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Abstract—We outline a generic framework for single-frame,
detector-domain material decomposition. The method involves a
segmentation and a background estimation step yielding a virtual
mask image that can be used for subtraction. In many cases,
material decomposition yields non-truncated difference images
enabling the use of novel motion estimation methods that exploit
epipolar consistency conditions.
In this work, a pipeline for virtual digital subtraction coronary
angiography is presented and evaluated on a phantom data
set. The pipeline consists of Hessian-based vessel segmentation
followed by background estimation in Fourier domain. Center
of mass tracking and a metric based on epipolar consistency
conditions is then used to estimate vertical detector translations
that serve as a surrogate for respiratory and cardiac motion.
When assessing the heart phase, we achieved a correlation of 0.91
between the ground truth ECG and the image-based surrogates.
The results encourage further experiments on real data as well
as the application for intra-scan motion compensation.

I. INTRODUCTION

Robust methods for intra-scan patient motion estimation,
such as center-of-mass (CoM) tracking or use of epipolar
consistency conditions (ECC), require non-truncated data [1].
Unfortunately, this requirement is hardly ever satisfied for
scans of thoracic or abdominal regions. However, the object
of interest, such as the coronary arteries, may lie completely
in the field of view. In order to increase visibility and enable
above-mentioned motion estimation techniques, it would be
beneficial to separate the object from the background.
A widely used technique for decomposition is digital sub-
traction imaging, allowing separation of structures that can
be enhanced using some sort of contrast-agent. The most
widely known representative of these techniques is digital
subtraction angiography (DSA) [2]. Traditionally, the method
requires two acquisitions with and without contrast enhance-
ment, that are being referred to as the fill and mask scan,
respectively. Requiring two asynchronous scans makes the
method susceptible to intra- and inter-scan patient motion
[3]. Single-frame material decomposition, however, does not
rely on asynchronous imaging of the same scene and allows
for lower patient dose. So far, it has been described in the
context of energy-resolving X-ray detectors that are not yet
part of clinical routine [4]. Nonetheless, single-frame material
decomposition may be possible for conventional acquisitions
exploiting segmentation and interpolation strategies. Similar
methods have been applied in the context of high-intensity
object masking [5] and background estimation [6] where they
are used for artifact reduction in reconstructions.

We outline a generic framework for virtual single-frame sub-
traction imaging of spatially sparse structures, such as con-
trasted vessels or metal implants, to enable the application of
algorithms that are restricted to non-truncated data. We present
preliminary results of coronary artery motion estimation using
CoM-tracking and ECC on phantom data [7], and show that
the motion patterns can be used for image-based gating.

II. MATERIAL AND METHODS

The schematic of the generic procedure is shown in Fig. 1.
A projection image in which the object of interest is well
visible serves as input to the method. The method involves
the following steps:

i. Segmentation of the structure yielding a binary mask
ii. Background estimation in the masked regions

iii. Digital subtraction of input and virtual background
Success of the method relies on the two key components
segmentation and background estimation, which we will refer
to as inpainting. Both elements can be exchanged arbitrarily in
the sense that their function is fixed while the specific method
can be chosen to best handle the underlying problem.
We describe an exemplary pipeline designed for rotational C-
arm CT coronary angiography, elaborating on the methods
used for segmentation and inpainting of coronary arteries.

A. Preprocessing and segmentation

The segmentation algorithm described here makes use of
derivatives that act like a high-pass filter. To suppress the
influence of noise while preserving edges, a bilateral filter is
applied to the input images I ′a, a = 1, ..., N [8]. The filtered
image Ia at position u ∈ R2 is given as

Ia(u) ∝
∑
ui∈Ω

I ′a(ui) ·fσr
(‖I ′a(ui)− I ′a(u)‖) ·fσd

(‖ui − u‖) ,

where Ω is a local neighborhood, and fσ(x) ∝ exp(−x
2
/2σ2) is

a Gaussian function defining neighborhood weights in spatial
and intensity domain. In the above equation, we omitted the
normalization factor N (u) for more compact notation.
Subsequently, the projection images are segmented using a
combination of morphological and Hessian-based filters [9].
Coronary arteries manifest as bright, small tubular structures
on a darker, slowly varying background. A circular top-hat
filter yields high responses for bright structures smaller than
its radius R and can, therefore, be used to remove all structures
larger than the structuring element [10]. Generally, in the
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Fig. 1. Schematic of the proposed method. Having obtained a binary segmentation of the object of interest, the background is estimated using an inpainting
method. The virtual mask image can then be subtracted from the original projection yielding the difference image.

top-hat filtered image ITH
a responses from non-tubular struc-

tures are not sufficiently suppressed. Therefore, we include a
vesselness-filtered version of the image IV

a . The filter uses the
Eigenvalues of the Hessian λ1,2 = λ1,2(u, s) at position u
and scale s such that |λ1| ≥ |λ2|. They enable the definition
of physically meaningful measures, the blobness Rb = λ2/λ1,
and the structureness S =

√
λ2

1 + λ2
2. Then if λ1 > 0, the

vesselness reads

V (u) = max
s

exp(−αRb) ∗ (1− exp(−βS)) , (1)

where α, and β are constants [11]. The enhanced images IE
a

are then obtained by combination of vesselness and top-hat
filtered images IV

a and ITH
a , respectively, yielding

IE
a (u) =

{
IV
a (u) if IV

a (u) > tV ∧ ITH
a (u) > 0

0 else
, (2)

where tV is an empirically determined threshold. A binary
segmentation mask Wa is then calculated from the enhanced
image IE

a using hysteresis thresholding. The mask will be used
as a binary defect window. Therefore,Wa(u) = 1 if u belongs
to the background and 0 otherwise.

