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Abstract
The interest in emotion recognition from speech has in-
creased in the last decade. Emotion recognition can im-
prove the quality of services and the quality of life of peo-
ple. One of the main problems in emotion recognition
from speech is to find suitable features to represent the
phenomenon. This paper proposes new features based on
the energy content of wavelet based time-frequency (TF)
representations to model emotional speech. Three TF rep-
resentations are considered: (1) the continuous wavelet
transform, (2) the bionic wavelet transform, and (3) the
synchro–squeezed wavelet transform. The classification
is performed using GMM supervectors. Different classi-
fication problems are addressed, including high vs. low
arousal, positive vs. negative valence, and multiple emo-
tions. The results indicate that the proposed features are
useful to classify high vs. low arousal emotions, and that
the features derived from the synchro–squeezed wavelet
transform are more suitable than the other two approaches
to model emotional speech.

Keywords: Speech emotion recognition, Continuous
Wavelet Transform, Bionic Wavelet Transform, Synchro –
Squeezing, Time–frequency analysis, GMM-supervectors.

1 Introduction
The interest in emotion recognition has been increased in
the field of speech and language processing over the last
decade [1]. Most of the technological applications related
to emotion recognition include support in call centers, tu-
toring systems, public surveillance, and psychological treat-
ment, among others. One of the main challenges is to find
the feature sets that provides the best representation of the
emotional speech. For such purpose, new features may
be proposed to improve the performance of the systems.
Currently, the feature sets used are formed with large sets
of acoustic features and include measures derived from
prosody, spectral and cepstral features such as Mel fre-
quency cepstral coefficients (MFCC), and voice quality mea-
sures [2]. In [3] the authors use the 384 features used
in the "INTERSPEECH 2009 emotion challenge" [4] to
classify high vs. low arousal emotions, positive vs. nega-
tive valence emotions, and multiple emotions in different
databases such as Berlin [5] and enterface05 [6]. The au-
thors use a support vector machine (SVM), and follow a
leave one speaker out (LOSO) cross–validation. The re-
ported accuracies are around to 96% in Berlin and 76% in
enterface05 for the detection of high vs. low arousal, 80%
in Berlin and 65% in enterface05 for the positive vs. neg-
ative valence, and 80% in Berlin for the classification of
seven emotions, and 68% in enterface05 for the classifica-
tion of six emotions. The same feature set was considered
in [7] to classify anger, sadness, happiness, and neutral-

ity in IEMOCAP database [8]. The authors propose a new
classification scheme based on a hierarchical binary deci-
sion tree using a SVM. The reported unweighted average
recall (UAR) considering a speaker independent validation
strategy is of up to 58.4%. In [9], the set of 1582 features
used as baseline in the "2010 INTERSPEECH computa-
tional paralinguistic challenge" was used by the authors to
classify the six emotions of the enterface05 database, and
four emotions of the FAU-Aibo database, including em-
phatic, neutral, motherese, and negative emotions. The au-
thors propose a method based on least square regression
and report a UAR of 69.3% and 60.5% in enterface05 and
in FAU-Aibo, respectively. Recently, feature extraction
methods based on the time–frequency (TF) analysis have
been successfully applied to classify several emotions and
other paralinguistic phenomena from speech [10, 11]. The
Wavelet transform has been typically used for TF analy-
sis and to model emotional speech [11–13]. In [12] the
authors propose a new set of features based on the en-
ergy entropy calculated upon selected bands of the wavelet
packet transform (WPT) computed from speech and glot-
tal signals. The authors classify the seven emotions of the
Berlin database using a Gaussian mixture model (GMM),
and the obtained accuracy is 54%. In [11] the authors use
features related to MFCC, linear prediction cepstral co-
efficients, perceptual linear prediction gamma-tone filter
outputs, timbral texture, and energy and entropy measures
computed from the WPT. The features are extracted from
the speech and glottal signals to model seven emotions of
the SAVEE database [14]. The authors propose a feature
selection approach based on particle swarm optimization
and a classifier based on extreme learning machines, and
report an accuracy of 75.4%.

