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Abstract. This paper suggests vessel segmentation and refinement in
rotational cone-beam CT angiography based on virtual digital subtrac-
tion imaging and epipolar consistency conditions (ECC). Independent
2D segmentations allow for background estimation and generation of
non-truncated but imperfect angiograms. A new image domain consis-
tency metric then introduces 3D information to visualize regions of over-
and under-segmentation with respect to multiple views. We devise an
algorithm to successively optimize consistency by removing structures
not present in all views. The algorithm is evaluated in three phantom
studies of varying trajectory. We achieved an improvement in Dice score
to 0.89± 0.01 up from 0.87± 0.04 without the proposed consistency re-
quirement. We conclude, that epipolar consistency has great potential
in correcting false segmentations in individual views that result from
overlapping structures, such as bones or surgical instruments.

1 Introduction

Due to the high prevalence of cardiovascular diseases (CVD) coronary angiog-
raphy is of high importance in clinical routine [1]. Consequently, vessel segmen-
tation in diagnostic 3D CT angiography has been studied extensively as it may
ease quantification and assessment [1]. However, treatment of CVD is impeded
by the low temporal resolution of cone-beam CT. A straight-forward volumet-
ric reconstruction of rotational angiograms is impossible, hence, aforementioned
methods cannot be applied. Recent developments enable symbolic reconstruc-
tion of the artery tree from few views but require segmentations of the arteries
in all projection images [2, 3]. Hessian- or gradient-based filters work well in 2D
[4, 5]. Yet, segmentations are usually not consistent throughout the acquisition
due to overlap with high contrast structures such as vertebrae.
As the geometry of the acquisition is well known, it seems natural to incorporate
3D information, for instance by enforcing consistency among all segmentations.
However, it is not clear how information from one view should be propagated to

? Both authors contributed equally to this paper.



2 M. Unberath, A. Aichert, S. Achenbach, and A. Maier

the others. We propose the use of epipolar consistency conditions (ECC) [6] to
identify inconsistent regions in the images using novel image domain inconsis-
tency (IDI) maps. These maps enable a refinement of the segmentation, which
is the major contribution of this work.
As ECC assume non-truncated projections, we rely on a virtual single-frame
subtraction imaging technique suitable for spatially limited structures such as
coronary arteries [7]. We report quantitative results for subtraction imaging and
segmentation refinement of a phantom study. The phantom is designed similarly
to the widely known XCAT [8, 9]. We performed experiments using multiple
saddle trajectories [10] that yield different orientations of the epipolar lines.

2 Material and Methods

We describe a pipeline targeted at vessel segmentation in multiple X-ray projec-
tion images of the same scene with known geometry. We suggest an adaptation
of the ECC which projects inconsistencies to the image domain and allows for
the localization of inconsistent structures. First, vessels are segmented sepa-
rately in each view. Second, the original projections are masked using the seg-
mentations and the virtual background is estimated [7]. This estimate is then
subtracted from the original projections yielding images that only contain infor-
mation within the segmentation mask. Finally, IDI maps are used to propagate
3D information and enforce consistency of the individual segmentation masks.

2.1 Preprocessing and segmentation

Coronary arteries appear as bright tubular structures on a darker background.
We detect them using high pass filters, while suppressing noise with the bilateral
filter [11]. To determine the filter response at position u in a noise-filtered image
I the Hessian is calculated for different scales σ

H(u, σ) =
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where Iσ = I ∗ Gσ, and Gσ is a 2D Gaussian kernel with standard deviation
σ. Given H(u, σ) one can calculate its Eigenvalues λ1/2. They allow for the
definition of meaningful measures such as the blobness Rb = λ2/λ1, and the
structureness S =

√
λ21 + λ22. The vesselness is then calculated as

V(u) = max
σ

exp(−c1Rb) · (1− exp(−c2S)) , (2)

where c1/2 are constants [5]. Moreover, using Eq. 1 the orientation α of the
underlying structure is given by tan(2α) = 2H12 (H11 −H22). Let eα be a unit
vector orthogonal to the structure’s orientation. Vessels of scale σ exhibit large
negative gradients at positions u± σeα, yielding a response [4]
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Fig. 1. Geometries of the projections remaining after ECG-gating. Left to right: the
geometry for the parameter sets (0, 0), (10◦, 8), and (20◦, 4).

