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Abstract—Respiratory motion analysis based on range imaging
(RI) has emerged as a popular means of generating respiration
surrogates to guide motion management strategies in computer
assisted interventions. However, existing approaches employ
heuristics, require substantial manual interaction, or yield highly
redundant information. In this paper we propose a framework
that uses pre-procedurally obtained 4-D shape priors from patient-
specific breathing patterns to drive intra-procedural RI-based
real-time respiratory motion analysis. As the first contribution,
we present a shape motion model enabling an unsupervised
decomposition of respiration induced high-dimensional body
surface displacement fields into a low-dimensional representation
encoding thoracic and abdominal breathing. Second, we propose
a method designed for GPU architectures to quickly and robustly
align our models to high coverage multi-view RI body surface
data. With our fully automatic method we obtain respiration
surrogates yielding a Pearson correlation coefficient (PCC) of 0.98
with conventional surrogates based on manually selected regions
on RI body surface data. Compared to impedance pneumography
as a respiration signal that measures the change of lung volume,
we obtain a PCC of 0.96. Using off-the-shelf hardware, our
framework enables high temporal resolution respiration analysis
at 50 Hz.

Index Terms—Radiation Therapy, Respiratory Motion, Range
Imaging, Graphics Processing Unit (GPU)

I. INTRODUCTION

Respiratory motion is a major issue in computer assisted
interventions such as image guided radiation therapy [1], [2].
One option for motion mitigation is to reduce the respiration
amplitude using active breath-control systems or abdominal
pressure [3]. However, such techniques are often not practi-
cable and advanced methods such as beam tracking or beam
gating are based on continuous respiratory motion monitoring
and analysis [4], [5], [6]. For this purpose, external respiration
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surrogates computed from sparsely distributed reflective infra-
red (IR) markers attached to the body or dense range imaging
(RI) to capture the entire body surface have gained increasing
popularity. Especially in combination with patient-specific
motion models that correlate external surrogates to internal
tumor movement [7], [8], the advantages of IR markers or
RI sensors, namely their real-time capability and absence of
ionizing radiation, can be exploited. Clinically available IR
tracking solutions include the Synchrony system (Accuray
Inc., Sunnyvale, USA) and the ExacTrac module (Brainlab
AG, Feldkirchen, Germany). For RI solutions, the AlignRT
system (Vision RT, London, UK) is clinically available and
novel RI sensor concepts to tackle the limitations of existing
principles have been recently presented [9], [10], [11].

One advantage of RI solutions compared to IR tracking
methods is that they do not require auxiliary equipment such
as reflective vests or markers attached to the patient. However,
with RI sensors, a respiration surrogate is not given per se and
various approaches have been proposed.

A. Related work

Commonly, RI based external respiration surrogate signals
are derived from the movement of body surface regions [12],
[13], [14], [15], [16]. One issue with such methods is that the
surrogates are based on variations of 3-D points or plain 1-D
depth measurements rather than true 3-D surface deformations.
Further, the number of body surface regions, their size and
position must be manually and repeatedly chosen. This is a
heuristic approach that is potentially error prone due to low
reproducibility of landmark selection and requires substantial
manual interaction which complicates clinical workflows.

Alternative approaches to overcome these limitations com-
pute external body deformations using non-rigid surface reg-
istration techniques [9], [17], [18]. By design, these methods
allow anatomically plausible 3-D surface landmark tracking
and are capable of avoiding recurring manual landmark selec-
tion by registering pre-procedurally labeled planning data to
intra-procedurally acquired RI body surface data. The major
advantage of non-rigid registration methods, however, is the
ability to generate high-dimensional respiration surrogates in a
fully automatic manner via dense surface displacement fields.
An issue with such high-dimensional surrogates is that they
contain redundant information and the low-dimensional non-
redundant factors must be identified. Approaches to address
this problem are to calculate the mean displacement magnitude
or the movement along the principal surface deformation
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direction [17]. However, such reduction schemes do not ac-
count for the anatomical source of motion. Besides these
methodological challenges, as an important practical aspect,
real-time capability is an open issue with non-rigid surface
registration.

B. Contributions

In this paper we propose a framework for RI-based respi-
ratory motion analysis to address the limitations of existing
approaches. Our framework is based on prior knowledge of
patient-specific 4-D shape deformations. This information is
encoded in a surface motion model that is pre-procedurally
trained from non-rigidly registered 3-D body surface data
acquired at different respiration states. Intra-procedurally, the
motion model is registered to the patient’s current body
surface acquired with multi-view RI. The intrinsic param-
eters that govern the registered motion model then define
a non-redundant external respiration surrogate. Further, our
framework supports the reconstruction of respiration induced
dense body surface displacement fields to generate custom
respiration surrogates. A sketch of our proposed framework
is given in Fig. 1.

The feasibility of using prior shape knowledge for respi-
ration management was demonstrated in our preceding work
for motion compensated patient positioning [19], [20]. In
this paper, we substantially extend this idea for real-time
respiratory motion analysis by the following two main contri-
butions: first, we propose a sparse motion model that enables
an unsupervised decomposition of respiration induced high-
dimensional dense surface displacement fields into a thoracic
and abdominal component. Second, we present a fast and
robust registration technique to align motion models to high
coverage body surface data computed from multi-view RI. To
cope with real-time constraints, our framework is designed for
general purpose graphics processing unit (GPU) architectures.

II. METHODS

In the pre-procedural training phase we denote
P = {x1, . . . ,xN}, xn ∈ R3 as the point set that describes
a body surface. Without loss of generality, the point set P
can be equivalently described as a vector p ∈ R3N according
to P ≡ p = ((x1)>, . . . , (xN )>)>. Using point sets instead
of closed surfaces enables a generic framework that is
independent from the acquisition modality to capture prior
knowledge on 4-D shape deformations. For example, tissue-
to-air thresholding techniques to extract body surfaces from
tomographic planning data such as computed tomography
(CT) or magnetic resonance imaging (MRI) may exhibit a
different topology and sampling density compared to RI-based
surfaces. Further, laser scanners or markers do not provide a
continuous surface at all.