In this paper, features based on the energy content of
wavelet based TF representations are proposed for the clas-
sification of emotions from speech. We consider three dif-
ferent TF representations: (1) continuous wavelet trans-
form (CWT), (2) bionic wavelet transform (BWT), which
is based on a model of the active auditory system [15], and
(3) synchro–squeezed wavelet transform (SSWT), which
is defined to combine the wavelet analysis and auditory–
nerve models [16]. The results obtained with the proposed
approach are compared to those obtained with the stan-
dard feature set used in the "2009 INTERSPEECH emo-
tion challenge", which is formed with 384 acoustic fea-
tures. The classification is performed in two stages. The
first one consists of a multi-class SVM trained with GMM
supervectors formed by concatenating the mean vectors of
GMMs trained with the feature sets. The second one con-
sists of taking the distances to the hyper–plane obtained
from the first stage and use them as new features to train a
second multi–class SVM. Four different datasets for emo-
tion recognition from speech are considered: The Berlin,
enterface05, IEMOCAP, and SAVEE databases. Three dif-
ferent classification tasks are also considered: the detection



of (1) high vs. low arousal emotions, (2) positive vs. neg-
ative valence emotions, and (3) the recognition of multi-
ple emotions: seven emotions in Berlin, six in enterface05,
four in IEMOCAP, and seven in SAVEE. According to our
results, the features from the SSWT provide to be the most
useful to characterize the emotional speech, rather than the
CWT and BWT, particularly in the detection of high vs.
low arousal emotions. The rest of the paper is as follows:
section 2 contains the description about the methods for
feature extraction and classification. Section 3 describes
the databases used and the experimental setup. Section 4
contains the description of the results. Finally section 5
includes the main conclusions derived from this study.

2 Material and methods
The methodology followed in this study comprises four
stages. (1) The speech utterances are segmented into voiced
and unvoiced segments. (2) The three different TF repre-
sentation are computed for each segment, separately. (3)
The energy content in different frequency bands is calcu-
lated for each representation forming the feature vectors.
(4) Finally the features are used to train the classification
scheme based on GMM supervectors.

2.1 Segmentation
Voiced and unvoiced frames are segmented from the speech
signals using Praat [17]. This segmentation process has
been successfully used in the automatic recognition of emo-
tions and other paralinguistic tasks [18, 19].

2.2 Time-frequency representations
CWT: The CWT is introduced as an alternative to repre-
sent and decompose non-stationary signals. The CWT al-
lows a TF multi–resolution analysis based on the decompo-
sition of the signal into time–variable length frames. In the
CWT the base functions ψs,u(t) are small waves of lim-
ited duration known as wavelets, whose energy is located
around a fixed point. These waves are scaled and translated
to create a complete base of the decomposition space. For-
mally, the CWT of a signal x(t) is given by Equation 1.
Where s defines the scale, and u the translation.

CWTx(u,s) =
∫

∞

−∞

x(t)
1√
s
ψ∗
(
t−u
s

)
dt (1)

BWT: The BWT is a TF representation derived from
CWT based on a model of the active auditory system [15].
This transform has been widely used to design cochlear im-
plants and speech enhancement algorithms [20]. Formally,
the BWT is a time adaptive Wavelet transform designed es-
pecially to model speech signals with the Morlet Wavelet
function. The BWT is defined by Equation 2 [15].

BWTx(u,s) =
∫

∞

−∞

x(t)
1

λ
√
s
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(
t−u
sλ

)
(2)

The main difference between the BWT and the CWT
is the introduction of the time–adaptive parameter λ. The
function λ is derived from the active auditory model and it
is defined by Equation 3. Where α is a saturation constant,
and β and γ are the gains of the model. In this study, values
of α = 0.8, β = 0.87, and γ = 0.45 are considered, as in
related work [15, 20].

λ=
1

1−α β
β+|BWTx(u,s)|

· 1
1+γ

∣∣ ∂
∂tBWTx(u,s)

∣∣ (3)

SSWT: The SSWT was introduced to incorporate the
Wavelet transform and auditory nerve–models into a TF
representation to model speech signals [16]. The aim of
the synchro–squeezing is to "sharpen" the CWT by "re–
allocating" the value of the point (t,f) in the TF plane into
a different point (t′,f ′) according to the local behaviour
of the CWT [21]. The aim of SSWT is to obtain a con-
centrated TF representation of the signal, from which fre-
quency components can be extracted [21]. The SSWTx(u,f)
is estimated from the CWTx(u,s) using Equation 4 [16,
22]. fi is the frequency index of the SSWTx(u,f) and
f(s,u) are the instantaneous frequencies where
CWTx(u,s) 6= 0 [22].