B. Background estimation: Spectral inpainting

Masking the object of interest can be expressed as a mul-
tiplication of the projection with the defect window in spatial
domain, yielding a defective image Ga(u) = Ia(u) · Wa(u).
Inpainting of the defective image is equivalent to estimating
the measurement of defect detector pixels, where spatially
extensive regions do not carry information. Many estimation
techniques in spatial domain, such as Thin-Plate-Spline in-
terpolations, exist [5]. However, due to their locality they
only perform well for sufficiently small defects and change
the noise characteristic, which may lead to an unnatural
appearance of the image [12].
Frequency domain methods, such as spectral interpolation,
have been shown to work well for large defect areas and
noisy structures [5][12]. We seek to estimate the undistorted
background Ba from the observation Ga(u) = Ba(u)·Wa(u).
In frequency domain the relation is expressed in terms of
convolution ga = ba ?wa, where lowercase letters denote the
Fourier transform of its uppercase equivalent. The method tries

to iteratively deconvolve the unknown background spectrum ba
and the window spectrum wa, utilizing the symmetry property
of the Fourier transform of real valued signals [12].
To preserve the locality of image appearance, spectral inter-
polation is performed consecutively on patches rather than on
the whole projection at once. Patch-based processing, however,
implies weighting with a rectangular window that decreases
the dynamic range and sensitivity due to spectral leakage [13].
To mitigate such effects, an apodization window is applied to
the patches before converting to Fourier domain.
Finally, the estimated background image is then subtracted
from the projection, yielding the virtual digital subtraction
angiogram Da(u) = Ia(u)− Ba(u).

C. Intra-scan motion and its implications

The subtraction images Da are, in contrast to the original
projections Ia not truncated and can, therefore, serve as an
input to CoM- and ECC-based motion estimation algorithms.
The CoM ca in frame a is calculated from the pixel intensities:

ca =
1∑

u∈Da
Da(u)

∑
u∈Da

Da(u) · u. (3)

The method yields 2D shifts, corresponding to motion in the
plane orthogonal to the viewing direction.
Use of ECC relies on the epipolar geometry between views
a1 and a2 with projection matrices Pa1 and Pa2 , respec-
tively. Assuming a parallel acquisition geometry, integration
over corresponding epipolar lines la1(κ) and la2(κ) gives two
redundant ways of calculating the integral over the epipolar
plane E(κ) through the object, where κ defines the angle of
the epipolar plane [1]. There exists a pencil of such planes
around the baseline each with a different angle κ, allowing
for the definition of consistency conditions. For cone-beam
geometry the relationship outlined above has to be modified
using Grangeat’s theorem, yielding

d

dt
ρa1(la1)− d

dt
ρa2(la2) ≈ 0, (4)

where d
dtρa(l) is the derivative of the integral over line la

in image Ia, and t is the distance of the line to the image
origin. Requiring mutual consistency among all images
Ia, a = 1, ..., N at multiple lines l allows the definition of a



metric that can be optimized to estimate motion parameters
responsible for the inconsistencies [1].

D. Surrogate signal extraction

Respiratory and cardiac motion both are assumed to man-
ifest in a global translation in head-foot direction with low
and high frequency, respectively [14]. Therefore, we will
restrict the motion model to 1D translations in vertical detector
coordinate direction, that we will refer to as v-shifts. The
shifts v = (v1, ..., vN ) are transformed to Fourier domain
applying a Hann window for apodization [13]. Subsequently,
the signal is separated into two components vresp and vcard
containing frequencies below and above a certain threshold
fsep, respectively. Then, the heart rate fecg is extracted as the
dominant frequency in the power spectral density of vcard.
Using fecg as the heart rate, a normalized cardiac time is
calculated for each image a as ta,card =

aT fcard

N (mod 1), where
T is the scan duration.

E. Data and Experiments

The proposed methods were evaluated on Cavarev, an
XCAT-based phantom data set exhibiting respiratory and car-
diac motion [7], [15]. The data set consists of 133 projections
acquired over 5 s. The radius for top-hat filtering was 4 pixels,
the vesselness threshold tV = 0.5. The segmentation accuracy
was assessed using the Dice score. The patch size used for
spectral interpolation was 160 × 160, 100 iterations were
used. A Blackman window was applied to each patch. We
calculated v-shifts using CoM- and ECC-based methods. As
no mask scan is included in the Cavarev data set, the inpainting
and subtraction algorithm could only be evaluated implicitly
using the results of both motion estimation techniques. The
threshold for respiratory and cardiac signal separation was
chosen as fsep = 1 Hz. We demonstrate the correlation of the
respiratory signal vresp with the ground-truth qualitatively, but
present quantitative results for the normalized cardiac time,
i.e. Pearson’s R.