In the intra-procedural respiratory motion analysis phase
we denote an RI in a multi-view setup associated with the
k-th sensor as Rk : Ωk → R+. Rk is sampled on the domain
Ωk ⊂ R2 with N1 ×N2 1-D orthogonal range measurements
rk,i in [mm] with i ∈ Ω that correspond to the depth of a
3-D point x ∈ R3 along the viewing axis of the RI camera.

Consistently, we denote the 3-D surface corresponding to Rk
as Sk : Ωk → R3. We further denote Pk : R3 → Ωk as the
operator that projects the point x into Ωk. For a surface point
x captured by the k-th sensor we thus have:

Sk(Pk(x)) = R>k (x− tk) ,

Rk(Pk(x)) = rk,i = (0, 0, 1) · Sk(Pk(x)),
(1)

where Rk ∈ SO(3) and tk ∈ R3 denote the rotation and
translation to define the k-th RI sensor coordinate system.
Further, surface normals Nk : Ωk → R3 can be readily
computed from Sk using for example difference quotients.

For a sketch of the different phases, steps and data of our
framework see Fig. 1.

A. Pre-procedural 4-D Shape Motion Models

We denote P0 = {x0
1, . . . ,x

0
N} as the point set that de-

scribes the body surface at a fixed reference respiration state
e. g. fully exhale. Analogously, Ps = {xs1, . . . ,xsN} is the
point set denoting the moving body surface at respiration
state s = 1, . . . , S. The moving surface points are obtained
by warping the fixed surface points with an elastic defor-
mation. This deformation is represented by the displacement
field Us = {us1, . . . ,usN}, usn ∈ R3 encoding the point-wise
displacements induced by respiratory motion as:

xsn = x0
n + usn, ∀xsn ∈ Ps. (2)

Depending on the acquisition modality, the displacement fields
Us can be computed using dedicated RI surface matching
techniques [9], [17], volumetric registration for CT/MRI and
surfaces that are represented implicitly by distance transforms,
or point-set alignment methods [21].

1) Motion Model Training: Training a 4-D shape mo-
tion model is to recover the intrinsic structure that gov-
erns the high-dimensional representations of the training data
T = {p1, . . . ,pS} with ps ≡ Ps. For this purpose, we use
Principal Component Analysis (PCA) as a linear dimensional-
ity reduction technique. We favor PCA over non-linear meth-
ods such as Manifold Learning as the latter typically requires
a large number of training samples which is prohibitive if the
training shapes are extracted from CT or MRI data. Further,
non-linear dimensionality reduction techniques do not offer
advantages per-se as we showed in preceding work [22].

One interpretation of PCA is to find an orthonormal basis
that allows to reconstruct the training data T in a least squares
sense [23]. This is readily done by an eigendecomposition of
the covariance matrix C of the mean-centered training data:

C =
1

S

S∑
s=1

(ps − p)(ps − p)>, p =
1

S

S∑
s=1

ps. (3)

Let P ∈ R3N×L denote the PCA basis that column-wise
contains the modes of variation defined by the eigenvectors
el ∈ R3N corresponding to the L largest eigenvalues λl of C.
In practice, L is chosen to match the intrinsic dimensionality
of the training data. Using a cumulative variance criterion this
translates to

∑L
l=1 λl ≥ δ

∑S
s=1 λs, i. e. the model accounts

for more than (100 · δ)% of the variance in the input training
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Fig. 1. The respiratory motion analysis framework as proposed in this work. The method is divided into a pre-procedural and an intra-procedural phase.
In the pre-procedural phase, a shape motion model is generated from prior knowledge of 4-D shape deformations. In the intra-procedural phase, the motion
model is registered to RI surface data yielding a respiration surrogate.

(a) Standard PCA. (b) Conventional VR. (c) Weighted VR.

Fig. 2. Exemplary depiction of the three leading modes of variation el (top to
bottom) for different motion models. The magnitude of the individual surface
displacements in [mm] is color coded. The proposed weighted VR model
allows for a differentiation between thoracic and abdominal breathing.

data. For a test point set P ≡ p ∈ R3N its approximation
w. r. t. the PCA basis P is traditionally computed as:

p ≈ pb = p + P
(
P>(p− p)

)
= p + Pb, (4)

where the model parameter vector b = [b1, . . . , bL] ∈ RL is
the low-dimensional representation of p.

Essentially, b corresponds to a least squares estimate with
regard to point-wise Euclidean distances between correspond-
ing points in the model and the test point set. As our
framework is based on the registration of the motion model
to instantaneous RI surface data, this estimator is potentially
prone to noise and outliers that are typical with range imaging.
A robust method to account for this issue is investigated in
Section II-C.

Valid shapes are restricted to bl ∈ [−3
√
λl,+3

√
λl] in order

to enforce plausibility w. r. t. to the training data. This interval
assumes that the training data is normally distributed which is
not necessarily true for respiration related samples. However,
in practice, we found these values as reasonable bounds.

2) Model-based Respiration Surrogates: For respiratory
motion analysis, we exploit the fact that the modes of variation
el contained in P encode non-rigid body surface displacement
fields, see Fig. 2a for an illustration. Thus, the individual
model parameters bl constitute respiration surrogates that
describe the change of surface extent w. r. t. the l-th mode
relative to the mean shape p.

In this work we assume that maximal values of the param-
eters bl correspond to the state of full inhale. This property
is not given per se as the modes of variation el computed
by PCA have arbitrary signs. One automatic approach to this
problem is to flip the signs such that the model instance pb

with maximum extent is obtained.
Following the model plausibility criterion from the pre-

ceding section, we shift the model parameters according to
b′l = bl + 3

√
λl. This enforces the parameters b′l to be positive

and to describe the surface extent relative to the most compact
or fully exhale shape allowed by the model. Consequently, we
compute the respiration surrogate σl ∈ R+ for the l-th mode
and the joint surrogate σJ ∈ R+ across all modes as:

σl = b′l,

σJ = ‖b′‖2.
(5)

Note that (5) is not valid for raw parameters bl ∈ R as a
potential negative sign would be lost.