SSWTx(u,fi) = (∆f)−1
∑

s:|f(s,u)−fi|≤ ∆f
2

CWTx(u,s)s
−3
2 (∆s) (4)

Figure 1 illustrates the difference between the three
wavelet based TF representations. Note that the frequency
components are more spread out in the CWT than in the
BWT and in the SSWT.

2.3 Feature extraction
The computation of features consists of dividing the TF
representations into 22 frequency regions according to the
Bark scale. Each region corresponds to sub-band frequen-
cies from 0 to 8 kHz. The energy content of each band is
extracted using Equation 5. uk and fi are the time, and
frequency index of each representation, respectively. fi is
calculated according to the Bark scale using Equation 6.
WT corresponds to any of the described transformations:
CWT, BWT, or SSWT.

E[i] = log

∣∣∣∣∣ 1
N ∑

fi

N

∑
uk

∣∣WT(uk,fi)

∣∣2∣∣∣∣∣ (5)

fi= 13 ·arctan(0.00076f)+3.5arctan

((
f

7500

)2
)

(6)

The speech segments are down–sampled to 16 kHz to
avoid sampling frequency dependent results. Then, each
TF representation is calculated upon frames of 40 ms length
and 20 ms time–shift. Figure 2 summarizes the feature ex-
traction process.

2.4 Modeling and Classification
The features extracted from the voiced and unvoiced seg-
ments are modeled separately using GMM supervectors,
which afterwards are considered for training two SVMs.
Finally, the distances to the SVMs hyperplanes are used as
features to train a second SVM to make the final decision.
The process is detailed in the following subsections. For
the muti–class experiments, the SVMs are trained follow-
ing the one-vs-one strategy.
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Figure 1: Wavelet based TF representations. Speech signal (up), CWT (left), BWT (middle), SSWT (right)
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Figure 2: Feature extraction process considering the time-
frequency representations

2.4.1 GMM-UBM and supervectors

A GMM is defined as a probabilistic model represented
by the linear combination of several multivariate Gaus-
sian components. The GMM is defined using Equation 7,
whereM is the number of Gaussian components, Pj corre-
sponds to the prior probability of the j−th component, and
N is a multivariate Gaussian density function with mean
vector µj and covariance matrix Σj .

p(x|Θ) =
M

∑
j=1

PjN (x|µj ,Σj) (7)

Training a GMM consists of estimating the parame-
ters Θ = {P,µ,Σ} from a training set. The most common
method for estimating these parameters is the Expectation
Maximization (EM) algorithm [23]. The UBM is a speaker
independent model trained with the EM algorithm with a
set of samples from all classes, e.g, emotions, and a large
number of speakers from the training set [23]. After train-
ing the UBM, individual GMMs for each emotion are cre-
ated following the maximum a posterior (MAP) rule. The
GMM supervector is formed by concatenating the mean
vectors µj of the adapted GMMs [24]. For this study, each
supervector is used as a new feature to train a SVM with a
Gaussian kernel. This method comprises a "hybrid" classi-
fication strategy, where the generative GMM-UBM model
is used to create new feature vectors for a discriminative
classifier. The number of Gaussian components M is op-
timized in a grid-search from 2 to 8 in steps of 1. The
complexity parameter C and the bandwidth of the kernel
γ of the SVM are also optimized through a grid-search in
powers of ten with 10−1 <C < 104, and 10−2 < γ < 102.

2.4.2 Second classification stage

The second classification stage consists of fusing the scores
(the distances to the separating hyperplanes of the SVMs)
obtained from the first stage using the voiced and unvoiced
features separately. Those scores are fused and used to
train another SVM with a Gaussian kernel to take the deci-
sion about which emotion is detected on each utterance.

3 Experimental framework
3.1 Datasets

Berlin emotional database [5]: It contains 534 utter-
ances produced by 10 German native speakers who acted
7 different emotions including anger, disgust, fear, happi-
ness, sadness, boredom, and neutral.

enterface05 database [6]: It contains 1317 audiovi-
sual recordings with 6 emotions produced by 44 speakers,
including anger, disgust, fear, happiness, sadness, and sur-
prise. Each subject listened six successive short stories.
After each story the subject had to react to the situation by
reading predefined sentences closely related to each story.