Eq. 2 gives strong responses for vessels, but also for other structures with high
curvature. Hysteresis thresholding is used to suppress low, isolated responses
yielding a binary mask Vb. Eq. 3 has a lower false positive rate than the vesselness
but only exhibits high values in the center of vessels. Let QK = {u | K(u) > tK}
be the set of points with responses larger than a heuristic threshold tk and let
g(u) = min{‖u−v‖2}, v ∈ QK be the distance of position u to one such point.
Finally, the segmentation mask W is obtained by combining both filters such
that W (u) = 1 if Vb(u) 6= 0 ∧ g(u) < c3 and 0 otherwise. c3 is a constant
related to the maximal vessel radius. The segmentation mask is subdivided into
connected components yielding a set of components S(j) ⊂ W.

2.2 Virtual subtraction imaging

The initial segmentation according to Sec. 2.1 can be used to remove all pix-
els of the target structures, i.e. contrasted vessels. For digital subtraction, we
seek to recover a background image B. This task is similar to defect pixel in-
terpolation if the corruption process is modeled as multiplication G = I · W,
where W(u) = 1−W(u). The original projection I and the background image
B are similar in the way that their masked versions cannot be distinguished. As
the artificially corrupted observations G do not contain information about bright,
spatially sparse objects an estimate of the unobserved background B solely relies
on the remaining information thus estimating a virtual non-contrast image [7].
In order to avoid a patchy, unnatural appearance of the estimation, a frequency
domain technique, namely spectral deconvolution, is used [12]. According to the
convolution theorem, the corruption in frequency domain reads g = 1

N (b ∗ w),
where N is the number of pixels. As G,B are real valued, their Fourier transforms
g , b are symmetric, exemplary b(k) = b∗(N−k). Assuming that b consisted only
of two spectral lines at s and N −s the observation g after convolution of b with
the mask reads

g(s) =
1

N

(
b̂(s) ·w(0) + b̂∗(s) ·w(2s)

)
, and g(N − s) = g∗(s). (4)

Eq. 4 can be solved for the coefficients b̂. However, b consists of more than two
spectral lines such that in practice the dominant line pairs are estimated sequen-
tially [12].



4 M. Unberath, A. Aichert, S. Achenbach, and A. Maier

The inpainting is applied on image patches to preserve the locality of image
appearance. Moreover, the extracted patches are weighted with a Blackman
window. Finally, the estimated background can be subtracted from the origi-
nal projections yielding virtual subtraction images D(u) = I(u)− B(u) [7].

2.3 Epipolar consistency and segmentation refinement

The series of difference images Di with i = 1, ...,M are not truncated and show
the contrasted vessels and structures resulting from erroneous segmentation.
Recently, we showed that ECC can be used to estimate rigid components of
intra-scan motion [7]. Here, we consider a stationary scene and use ECC to
identify inconsistencies arising from over-complete segmentation.
When the projection matrices Pi ∈ R3×4 are known, it is possible to establish
a relation between two views i1 6= i2, where i1/2 ∈ {1, ...,M}. The join of the
two source positions oi1 and oi2 is called the baseline. Around this line there
exists a pencil of epipolar planes Ei2

i1
(κ), where E is a homogeneous 3-vector,

and κ denotes the angle of the epipolar plane [6]. The meet of an epipolar plane
with the image planes Di1 and Di2 is called the epipolar line li2i1(κ) and li1i2(κ),
respectively. It has been shown that in transmission imaging the two lines carry
redundant information

∂

∂t
ρi1
(
li2i1(κ)

)
− ∂

∂t
ρi2
(
li1i2(κ)

)
≈ 0, (5)

where ρi(li) denotes integration over the line li in image Di. In the original
formulation (Eq. 5), a derivative in orthogonal direction t to the lines li2i1 and

li1i2 accounts for a weighting by the distance to the source position in cone-beam
geometries [6]. However, the derivative acts as a high-pass filter that favors
correct alignment of edges. Despite being theoretically sound, said derivative
is not beneficial for image segmentation, where the total amount of absorption
within structures is more important than the alignment of their boundaries.
Therefore, we omit the derivative from Eq. 5 yielding ρi1

(
li2i1(κ)

)
−ρi2

(
li1i2(κ)

)
≈ 0.