3) Sparse Motion Models: One inherent problem with PCA
is that the modes el are defined to yield a minimum recon-
struction error w. r. t. the training samples ps [23]. Thus, the
individual components of el that are also known as loadings in
general do not exhibit sparsity. As a consequence, the modes
el represent global abstract deformations that do not allow for
a respiration analysis w. r. t. to anatomically plausible distinct
breathing patterns, see Fig. 2a for an illustration.

In a preliminary study we have shown that so-called Vari-
max Rotations (VR) known from factor analysis [24] allow
to compute sparse respiratory motion modes [25]. However,
this study was based on plain 1-D depth data which is a
simplifying assumption that does not reflect complex 3-D
surface deformations. In fact, we found that a naive application
of VRs for complex 3-D deformation data further hinders
an intuitive interpretation. This issue is depicted in Fig. 2b
where the individual modes exhibit sparse but widespread
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deformation components. The reason for this can be traced
back to the theoretical concepts of factor rotations.

The general principle behind VR is to find a rotation
R ∈ SO(L) such that the modes of variation eVR

l contained
column-wise in the rotated basis P VR = PR exhibit a more
simple structure. The sought rotation R must maximize [24]:

J VR
R =

L∑
l=1

 3N∑
q=1

[PR]
4
q,l −

(
3N∑
q=1

[PR]
2
q,l

)2
 . (6)

Using Var(X) = E(X2)− [E(X)]2 with Var(X) denoting the
variance and E(X) the expected value of a random variable
X , (6) corresponds to maximizing the variances of squared
loadings, i. e. X ∝ [PR]

2
q,l, across the modes of variation

eVR
l contained in P VR. Due to orthonormality constraints on

R, the only possibility to increase the mode-wise variances in
(6) is to bring some loadings close to zero and make others
grow large [26].

The problem with this formulation is that it rigorously favors
sparsity w. r. t. the scalar-valued components in the normalized
modes eVR

l . Thus, the vector-valued nature of point-wise 3-D
displacements as well as the variances λl as a measure of
respiration magnitude is lost.

We address this issue by using a weighted VR (WVR)
model extending the standard VR optimization problem from
(6) with a diagonal weighting matrix Λ according to:

JWVR
R =

L∑
l=1

 3N∑
q=1

[PΛR]
4
q,l −

(
3N∑
q=1

[PΛR]
2
q,l

)2
 . (7)

For Λ = diag(1, . . . , 1) the standard VR principle is retained
whereas for Λ = diag(λ1, . . . , λL) the solution is similar
to conventional PCA with the difference that the variance
of the squared loadings weighted by λl is maximized. In
this work, we use the mode-specific standard deviations
defined by the eigenvalues λl as weighting factors, i. e.
Λ = diag(

√
λ1, . . . ,

√
λL). The rationale behind this scheme

is that these eigenvalues are directly related to the amount of
shape variation in the training set that by definition reflects
different respiration states with varying surface deformation.
Thus, sparsity w. r. t. the respiration magnitude is injected in
our WVR model.

The optimization problems from (6) and (7) can be solved
by using an iterative scheme based on singular value decom-
positions [26]. One issue with the WVR model is that the
basis PWVR = PΛRWVR is in general not orthogonal. Here,
RWVR denotes the solution from (7). We address this issue
by estimating the rotation RWVR with the WVR approach
from (7) but compute the WVR basis without the weighting
matrix Λ analogous to the standard VR approach according
to PWVR = PRWVR. The modes that are obtained with our
WVR scheme are exemplarily shown in Fig. 2c.

B. Intra-procedural Multi-View RI Body Surface Models

Our respiratory motion framework is based on the regis-
tration of a potentially high coverage pre-procedurally trained
motion model to instantaneous RI body surface data. Thus, the

Fig. 3. Surface reconstruction using conventional pinhole (left) and manifold
(right) ray casting of a distance transformD. Color-coded is the support region
ε, i. e. D(x) ∈ (−1,+1). Note that the diverging rays with a pinhole camera
model do not allow for high coverage surface models.

RI body surface data ideally should exhibit high coverage, too.
Due to the limited field-of-view of a single camera multiple
RI sensors are advantageous to obtain this property.

A real-time capable method for fusing the multi-view RI
data and reconstructing a unifying surface representation was
proposed in our prior work [20]. Due to the importance of
this scheme for the proposed robust and fast motion model
registration in Section II-C we now outline the basic working
principles.

1) Data Fusion Using Distance Transforms: We represent
the surface data Sk implicitly via its corresponding distance
transform Dk : Γk → [−1,+1] that holds the distance to the
closest point on the RI surface Sk. Γ ⊂ R3 denotes a suitable
region embedding Sk. Similar to Curless and Levoy [27] the
distance transform is approximated based on the relationship
from (1) in a support region around Sk as:

Dk(x) = η
(
Rk (Pk (x))− (0, 0, 1) ·R>k (x− tk)

)
, (8)

where η(d) = min(1, |ε−1d|) · sign(d) accounts for the sup-
port region controlled by ε ∈ R+. The fused implicit represen-
tation D is then given by a weighted average of the individual
distance transforms Dk [20].

2) Surface Reconstruction Using Ray Casting: For re-
constructing an explicit surface S from the fused implicit
representation D we use a Manifold Ray Casting technique
introduced in our previous work [20]. This approach over-
comes the limited body surface coverage with conventional
ray casting, see Fig. 3 for an illustration.

Mathematically, we simulate an RI sensor by estimating the
1-D depth measurements R such that the corresponding 3-D
surface points S coincide with the zero level-set of the distance
transform D, i. e.:

D (R (oi +R(i)ri) + t)
!
= 0, ∀i ∈ Ω, (9)

where R ∈ SO(3) and t ∈ R3 similar to (1) account for
the virtual sensor position and orientation. Further, oi ∈ R3

and ri ∈ R3 with ‖ri‖2 = 1 denote the starting position and
direction of the ray associated with i, respectively. Both oi and
ri are computed from the manifold and basically constitute the
counterpart of the projection operator from (1). Thus, there
also exists a projection operator P : R3 → Ω.