IEMOCAP database [8]: The interactive emotional
dyadic motion capture (IEMOCAP) database contains ap-
proximately 12 hours of audiovisual data, including video,
speech, motion capture of the face, and text transcriptions.
The audio files consist of 10039 utterances produced by 10
English native speakers who acted 10 different emotions.
The database consists of dyadic sessions where actors per-
formed improvisations or scripted scenarios, specifically
selected to elicit emotional expressions.

SAVEE database [14]: The surrey audiovisual expre-
ssed emotion (SAVEE) database consists of utterances from
4 male actors in 7 different emotions such as anger, dis-
gust, fear, happiness, sadness, surprise, and neutral. The
database is formed by 480 British English utterances.

3.2 Experimental setup
Three experiments are addressed using the recordings from
each database. We perform the classification of (1) high
vs. low arousal emotions, (2) positive vs. negative valence
emotions, and (3) all emotions from the databases: seven
emotions in Berlin, six in enterface05, four in IEMOCAP,
and seven in SAVEE. Table 1 lists the emotions considered
for the three experiments addressed in this study.



Table 1: Experiments addressed in this study

Database 2-class 2-class multi-class
Arousal Valence All emotions

Berlin

High: Fear, Disgust, Positive: Neutral, Fear, Disgust
Happiness, Anger. Happiness. Happiness, Neutral
Low: Boredom, Negative: Boredom, Anger Boredom, Sadness
Neutral, Sadness. Sadness, Fear, Disgust. Anger

Enterface05

High: Fear, Disgust, Positive: Surprise Fear, Disgust
Happiness, Anger. Happiness. Happiness, Anger
Surprise Negative: Anger Surprise, Sadness
Low: Sadness. Sadness, Fear, Disgust.

IEMOCAP

High: Fear, Disgust, Positive: Surprise, Neutral Anger, Sadness
Happiness, Anger. Happiness, Excitation Happiness, Anger
Surprise, Excitation, Negative: Anger, Frustration,
Frustration Sadness, Fear, Disgust.
Low: Sadness, Neutral.

SAVEE

High: Fear, Disgust, Positive: Surprise, Neutral Fear, Disgust
Happiness, Anger. Happiness. Happiness, Anger
Surprise Negative: Anger Surprise, Sadness
Low: Neutral, Sadness. Sadness, Fear, Disgust. Neutral

3.3 Validation
A speaker independent cross–validation strategy based on
LOSO is followed. The performance measure used for the
evaluation of the methodology is the UAR due to the high
unbalanced data. UAR is defined as the unweighted aver-
age of the class–specific recalls achieved by the system.

4 Results and Discussion
The results with the proposed features are compared to
those obtained with the feature set used as baseline in the
"INTERSPEECH 2009 emotion challenge" [4], which is
formed with 384 acoustic features computed with the Ope-
nEAR toolkit. Table 2 displays the results for the detec-
tion of low vs. high arousal. The results obtained with
the fusion scheme are better than those obtained with each
kind of segment separately, except for the results in Berlin,
where the highest UAR is obtained with the voiced fea-
tures. Note also that in most of the cases the wavelet–based
TF representations provide higher UARs than OpenEAR.

Table 2: Detection of high vs. low arousal emotions. V:
voiced, U: unvoiced.

Features Segm. Berlin SAVEE enterface05 IEMOCAP

CWT
V 95.7±5.6 82.5±9.1 81.2±2.2 74.4±3.8
U 89.1±8.7 79.8±8.1 79.6±1.2 75.1±2.7

Fusion 93.3±8.3 87.3±7.4 80.8±2.5 76.4±2.5

BWT
V 95.6±5.5 82.3±8.0 81.5±1.7 74.3±4.2
U 89.6±8.5 80.4±7.2 79.8±1.5 74.8±2.8

Fusion 94.0±6.6 84.6±7.1 81.9±2.2 76.1±4.0

SSWT
V 95.8±5.5 84.4±8.3 81.1±1.7 75.7±4.7
U 89.2±8.4 79.5±6.7 80.4±1.4 75.6±2.9

Fusion 95.0±5.5 81.8±5.7 80.2±2.9 77.2±3.6
OpenEAR - 97.3±3.0 83.3±8.8 81.0±2.0 75.5±3.8

