tree in order to con-
nect the 3D centerline points [6]. While a minimum spanning
tree may be useful to compensate for small discontinuities of
the vessels, applying the same strategy to fill large gaps in
the reconstruction is objectionable as it enforces piecewise
linear vessels. Although the proposed method results in a
higher Q3D value it is evident from Fig. 2 that the volumetric
representation requires improvement with respect to smooth-
ness, continuity, and most importantly data fidelity in order
to provide clinicians with images of diagnostic quality.

4. CONCLUSION

An exhaustive extension to graph cut-based coronary artery
reconstruction from rotational angiography was introduced.
In a phantom study, we found improved performance with
respect to the reprojection error and a 3D Dice score-based
metric. The reconstruction quality, consisting of accuracy and
completeness, is largely independent from the choice of refer-
ence frame. Moreover, the proposed method is robust against
statistically independent segmentation errors. The method
does not require manual pre- or post-processing and can be
applied in a fully automatic manner. Future work involves
improvement of the volumetric reconstructions, and evalua-
tion on clinical data sets. All algorithms are implemented in
CONRAD, an open-source reconstruction framework [12].
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