As a prerequisite, the virtual RI domain Ω must exhibit a
2-D parameterization. In this work we use a manifold based
on a half-cylinder as a coarse approximation of the human
torso. Thus, a 2-D parameterization of Ω is readily obtained
via cylindrical coordinates.
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C. Intra-procedural Motion Model Registration

In this paper, we assume that the patient is aligned w. r. t.
the pre-procedural planning data. For existing approaches we
refer to our prior work on motion-compensated alignment [19],
[20] or the motion-gated patient setup by Placht et al. [28].

For an aligned patient, we have to estimate the model
parameter b such that the corresponding model instance Pb

fits the instantaneous RI surface data S. However, directly
using the least squares estimator from (4) is prohibitive.
First, correspondences between the individual motion model
components and RI surface points are not known. Second, the
least squares estimator that drives the computation of b is not
robust to outliers caused by erroneous correspondences, partial
surface matching issues and noise in the RI data.

1) Robust Alignment: A technique that inherently addresses
these issues is the Coherent Point Drift (CPD) method [21].
The CPD framework models a point set registration as a
probability density estimation problem with one point set rep-
resenting the centroids of a Gaussian Mixture Model (GMM)
and the second point set representing the data points. The
registration is then performed by re-parameterizing the GMM
centroids to minimize the negative Log-Likelihood of the data
points. This GMM based alignment scheme is solved by the
Expectation Maximization (EM) algorithm, eventually leading
to an iterative weighted multi-link registration problem [21].

In contrast to the original CPD formulation, we do not
quantify the alignment of the model instance Pb and the
instantaneous RI surface S based on point-to-point distances
but instead use a point-to-tangent metric. This is motivated
by the fact that the latter has shown superior performance in
terms of attraction range and convergence [29]. Our CPD-like
iterative optimization problem to be minimized is:

J CPD
b,σ =

N∑
n=1

|S|∑
m=1

p(xb
n|ym)

((
xb
n − ym

)
· nm

σ

)2

+

N∑
n=1

|S|∑
m=1

p(xb
n|ym) log(σ2),

(10)

with GMM centroids xb
n ∈ Pb ≡ pb = p + Pb similar to (4).

Further, ym ∈ S denote the data points with associated surface
normals nm ∈ N . The posterior probabilities p(xb

n|ym) of
GMM centroids given the data points are computed using the
previous parameter estimates according to:

p(xb
n|ym) =

exp

(
−
((

xb′
n −ym

)
·nm

σ′

)2
)

∑N
k=1 exp

(
−
(

(xb′
k −ym)·nm

σ′

)2
)

+ c

, (11)

where c =
√

2πσ′2 w
1−w

N
|S| with w ∈ [0, 1] to account for

noise and outliers. Symbols marked with a prime denote the
previous estimate [21]. As shown in Appendix A, minimizing
(10) w. r. t. b corresponds to a linear equation system that can
be solved efficiently by using Cholesky decompositions.

2) Fast CPD Approximation: A crucial issue with the CPD
formulation is run-time performance. Though the original
work reported significant speed-ups using the fast Gauss

Fig. 4. Surface neighborhood computation using projective data association.
For a test point x its closest points Sx ⊂ S are given via the local
neighborhood ΩP (x) ⊂ Ω around its projection P (x) ∈ Ω into the RI
sensor domain Ω, cf. (1).

transform [21], we found the CPD registration scheme com-
putationally too expensive for the real-time scenario at hand.

Inspired by the original work that also used truncated
Gaussians [21] we thus propose an approximative scheme
tailored to RI data: for a given model point xb

n we do not use
all points ym ∈ S in (10) but only a small subset of closest
points yn,m ∈ Sxb

n
⊂ S, see Fig. 4. Similar to [21] we argue

that this is a valid approximation as the weights defined by the
posteriors and the kernel width rapidly decay with increasing
distance. The key step towards real-time computation is that
for a point xb

n its closest neighbors yn,m ∈ Sxb
n

can be
computed efficiently using a projective data association (PDA)
scheme that is inherent to our manifold ray casting technique
outlined in Section II-B2.

The working principle of this multi-link point correspon-
dences approach is illustrated in Fig. 4 and the mathematical
formulation for the final approximated CPD alignment prob-
lem as well as implementation aspects for real-time computa-
tion are given in Appendix A.

III. EXPERIMENTS AND RESULTS

The experiments in this paper are concerned with two as-
pects. First, we perform a thorough assessment of the method-
ology inherent to our respiratory motion analysis framework.
Second, we compare the respiratory motion surrogates ob-
tained with our model-based approach to a respiration sensor
that is independent of surface motion.

A. Assessment of Methodology

The purpose of this experiment is to assess the general
aspects of the proposed respiratory motion analysis framework
regarding (i) the ability of motion models to adapt to unseen
surface data, (ii) the robustness of model registration in the
presences of outliers in RI data, (iii) the suitability of motion
models to generate low-dimensional respiration surrogates and
(iv) the run-time performance.

1) Setup and Data: We captured RI data from four male
subjects S1, . . . , S4 using two Microsoft Kinect RI sensors
(∼ 30 Hz, Ω1,2 = R640×480) with an acquisition distance
of ∼ 1 m. For RI data fusion we discretized the distance
transform as Γ = R256×256×256 and the manifold domain
for surface reconstruction as Ω = R640×480. To account for
missing data and noise we performed post-processing using
normalized convolution and guided filtering similar to [30].
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(a) RI surface Ss. (b) Point set P0 with Us.

Fig. 5. Exemplary depiction of a cropped and post-processed reference RI
surface Ss (left) and the training point set P0 denoted as black dots with the
corresponding displacement field Us (right) color coded by the magnitude.