III. RESULTS AND DISCUSSION

Representative results of the virtual single-frame subtraction
pipeline are shown in Fig. 2. The segmentation algorithm
described in Sec. II-A yielded a Dice score of 0.98±0.14 with
respect to a manual segmentation. Nevertheless, segmentation
errors were present (see Fig. 2b) indicating that a more
complex segmentation algorithm may be necessary to handle
real data. The virtual mask and difference image are shown
in Fig. 2c and 2d, respectively. While quantitative evaluation
of the background estimation is not possible with Cavarev,
the visual results suggest that spectral interpolation is able to
satisfactorily estimate the background for narrow structures
such as the coronary arteries. Larger scale structures,
however, may require different inpainting algorithms up
to a point where reliable background estimation becomes
impossible as too much information is omitted from the
image. Segmentation errors are not as prominent in the

resulting difference image or not visible at all, indicating that
background estimation may hamper artifact propagation if the
erroneously masked region is well explained by the remaining
image. This observation is encouraging, as the subsequent
motion estimation step then has to deal with fewer artifacts
which may lead to a more robust estimation.
The v-shifts v obtained from CoM- and ECC-based methods
are shown in Fig. 3a. Both shifts have a similar range on
the detector of 37.64 mm and 39.24 mm for CoM and ECC,
respectively. The offset, both in Fig. 3a and 3b, was adjusted
for better visualization. Shifts obtained using the ECC-based
method appear smoother than the ones extracted using CoM
tracking. An explanation for this behavior could be that CoM
calculation is more susceptible to remaining artifacts as it
directly uses image intensities of every image independently.
The ECC-based method on the other hand requires integration
over epipolar lines and bundle optimization [1], potentially
allowing more robust estimations. In the same figure it can
be observed that the extracted low frequency signal vresp is in
good agreement with the ground truth respiratory phase. An
attempt to directly assess the breathing frequency using the
power spectral density did not yield meaningful results. We
believe this shortcoming to be related to the low amount of
observed breathing cycles (fewer than 1.5).
The high frequency signal vcard, resulting normalized time
tcard, and the ground truth cardiac time are shown in Fig. 3b.
The periodic signals vcard visually correlate well with the
ground truth and support the assumption of global head-foot
motion during contraction at least for this phantom study.
Albeit different in spatial and frequency domain, both signals
exhibit the same dominant frequency of 1.41 Hz yielding the
same normalized times tcard and, therefore, Pearson R of 0.91.
Hence, the shifts could be used as surrogate for the heart
phase allowing image-based gating. This may be beneficial
for gated reconstructions as the surrogate is derived from
the actual motion state rather than the electrophysiological
excitation.
Separation of low and high frequency components of v by
thresholding in Fourier domain worked well overall. However,
the separation does not seem optimal everywhere. For the
signals obtained using the CoM and the ECC the effect can be
observed at small and large projection numbers, respectively.
Although the effect was subtle and did not affect the heart
rate estimation in Fourier domain, it may become bothersome
when using the shifts for motion compensated reconstructions.
In such cases, however, the signal decomposition could be
performed in a reversed order if an ECG was acquired
simultaneously. Then frequencies related to the heart beat
could easily be omitted allowing for accurate respiratory
motion estimation.

IV. CONCLUSION

We discussed a generic pipeline for virtual single-frame
subtraction imaging enabling detector domain material de-
composition. We introduced a representative pipeline targeted
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Fig. 2. Crop of the original projections (not shown here) to the region of interest. The original projection, the segmentation mask, the inpainted image, and
the DSA image are shown in Fig. 2a, 2b, 2c, and 2d, respectively.
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Fig. 3. 1D motion estimation of CoM- and ECC-based methods (solid lines)
and the low frequency respiratory signal (dashed lines) are shown in Fig. 3a
together with the ground-truth respiratory phase. Fig. 3b shows the high
frequency signal, the corresponding normalized time, and the ground-truth.

at coronary arteries and demonstrated its capabilities and
limitations in a phantom study. We argued that material
decomposition may void truncation for the object of interest
allowing for motion estimation techniques based on the CoM
or ECC. We demonstrated the applicability of such methods
and showed that v-shifts correlate well with both, the respi-
ratory and the cardiac phase. In future work we will evaluate
the method on real patient data including but not limited
to interventional coronary angiography. We see applications
in metal artifact reduction but most importantly in image-
based motion compensation. A natural next step would be the
extension of the motion model. Estimating 3D translations may
allow for respiratory motion compensation, which is hardly
feasible using vertical detector coordinate shifts only.
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