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Auto-tuned Path-based Iterative Reconstruction
(aPBIR) for X-ray Computed Tomography

Meng Wu, Andreas Maier, Yan Xia, and Rebecca Fahrig

Abstract—Model-based iterative reconstruction (MBIR) tech-
niques have demonstrated many advantages in X-ray CT image
reconstruction. The tuning parameter value in MBIR that regu-
lates the strength of the penalty function is critical for achieving
good reconstruction results but difficult to choose. The path-based
iterative reconstruction (PBIR) method empowered by the path
seeking algorithm is capable of efficiently generating a series of
MBIR images with different strengths of the penalty function.
In this paper, we present an approach to automatically select
the tuning parameter value by finding the maximal separation
between the noise reduction and the smoothing effects. Simula-
tions shows that the proposed auto-tuned PBIR method produces
images that are comparable to the hypothetically ”best” MBIR
image.

Index Terms—CT, MBIR, Path seeking, PBIR

I. INTRODUCTION

The model-based iterative reconstruction (MBIR) method
for 3D computed tomography (CT) has shown potential to im-
prove image quality and reduce radiation dose [1]. The MBIR
method is usually formulated in the Bayesian framework as
a maximum a posteriori or maximum likelihood problem.
However, the prior distribution of the object is unknown,
and the maximum likelihood estimator is often ill-posed.
A common solution is to add a constraint/regularization to
the maximum likelihood model to formulate the penalized
maximum likelihood problem. Over last two decades, exten-
sive research has been conducted regarding the most suitable
statistical model, penalty function, and acceleration techniques
[2]–[4]. Moreover, choosing an appropriate strength of the
penalty function, also as known as tuning parameter value,
remains as one of the major difficulties of the MBIR method.

In this study, we consider the penalized weighted least-
squares (PWLS) algorithm [2]

µ = argmin
µ≥0

1

2

∑
i

wi([Pµ]i − li)2 + βh(µ) (1)

where P denotes the system matrix for the data acquisition
geometry, li denotes the logged normalized projection of the
ith ray, and w is the least-squares weight to account for
the noise level in the X-ray projection data. Function h(µ)
is the penalty function (also known as regularization), µ is
the reconstruction image, and β is the tuning parameter that
regulates the strength of the penalty function. In this paper,
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we used the penalized least-squares notation for simplicity

minimize
1

2
‖Aµ− y‖22 + βh(µ) = g(µ) + βh(µ)

subject to µ ≥ 0,
(2)

where A = W 1/2P , y = W 1/2l, and g(µ) denotes the least-
squares part. W is the diagonal matrix containing wi. It is
well known that the value of the tuning parameter is critical
to the reconstruction results [5], [6]. For example, if β is
too small, the regularization is not strong enough to suppress
noise and artifacts; if β is too big, the image is over blurred
and even exhibits patchy behavior. In fact, the values of the
tuning parameter (β) produce a series of reconstruction images
indexed by β value.

To the best of our knowledge, there is no perfect way
to choose the tuning parameter value that would lead to
the reconstruction with maximum clinical utility. Instead of
focusing on a single optimal tuning parameters, the path-based
iteration reconstruction (PBIR) method utilizes path seeking
algorithms to efficiently compute the entire reconstruction path
that covers all possible tuning parameter values [7], [8]. The
PBIR method can provide complete information for a given
reconstruction model, but still does not complete the task
of finding the optimal tuning parameter. In this paper, we
proposed a novel method to automatically select the tuning
parameter that maximally separates the denoising and the
smoothing effects.

II. METHODS

A. Direction-of-gradient path seeking

We first present a path seeking algorithm that uses the
direction of one gradient function to constrain the optimization
problem thereby encouraging the image to change in the
desired direction. For example, if we want to seek the path
of increasing strength of the penalty function h(µ), then we
would like to encourage the optimization updates (i.e. gradient
descent) to go in the same direction as the ∇h(µ). Let us
consider adding a linear inequality constraint to the penalized
least-squares problem as

minimize g(µ) + β1h(µ)

subject to µ ≥ 0

(µj − µ̂j) · ∇jh(µ̂) ≤ 0 ∀j,
(3)

where
µ̂ = argmin

µ≥0
g(µ) + β1h(µ). (4)
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TABLE I: Pseudo code for the path seeking algorithm.

Set β = β1
Reconstruct an image x = xβ1

For k = 1, 2, 3, ...
1) s(k+1) = ρAT (Aµ(k) − y) + (1− ρ)v(k).
2) If recently increase β, use a) otherwise use b).

a) Direction-of-gradient path seeking

µ(k+1) = argminβh(µ) +
ρ

2t
‖µ− µ(k) + s(k+1)‖22

subject to µ ≥ 0

(µj − µ(k)
j ) · ∇jh(µ(k)) ≤ 0 ∀j

b) Standard ADMM step

µ(k+1) = argminβh(µ) +
ρ

2t
‖µ− µ(k) + s(k+1)‖22

subject to µ ≥ 0

3) v(k+1) = ρ
ρ+1A

T (Aµ(k+1) − y) + 1
ρ+1v

(k)

4) If ‖x − xβ1‖ is not increasing, then record x and
increase β.

Until β = β2.

The second linear inequality constraint in Eqn. (3) is inactive
because the µ̂ is already optimal for the nonnegative con-
strained penalized least-squares problem.

If we slightly increase β1 to β2 in the direction-of-gradient
constrained penalized least-squares problem (3) as

minimize g(µ) + β2h(µ)

subject to µ ≥ 0

(µj − µ̂j) · ∇jh(µ̂) ≤ 0 ∀j
(5)

and keep the µ̂ same as in Eqn. (4), the new solution will
be suboptimal for the penalized least-squares problem (2)
with β2. But the solution of the problem (3) is still close to
the solution of the reconstruction problem because increasing
the strength of h(µ) and the direction-of-gradient constraint
have very similar effects. To solve the direction-of-gradient
constrained problem (3), we can simply apply a projection
onto convex sets (POCS) step [3]. The POCS step will encour-
age updates of the image that favor minimizing h(µ), which
increases the path seeking efficiency within the optimization
framework.