For training our 4-D motion model, the subjects were
instructed to perform one cycle of thoracic and abdominal
breathing, respectively. Each cycle was sampled with 1 Hz
which corresponds to 5 − 7 different respiration states for
the individual sequences, see Table IV in Appendix B for
a detailed listing. We purposely employed a sparse temporal
sampling to stress the fact that our method is generic in a
sense that no specific modality to capture surface data from
different respiration states is required, cf. the beginning of
Section II. For example, 4-D tomographic planning data com-
monly provides a limited number of different respiration states
due to radiation exposure with CT or binned reconstruction
and acquisition time with MRI.

The raw surfaces consist of approximately 350k 3-D points
and were cropped to a region of interest covering the torso,
subsequently decimated using a quadric edge collapse strategy
and finally smoothed using Laplacian smoothing. Again, the
motivation here is multi-modality which requires the employed
algorithms to be robust w. r. t. different spatial sampling, mesh
topology and partial matching issues. The final surface meshes
consist of about 10k 3-D points to form the training point sets
Ps, see Fig. 5a for an illustration.

For computing the displacement fields Us to match different
respiration states, we represented all surfaces as distance
transforms and used a volumetric non-rigid registration scheme
based on level-set motion [31]. The state of fully exhale was
chosen as reference P0. Fig. 5b exemplarily depicts a training
point set along with its displacement field.

We built the motion models with an intrinsic dimensionality
of L = 3 such that ≥ 99% of the variance is explained.
The resulting cumulative normalized variances are listed in
Table IV in Appendix B. The importance of the third modes
is considerably lower than the first two modes and we retain
them solely for a consistent number of modes for all subjects.
For respiratory motion analysis, we focus on the two leading
modes that are depicted in Figs. 2 and 6.

For testing, the subjects were asked to perform one cycle of
thoracic, abdominal and two cycles of regular breathing. We
then analyzed the sequences at the full frequency of ∼ 30 Hz.
The corresponding number of frames are listed in Table IV in
Appendix B. In contrast to the training phase, neither cropping
nor mesh decimation nor Laplacian smoothing was applied.

2) Results: For model registration using (10) we set w =
0.99 and use a 5× 5 PDA neighborhood Sxb

n
, i. e. each model

point xb
n is connected to its 25 nearest neighbors yn,m ∈ Sxb

n
.

S1 Standard PCA. S1 WVR.

S3 Standard PCA. S3 WVR.

S4 Standard PCA. S4 WVR.

Fig. 6. The first two modes of variation for subjects S1, S3 and S4, for S2

see Fig. 2. The magnitude of the individual respiratory motion displacements
in [mm] is color coded. Note that the proposed WVR scheme allows for
an classification of local thoracic and abdominal motion wheres conventional
PCA modes exhibit a global nature.

The initial guess for the model parameter was set to b = 0. We
assume convergence of the iterative optimization scheme when
there are no considerable changes in the cost function, i. e.
|1− |J CPD

b,σ /J CPD
b′,σ′ || < ε where a prime denotes the estimates

from the previous iteration. We set ε = 10−2.
a) Adaptability: We first assess our motion model’s

ability to adapt to unseen respiration states. We quantify this
by the point-to-surface distance of registered motion models
to RI surface data using EM2S

n = min
{
‖xb

n − y‖2, y ∈ Sxb
n

}
,

cf. Fig. 4. This is an unbiased metric as it does not reflect the
model registration problem from (10) that relies on a point-
to-tangent metric.

We compute the first (Q1), second (Q2) and third (Q3)
quartiles of EM2S

n across all model points xb
n. These quartiles

are then averaged across the individual breathing sequences,
see Fig. 7a. For all subjects and respiration sequences the
median (Q2) distance is always below 1.0 mm. This is in the
scale of the noise level of the used RI sensor for an acquisition
distance of ∼ 1 m [32].

b) Robustness: To assess the robustness of our frame-
work in the presence of noise and outliers we corrupt the
RI data as R′(i) = R(i) + ∆ri prior to computing the
corresponding surface representation S ′(i). The pixel-wise
offset ∆ri is drawn from a standard normal distribution to
simulate noise. For 25% of the offsets which correspond to
values of |∆ri| > 1.15 mm according to the standard normal
distribution, an arbitrarily selected multiplier using a factor of
5 is applied to simulate outliers.

The hypothesis now is that a robust estimator is less
sensitive to corruptions. We quantify this using the point-
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(a) Model-to-surface distance. (b) Model-to-model difference.

Fig. 7. Model-to-surface distance and model differences in the presence of
outliers with robust (colored) and conventional least-squares (gray) estimators
for S1-S4 (top to bottom). Shown are the first to third quartiles Q1-Q3

averaged across all frames for abdominal, thoracic and regular breathing.

wise model-to-model difference EM2M
n = ‖xb

n − xb′

n ‖2, where
xb
n ∈ Pb are the points of the model Pb registered to the

original RI surface data S and xb′

n ∈ Pb′
denotes a point of

the model Pb′
aligned to the corrupted data S ′.

The quartile differences EM2M
n across the entire surface

averaged over the individual breathing sequences are de-
picted in Fig. 7b for the conventional least-squares estimator
from (4) and the proposed robust CPD approximation from
Section II-C1. The difference compared to the ground truth
estimation is substantially smaller with the robust approach
and, except for subject S4 with thoracic breathing, the median
difference never exceeds 0.2 mm.

c) Respiration Surrogates: For assessing our framework
to deliver respiration surrogates corresponding to distinct

TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN CONVENTIONAL AND

OUR MODEL-BASED SURROGATES FOR SEQUENCES OF ABDOMINAL,
THORACIC AND REGULAR BREATHING PATTERNS.