It states that the integral over the two epipolar lines li2i1 and li1i2 should be equal.
Consequently, the sign indicates the lack or surplus of structure.
We accumulate the signed inconsistencies of a particular view and devise an
image domain inconsistency (IDI) map

E±i1 =
∑
i2 6=i1

∫
Ei1(li2i1(κ)) ·H(±Ei1(li2i1))dκ , (6)

where H(x) is the Heaviside step function, and

Ei1(li2i1(κ)) = ρi1
(
li2i1(κ)

)
− ρi2

(
li1i2(κ)

)
. (7)

The total consistency of the current scene Di({S(j)i | j = 1, ..., Si}), i = 1, ...,M is
given by the total energy E(S) =

∑
i

∑
Ωi

(|E+i |+ |E
−
i |), where Ωi is the domain

of image i, and S = ∪̇ Si. Ei implicitly depends on S as removing or adding
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Fig. 2. Example view. Left to right: Original projection; initial segmentation mask
(components are colored according to their score shown in Fig. 4, left), subtraction
image and overlay of segmentation and corresponding inconsistency map E+i (red).

components influences the scene and, therefore, the overall consistency E(S).
In order to refine the segmentation we loop over all views i and perform the
following steps for each view:

1. Remove each component S(j)i exactly once from S yielding S(j)i = S \ S(j)i

2. Calculate the overall consistencies E(S(j)i )

3. Determine S(j)i yielding the largest improvement ∆E = E(S)− E(S(j)i )

4. If ∆E/E(S) < 1%, set S = S(j)i , E(S) = E(S(j)i ), recalculate all Ei, and repeat

The process continues until no component satisfying the condition in 4 can be
found. Requiring changes < 1% instead of < 0% in 4 accounts for a limited
accuracy of the global consistency score. The components left after refinement

are then assembled into segmentation masks W ′i such that W ′i({∪̇S
(j)
i }) = 1 for

all remaining components j, and 0 everywhere else.

2.4 Experiments

We simulated coronary angiography acquisitions using a phantom similar to the
XCAT [8, 9]. Two additional scenarios were simulated to provide a ground-truth
(the phantom without contrast agent, and contrast agent only). We added zero-
mean Gaussian noise with an average signal-to-noise ratio (SNR) of 33.30±0.17.
The phantom was projected using trajectories with a different secondary angle
modulation that is described by a sinusoid φ2(i) = a2 sin( f2φ1

2π2 ), where φ1 is the
primary angle and (a2, f2) ∈ {(0◦, 0), (10◦, 8), (20◦, 4)}. Out-of-plane acquisition
leads to a broader range of epipolar line directions, which is potentially useful
to detect inconsistent structures. We then applied hard ECG-gating yielding
M = 6 stationary projections, the geometries of which are shown in Fig. 1. Us-
ing the methods described earlier, the contrasted vessels were segmented and
masked. Virtual subtraction images were obtained by subtraction of the esti-
mated background. Finally, the segmentation was refined by optimization of
epipolar consistency according to Section 2.3. All intermediate and final results
are evaluated quantitatively. We state the structural similarity (SSIM) and the
mean-absolute-difference (MAD) between the virtual background images Bi and
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Table 1. Average SSIM and MAD of the virtual background images and the ground-
truth for the different trajectories compared to the noisy ground-truth.

(0◦, 0) (10◦, 8) (20◦, 4)

SSIM 0.73± 0.06 0.73± 0.05 0.74± 0.05

MAD (·10−2) 2.16± 0.23 2.12± 0.21 1.84± 0.60

Table 2. Average Dice scores for the initial, independent segmentations and the refined
segmentations Wi and W ′i, respectively, with the ground-truth.

(0◦, 0) (10◦, 8) (20◦, 4)

Independent 0.86± 0.04 0.88± 0.04 0.86± 0.03

Refined 0.89± 0.01 0.89± 0.01 0.89± 0.01

the ground-truth. Both values were computed in the vicinity of the segmenta-
tions only. It was defined as the morphological dilation of Wi with a circular
structural element of 10 pixels, which is approximately twice the average vessel
diameter. Moreover, the average Dice score was calculated for the initial and the
refined segmentations Wi and W ′i, respectively.