Table 3 contains the results classifying positive vs. neg-
ative valence emotions. In general, the highest UARs are
obtained with OpenEAR. This is likely due to the fact that
we consider only features based on the energy content of
the TF representation, which may not provide enough in-
formation to model the valence dimension. The SSWT
provides better results than the BWT and CWT in three of
the four databases. On the other hand, the fusion scheme in
SAVEE and IEMOCAP improves the results when voiced
and unvoiced features are used separately. Table 4 con-
tains the results for the classification of multiple emotions.
In general, the highest results are obtained also with Ope-

nEAR. Note also that in all of the cases the fusion scheme
improves the results relative to those obtained when voiced
and unvoiced segments are modeled separately.

Table 3: Detection of positive vs. negative valence emo-
tions. V: voiced, U: unvoiced.

Features Segm. Berlin SAVEE enterface05 IEMOCAP

CWT
V 80.0±3.7 64.4±5.0 74.6±1.7 54.5±3.8
U 76.3±5.4 63.8±3.2 73.4±2.6 57.5±2.3

Fusion 78.2±4.2 66.7±3.5 74.4±2.0 58.4±4.7

BWT
V 80.0±3.7 63.8±6.3 74.2±2.0 54.6±3.6
U 76.4±6.7 63.8±4.5 73.6±2.7 57.6±2.1

Fusion 78.0±5.5 64.6±5.9 73.5±4.2 58.1±3.2

SSWT
V 81.7±4.6 64.2±4.8 75.6±2.9 56.2±4.0
U 76.9±6.0 63.1±3.4 74.3±2.8 58.3±1.9

Fusion 78.5±3.8 65.4±5.3 73.8±3.6 59.5±3.3
OpenEAR - 87.2±2.4 72.5±5.7 81.4±3.6 59.0±3.2

Table 4: Classification of multiple emotions. V: voiced,
U: unvoiced.

Features Segm. Berlin SAVEE enterface-05 IEMOCAP

CWT
V 61.3±8.3 40.6±13.5 48.4±4.7 46.7±6.0
U 54.7±6.6 39.4±5.8 45.7±4.0 51.3±3.6

Fusion 66.6±6.5 43.8±9.0 51.3±5.6 55.9±5.0

BWT
V 63.7±9.1 41.2±14.9 48.4±4.4 46.6±5.3
U 55.5±7.4 39.8±4.3 44.9±4.3 51.2±3.9

Fusion 66.5±6.5 47.3±10.3 49.7±4.3 55.2±5.7

SSWT
V 64.0±8.0 42.7±11.1 48.0±3.5 48.7±5.0
U 55.0±8.2 39.6±6.2 45.9±3.6 52.0±2.9

Fusion 69.3±7.6 45.4±12.1 48.8±5.8 58.2±4.1
OpenEAR - 80.4±8.0 49.4±17.6 63.2±6.7 57.2±2.8

5 Conclusions
This study evaluates three different wavelet based TF rep-
resentations to model emotional speech. Three classifica-
tion problems are addressed: detection of high vs. low
arousal emotions, classification of positive vs. negative va-
lence emotions, and the recognition of multiple emotions.
The emotions are modeled considering a scheme based on
GMM supervectors that are used to train a discriminative
classifier based on a SVM. The TF representations include
different versions of the wavelet transform: the CWT, the
BWT, and the SSWT. When comparing these three TF–
based transformations, SSWT provides better results, indi-
cating that the re–allocating method that sharpens the fre-
quency components of the spectrum to a narrower band
seems to be useful to model emotional speech. The pro-
posed features are computed separately for voiced and un-
voiced segments. In most of the cases the highest UARs
are obtained with the features extracted from voiced seg-
ments. The fusion scheme shows to be useful to combine
the information provided by both kinds of segments. The
results with the proposed approach are better than those
obtained with openEAR when classifying high vs. low
arousal emotions. This could be explained due to the fact
that we only extract features based on the energy content
of the TF representation, which is useful for the detection
of arousal, but not to classify valence or multiple emotions.
Further experiments shall be performed considering other
descriptors extracted from the TF representations to im-
prove the results.
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