Thoracic Abdominal Regular
ρPCC

T ρPCC
A ρPCC

T ρPCC
A ρPCC

T ρPCC
A

S1
PCA 1.00 0.99 1.00 1.00 0.97 0.99
WVR 1.00 1.00 1.00 1.00 0.98 1.00

S2
PCA 1.00 0.31 0.86 1.00 0.96 0.99
WVR 1.00 0.97 0.91 1.00 0.99 1.00

S3
PCA 0.98 0.13 0.10 0.98 0.96 0.79
WVR 0.98 0.95 0.91 1.00 0.97 0.98

S4
PCA 0.98 1.00 1.00 0.98 0.99 0.94
WVR 0.99 1.00 1.00 0.99 0.99 0.99

The subscripts j ∈ {A,T} denote the correlation between the conventional
surrogates sj and our model-based surrogates σj for the abdominal (A) or
thoracic (T) mode, respectively. The evaluation further opposes the standard
PCA vs. the proposed WVR approach. All coefficients are statistical signifi-
cant (pPCC

j ≤ 0.01).

anatomic motion we use a conventional surface monitoring
technique to generate a baseline signal s = (sA, sT) ∈ R2

encoding abdominal (A) and thoracic (T) surface motion.
For this purpose, we manually selected two circular regions
Ωj ∈ Ω with j ∈ {A,T} and a diameter of approximately 5 cm
for each of the subjects. The regions were placed at positions
where we expect the maximum respiration amplitude w. r. t. to
thoracic and abdominal motion, respectively. Similar to [15],
[16], the respiratory motion signals sj are computed as the
average distance of 3-D points to the camera center according
to sj = |Ωj |−1

∑
i∈Ωj

‖S(i)‖2.
The Pearson correlation coefficients (PCC) ρPCC

j between
the baseline signal sj and the model based surrogates σj are
given in Table I. For the WVR model we achieve a PCC
not less than 0.97. In contrast, the conventional PCA model
often fails to differentiate between distinct respiration patterns
with PCCs down to ρPCC

T = 0.10 as with S3. This is due
to the global nature of the conventional PCA modes. The
global deformations induced by a certain mode often must be
corrected by a complementary mode in order to fit the surface
data. This yields a score on the model parameter bj governing
the surrogate σj though there is no anatomical equivalent.
Due to its sparsity, the WVR model does not suffer from this
problem. Over all sequences, subjects and surrogates we found
a mean PCC of 0.91 for the PCA and 0.98 for the WVR model.

d) Run-time Evaluation: Our framework is designed for
real-time computation on modern GPU architectures. Besides
the real-time capability of multi-view RI reconstruction in
Section II-B that we demonstrated in preceding work [20], the
approximated CPD framework outlined in Section II-C1 can be
computed efficiently on GPU architectures. We implemented
the framework using the CUDA programming model. The
evaluation is performed on a PC equipped with an Intel Core
i7 3770K CPU and an NVIDIA GTX 680 GPU.

The run-times for the different steps of our framework
are given in Table II. For multi-view RI data fusion and
surface reconstruction from Section II-B with subsequent
post-processing we achieve steady run-times of ∼ 5.5 ms.
In contrast, the run-times for the motion model registration
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TABLE II
RUN-TIME EVALUATION OF THE PROPOSED FRAMEWORK.

Fusion [ms] CPD P2T CPD P2P
Iterations Run-time [ms] Iterations Run-time [ms]

S1 5.1± 0.4 15.8± 5.5 18.5± 5.5 29.1± 3.6 28.9± 3.5

S2 5.4± 0.5 9.67± 1.4 12.2± 1.8 34.0± 5.3 33.9± 4.9

S3 5.6± 0.5 12.1± 3.1 15.6± 3.6 32.2± 8.1 33.0± 7.6

S4 5.5± 0.5 14.6± 6.1 16.2± 5.8 37.8± 6.2 37.2± 5.8

Evaluated is the multi-view RI data fusion with surface reconstruction (cf.
Section II-B) and the model registration using our point-to-tangent (P2T)
opposed to conventional point-to-point (P2P) approximated CPD schemes (cf.
Section II-C).

show more variations due to the fact that more iterations are
required for instantaneous respiration states that are consider-
ably different from the initial guess. For our point-to-tangent
metric (CPD P2T), we require 13 iterations in average which
corresponds to ∼ 16 ms. For comparison, the conventional
point-to-point metric (CPD P2P) requires 33 iterations and
∼ 33 ms. In conclusion, our framework (CPD P2T) achieves
run-times of about 20 ms or 50 Hz.

B. Comparison to Established Respiration Sensor

This experiment is concerned with a comparison of the
respiratory motion surrogates obtained from our WVR model
and an established baseline respiration sensor that does not rely
on body surface deformations but instead directly measures the
change of lung volume.

1) Setup and Data: For this experiment data from three
additional subjects S5–S7 were collected. As baseline, we use
a PMM2 sensor (Siemens Healthcare, Erlangen, Germany)
which uses the measurement principle of impedance pneu-
mography (IP). The IP sensor sends high frequency current
through bio-potential electrodes that are attached to the left
and right side of the thorax and the side of the belly. Based
on the change of impedance caused by the change of lung
volume, a one-dimensional respiration signal was obtained at
250 Hz.

Simultaneously, RI surface data was acquired with two Asus
Xtion PRO RI sensors with a frame-rate of ∼ 30 Hz and a
resolution of Ω1,2 = R320×240. The same multi-view fusion,
pre-processing, model generation and registration methods as
in Section III-A were used. To match the RI frame-rate, the
IP signal was uniformly downsampled to 30 Hz.

Similar to the experiments in Section III-A, the subjects
were asked to perform free abdominal and thoracic breathing
to train our 4-D motion model, see Table V in Appendix B
for a detailed listing of the number of training samples and
properties of the proposed WVR model.

For testing we use a protocol that specifies predefined
breathing instructions over a period of about 7 minutes which
resulted in approximately 12k respiration measurements. First,
abdominal and thoracic breathing patterns were to be per-
formed with a duration of about 60 s, each. Subsequently, the
subjects were instructed to breath at fixed frequencies of 0.5
and 0.17 Hz. These phases subdivide into shallow and strong
breathing where the duration was set to approximately 30 s

Fig. 8. Qualitative visualization of the IP signal σIP compared to the joint
(σJ), thoracic (σT) and abdominal (σA) model-based RI surrogates for subject
S5 and different respiration patterns. The signals divide into abdominal (P1),
thoracic (P2), fast shallow (P3), fast strong (P4), slow shallow (P5), slow
strong (P6) and breath hold (P7) breathing instructions. For visualization,
the IP signal is scaled to [min(σIP),max(σIP)] and the RI surrogates to
[min(σJ, σT, σA),max(σJ, σT, σA)].

for fast, and about 60 s for slow breathing. Finally, breath-
holds with a duration of 15 s, each, were to be performed
over a period of approximately 120 s. The resulting number
of frames that were used for evaluation are detailed in Table V
in Appendix B.