3 Results and discussion

The results of the virtual subtraction imaging pipeline are stated in Tab. 1 and in
the first row of Tab. 2. The segmentation algorithm described in Sec. 2.1 achieved
an average Dice score of 0.87±0.04. This result indicates that several non-vessel
structures are included in the resulting binary mask, as the parameters of the al-
gorithm were tuned for over-complete segmentation. The background estimation
yielded average SSIM values of 0.73±0.05 and MAD values of (2.04±0.39) ·10−2

when a ground-truth with different noise floor was used which would correspond
to a real digital subtraction angiography. When comparing the virtual back-
ground images to a noise-free ground-truth, however, much higher values for the
SSIM (0.91 ± 0.00) and much lower values for the MAD ((1.03 ± 0.16) · 10−2)

Fig. 3. Another view. Left to right: Original projection; initial segmentation mask
(colors of the distinct components corresponds to the bars in Fig. 4, right), subtraction
image and overlay of segmentation and corresponding inconsistency map E+i (red).
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Fig. 4. Global consistency E(S(j)
i ) of each label for the views shown in Fig. 2 and 3.

were achieved. Qualitative and quantitative results indicate that spectral decon-
volution performs well for this task and is capable of robustly estimating the
corrupted image pixels.
Fig. 2 and 3 show representative views of the scan with (a2, f2) = (0◦, 0). The
initial segmentation mask shows the correctly segmented vessels in green and er-
roneous segmentations, also highlighted by arrows, in red. Fig. 4 shows bar plots
of our image-space metric of global consistency for both views in corresponding
colors. Each bar reports the global inconsistency, if the corresponding label were
removed. Inconsistency spikes, if any of the correctly segmented vessels (green)
are removed. Inconsistency is reduced, when over-segmented structures are re-
moved (red). The removal of these inconsistent components yielded an improved
average Dice score of 0.89± 0.01, compared to 0.87± 0.04 without the proposed
consistency requirement. Qualitatively, the IDI maps provide a very intuitive
visualization of inconsistent regions. Epipolar lines passing through the two over
segmented components highlighted in Fig. 2, right, exhibit an excessive total ab-
sorption and, therefore, yield bright, well localized streaks in the corresponding
IDI map. However, from Fig. 3, right, it becomes apparent that such maxima are
not necessarily well confined if the erroneous components are large. This com-
plicates a straight-forward analysis in the image domain but requires the use of
a global inconsistency measure. We did not find any substantial difference for
the three trajectories investigated here. Yet, the range of epipolar line orienta-
tions heavily depends on the underlying geometry [6]. Including few projections
acquired at large secondary angles introduces steeper epipolar lines that may
improve IDI map rasterization and, therefore, facilitate their interpretation.

4 Conclusion

This work presented a new approach to segmentation refinement in cone-beam
CT angiography. We used virtual subtraction angiography based on an initial
2D segmentation to produce contrast-only, non-truncated views of the vessels.
This enabled the investigation of consistency between individual views, thus
incorporating 3D knowledge. We devised an image domain formulation of epipo-
lar consistency, which allowed us to identify image regions of over- and under-
segmentation. A proof-of-concept implementation successively removed inconsis-
tent structures in phantom experiments. Several issues remain with the current
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method. First, we only remove over-segmented structures. We currently have no
way to add structures to under-segmented regions or sub-divide large compo-
nents into parts, which is important in case of overlap. Faint, small structures
are naturally more difficult to classify. Future research should address the effect
of inconsistencies from other sources, notably residual motion from inaccurate
gating and variations in contrast due to virtual subtraction angiography. Our
ad-hoc approach also ignores a derivative in the original formulation of ECC,
which possibly leads to inconsistencies due to non-parallel rays in cone-beam
geometries. We conclude, that our proposed application of consistency to the
problem of segmentation is general, in that it only relies on an initial segmen-
tation mask and the projection data, it is straight-forward, as it uses 3D infor-
mation from multiple views, without ever establishing direct correspondences,
and it intuitively visualizes regions of over- and under-segmentation. We plan to
investigate how the results presented here translate to clinically acquired data.
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