Though being acquired simultaneously, the RI surrogates
and the IP signal exhibited a temporal shift caused by bus and
driver latencies. To bring both signals into congruence, we
phase-wise estimated the shift that maximizes the correlation
coefficient between the shifted IP signal and the RI surrogate
σJ,A,T from (5). The rational behind this alignment scheme
is that the temporal shift is not uniform across the entire
evaluation period and that at least one RI surrogate is supposed
to explain the IP signal within a localized window.

2) Results: Fig. 8 exemplarily depicts the registered IP
signal and the proposed model-based RI surrogates for one
of the subjects over the entire evaluation period. Noticeable
are the distinct breathing instructions and varying degrees
of correlation between the IP signal and the model-based
surrogates. This is most distinct for phase P2 where the
abdominal surrogate σA contradicts the IP sensor regarding
both signal scale and shape whereas the thoracic surrogate σT
follows the IP signal.

For quantification, we first computed the Pearson correlation
coefficients between the shifted IP signal and our respiration
surrogates for the individual sequences Pi. The results are
listed in Table III. For the joint signal σJ, an average PCC of
0.96 ± 0.04 with ρPCC

J ≥ 0.97 for 19 out of 21 evaluations
and a minimum of 0.92 was found across the individual
phases and subjects. In contrast, the thoracic and abdominal
surrogates show substantial variations regarding the correlation
with the IP signal and an average PCC of 0.79 ± 0.35
and 0.84 ± 0.28 for the abdominal and thoracic surrogate,
respectively. Here, the most prominent results are for subject
S6 and phase P1 where there is no correlation in the thoracic
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TABLE III
PEARSON CORRELATION COEFFICIENTS BETWEEN THE SHIFTED IP SENSOR SIGNAL AND OUR WVR SURROGATES FOR PHASES OF DIFFERENT

BREATHING PATTERNS AND ACROSS ALL RESPIRATION SAMPLES.

All phases P1 P2 P3 P4 P5 P6 P7

ρPCC
J ρPCC

T ρPCC
A ρPCC

J ρPCC
T ρPCC

A ρPCC
J ρPCC

T ρPCC
A ρPCC

J ρPCC
T ρPCC

A ρPCC
J ρPCC

T ρPCC
A ρPCC

J ρPCC
T ρPCC

A ρPCC
J ρPCC

T ρPCC
A ρPCC

J ρPCC
T ρPCC

A

S5 0.96 0.97 0.73 0.98 0.85 0.98 0.94 0.96 0.63 0.98 0.98 0.92 0.97 0.99 0.80 0.99 0.98 0.94 0.99 0.99 0.96 0.99 0.98 0.98

S6 0.93 0.93 0.90 0.97 −0.04 0.97 0.98 0.96 0.97 0.98 0.55 0.96 0.99 0.93 0.97 0.99 0.93 0.98 1.00 0.99 0.99 0.98 0.88 0.96

S7 0.96 0.99 0.16 0.92 0.99 0.86 0.97 0.99 −0.47 0.97 0.97 0.84 0.98 0.98 0.09 0.98 0.97 0.96 0.99 1.00 0.63 0.98 0.98 0.74

The subscripts j ∈ {J,A,T} denote the correlation of the IP signal w. r. t. the joint (σJ), abdominal (σA) and thoracic (σT) WVR model surrogates. The
evaluation phases divide into abdominal (P1), thoracic (P2), fast shallow (P3), fast strong (P4), slow shallow (P5), slow strong (P6) and breath hold (P7)
breathing instructions, cf. Fig. 8. The surrogate yielding the best correlation to estimate the signal shift is highlighted.

mode (ρPCC
T = −0.04) but a very strong correlation in the

abdominal part (ρPCC
A = 0.97).

These results show that an RI based respiratory motion
analysis regarding change of lung volume requires surrogates
based on distinct spatially localized surface displacements as
well as their superposition. However, which surrogate best
correlates to the IP signal depends on the breathing pattern
and the subject. This is no flaw in our model-based respiration
analysis formulation but instead indicates that the 1-D IP
signal as a measure of lung volume change is not capable
to describe the entire spectrum of surface deformations.

As an overall performance metric, we computed the PCCs
across the entirety of available breathing samples. This avoids
any bias that might occur in the phase-wise correlation. Here,
we found PCCs of 0.93–0.96 for the joint, 0.93–0.99 for
the thoracic, and 0.16–0.90 for the abdominal surrogates.
Compared to the phase-wise evaluation, the performance of the
joint signal slightly decreased whereas the thoracic surrogate
shows a higher correlation w. r. t. the IP signal. This effect is
solely due to the mathematical foundations of the PCC.

IV. CONCLUSION AND FUTURE WORK

We proposed a real-time respiratory motion analysis frame-
work that uses pre-procedurally trained 4-D shape priors to
drive intra-procedural RI-based respiration analysis. As the
major contribution, we presented a sparse motion model that
allows for an unsupervised differentiation of thoracic and
abdominal breathing. For intra-procedural respiration analysis,
we presented a robust and fast method to register our motion
model to body surface data computed from multi-view RI.

Our model-based formulation allows to derive anatomically
plausible low-dimensional respiration surrogates encoding sur-
face extents for different body regions. Compared to existing
RI-based respiration analysis approaches, our method is not
intrusive, does not rely on heuristic surface partitioning and
does not require manual interaction.

One key finding of our work is that motion models can
be constructed using PCA with a small number of variation
modes. We showed that respiration induced surface defor-
mations can be reconstructed by model-based dense abdom-
inal and thoracic displacement fields with a median error
< 1.0 mm. This indicates that such body surface deformations
are governed by only two factors and that displacements
in different thoracic (or abdominal) regions can be inferred
from each other. In this regard, we found a statistically

significant Pearson correlation coefficient of 0.98 between our
model-based surrogates and conventional surrogates encoding
thoracic and abdominal movement.

Regarding practical aspects, we demonstrated the robustness
and efficiency of an approximative model registration scheme
extending the Coherent Point Drift by a point-to-tangent
metric. Compared to conventional point-to-point metrics we
require half of the number of iterations resulting in run-times
of ∼ 50 Hz for a GPU-based implementation.

Compared to impedance pneumography as an intrusive and
fundamentally different respiration measurement principle, our
model-based surrogates yield a PCC ≥ 0.93 across seven
different breathing phases covering a period of about 7 minutes
with ∼ 12k respiration samples. For the individual phases,
we showed the varying degree of correlation of surrogates
based on abdominal, thoracic or superimposed body surface
deformations.

Especially the results from the last experiment raise the
question whether external respiration surrogates or direct inter-
nal signals are more suited for respiration analysis. This is of
particular importance when the surrogates or signals are used
to predict internal target movement. However, this aspect is not
within the scope of this work and must be addressed in future
research that also must be concerned with the evaluation of our
proposed respiratory motion analysis framework in a clinical
setting. This includes both the evaluation on non-healthy
subjects as well as the integration into clinical workflows.
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APPENDIX A
MULTI-LINK MODEL-TO-TANGENT DISTANCE

As both the posteriors p(xb
n|ym) from (11) and the kernel

width σ are constants when optimizing (10) w. r. t. b, we define
αn,m = σ−2p(xb

n|ym). We expand (10) using the modes of
variation el column-wise contained in P = (pi,j) and b =
(b1, . . . , bL)> point-wise as:

J CPD
b =

N∑
n=1

|Sn|∑
m=1

αn,m

((
L∑
l=1

blel,n − yn,m

)
· nn,m

)2

,
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where el,n = (p3·(n−1)+1,l, p3·(n−1)+2,l, p3·(n−1)+3,l)
> and

yn,m ∈ Sxb
n

are the nearest neighbors for the n-th point in our
approximated CPD framework, cf. Section II-C2. Computing
the partial derivative of Jb w. r. t. one specific motion model
parameter bk and equating to zero yields:

N∑
n=1

|Sn|∑
m=1

L∑
l=1

αn,mblηl,n,mηk,n,m
!
=

N∑
n=1

|Sn|∑
m=1

αn,mζmηk,n,m,

where ηl,n,m = el,n · nn,m and ζm = yn,m · nn,m. For the
vector b this can be written using matrix-vector notation as:

N∑
n=1

|Sn|∑
m=1

αn,m

η1,n,mη1,n,m · · · η1,n,mηL,n,m
...

. . .
...

ηL,n,mη1,n,m · · · ηL,n,mηL,n,m

 b =

N∑
n=1

|Sn|∑
m=1

αn,m

ζmη1,n,m

...
ζmηL,n,m

 . (12)

This is a linear equation system in the form Ab = c where the
symmetric matrix A ∈ RL×L is positive definite for weights
and diagonal elements > 0. By definition, αn,m > 0, cf.
(11). Further,

∑N
n=1

∑|Sn|
m=1 η

2
l,n,m ≥ 0. These scalars are zero

iff all motion model directions el,n are perpendicular to the
corresponding normals nn,m. Thus, all points would move
parallel to the surface which is an invalid degenerated model.

Regarding real-time aspects, we note that (12) essentially
breaks down to the summation of matrices. This problem can
be calculated very efficiently on GPU architectures using tree-
based parallel reduction techniques [33].

For efficient nearest neighbor computation, we represent
the RI surface S as a multi-channel 2-D texture where the
individual channels hold the x, y and z coordinates, respec-
tively. For a point xb

n the closest points yn,m ∈ Sxb
n

are then
obtained by texture look-ups w. r. t. the index neighborhood
Ωxb

n
, cf. Fig. 4. This scheme exploits the cache layout of GPU

textures being designed for spatial locality in an index-based
sense.

APPENDIX B
DETAILED DATA SPECIFICATION

TABLE IV
DATA FOR METHODOLOGY ASSESSMENT IN SECTION III-A.

Training Testing
|T| |A| λ′1 λ′2 λ′3 |T| |A| |R|

S1 6 5 0.76 (0.79) 0.98 (0.98) 0.99 (0.99) 167 112 272
S2 6 6 0.72 (0.76) 0.99 (0.99) 0.99 (0.99) 118 122 324
S3 5 5 0.53 (0.67) 0.98 (0.98) 0.99 (0.99) 235 156 354
S4 7 6 0.84 (0.85) 0.96 (0.96) 0.99 (0.99) 89 168 328

Listed are the number of frames in thoracic (T), abdominal (A) and regular
(R) breathing sequences. For the training stage, the normalized cumulative
variances λ′i =

∑i
s=1 λs/

∑3
s=1 λs are reported. Plain values denote the

proposed WVR model and bracketed values denote conventional PCA.

TABLE V
DATA FOR THE IP SENSOR EXPERIMENT IN SECTION III-B.

Training Testing (|Pi| · 103)
|T| |A| λ′1 λ′2 λ′3 |P1| |P2| |P3| |P4| |P5| |P6| |P7|

S5 7 6 0.64 0.93 0.97 1.6 1.5 0.9 0.9 1.5 1.6 3.4
S6 7 6 0.87 0.97 0.99 1.6 1.6 0.8 0.8 1.5 1.7 3.4
S7 7 6 0.50 0.94 0.97 1.5 1.6 0.9 0.8 1.6 1.5 3.3

Shown are the number of frames in the thoracic (T) and abdominal (A)
training sequences and the resulting WVR model variances λ′i (cf. Table IV).
For the testing stage, the number of frames in phases with predefined
respiration patterns P1–P7 are listed (cf. Section III-B1 and Fig. 8).
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