It is not computationally efficient to compute the direction-
of-gradient constrained problem (5), which only gives an
approximation to the path image at each new β. We can merge
the direction-of-gradient step into an efficient optimization
solver such as the alternating direction method of multiplier
(ADMM) [4]. To adapt the direction-of-gradient optimization,
we can add the POCS in the denoising step of the ADMM
algorithm. Additional ordinary ADMM steps can be used to
improve the accuracy of the path seeking. The direction-of-
gradient based path seeking algorithm is summarized in Table
I.

For the direction-of-gradient based method, the path seeking
is inside the framework of the constrained optimization prob-
lem that is more robust to ordered subset errors than the fixed

(a) Reconstruction path

(b) Differences between two consecutive frames

Fig. 1: (a) Twenty eight path images of a 5 cm × 5 cm region-
of-interest in the PWLS reconstruction path. The display
window is [-50 150] HU. (b) Difference images between each
two consecutive path images. The display window is [-10 10]
HU.

step size update [9]. A suitable number of ordered subsets
for the direction-of-gradient path seeking method is between
10 and 20. In order to execute alternatively between the
normal and modified ADMM optimization steps, the additional
optimization steps need to have the same number of ordered
subsets [4], [9].

B. Automatic tuning

The path seeking algorithm can efficiently compute the
reconstruction path, but the task of selecting the optimal
tuning parameter value is not completed. Because the entire
reconstruction path is already available, one way to choose the
appropriate tuning parameter is to apply a numeric metric to
those path images and select the frame (or tuning parameter)
with the highest score. However, the numeric metric has to
be suitable for the clinical task, which is an open research
question. In this paper, we present a generic way of selecting
the tuning parameter that has maximal separation of noise
reduction and smoothing.

Figure 1 (a) shows an example of 28 frames in the MBIR re-
construction path using the path seeking method. The sequence
of images changes from noisy to over smoothed. Figure 1
(b) shows the corresponding difference images between each
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Fig. 2: (a) Correlation coefficients between two consecutive
difference images. (b) RMSE and MAE between each path
image and ground truth.

two consecutive path images in Figure 1(a). The effects of
changing the penalty function strength are now presented in
the difference images. When the tuning parameter is small,
increasing the strength of the penalty function mainly reduces
the noise in the reconstructions. In the first row of difference
images, the changes are uniform throughout the region-of-
interest (ROI), and there is no clear structure of the phantom.
As the noise level in the reconstructions becomes low (end of
the second row), the penalty function starts to influence the
shape and value of the soft tissue patterns.

As shown in Figure 1(b), the changes in the first half of
the reconstruction path correspond to the noise reduction, and
the changes in the second half of the reconstruction path
correspond to the smoothing. If we compute the correlation
coefficients between each two consecutive difference images,
there are high correlations inside the first and second halves
as shown in Figure 2(a). At the 18th frame, the correlation
coefficient drops because the changes caused by the noise
is independent to the structure. Therefore, the corresponding
frame implies the maximal separation between the noise
reduction and the smoothing effects. Figure 2 (b) shows
the root-mean-square-error (RMSE) and the mean-absolute-
error (MAE) between each path image and ground truth. The
RMSE and MAE both have minimum values around the 18th
frame, which validate our assumption. Then, we can apply
the same approach to each small regions of the entire image

(a) (b)

Fig. 3: (a) Selected ROI frame indices used for optimal tuning
parameter selection;. (b) Example of resulting aPBIR image.

to adaptively select optimal tuning parameters (Figure 3). The
final auto-tuned PBIR (aPBIR) image is produced by stitching
the regions with selected frame from the reconstruction path.
In our experiments, we found a region size of 32×32 pixels
(2.5 cm×2.5 cm) provides a good trade-off between noise and
local structure.

III. SIMULATIONS

A typical 64-slice diagnostic CT geometry was used in
the simulations. A full circular rotation scan was performed
over 360 degrees, containing 984 projections with the size of
888×64 pixels. The reconstructed image size 512×512×30
with in-plane spacing of 0.8×0.8 mm2, and the slice thickness
is 1 mm.

An abdomen XCAT phantom with added soft tissue patterns
was used in this work. The phantom spacing of the XCAT
phantom is 0.6 mm isotropic. The projection data were sim-
ulated in an axial scanning mode using a 120 kVp polychro-
matic spectrum. Simulated projections of the XCAT phantom
were generated assuming an exposure of approximately 100
mAs and 50 mAs.

The simulated projection data are reconstructed using the
penalized weighted least-squares (PWLS) method. We used
the convex edge-preserving Huber function as the penalty
function for image roughness. The transition value from
quadratic to linear regions is set to 1, 5, and, 10 Hounsfield
units (HU), respectively. The proposed path seeking methods
were used to generate path images of the PWLS reconstruction
with 30 β values. The range of tuning parameters produces
reconstructions ranging from very noisy to over smoothed.

IV. RESULTS

Figure 4 shows aPBIR reconstructions with different the
Huber function (different transition values) at two different
dose levels. With the automatically tuned parameter, the re-
constructions show a good balance between noise reduction
and smoothing. There is no visible white noise in the images.
The images with the 1 HU Huber function (similar to total
variation) exhibit some patchy behavior, and the soft tissue
patterns are distorted. When using the 10 HU Huber function,
the soft tissue background has more high frequency structures.
The shapes of soft tissue contrast patterns in the liver are
better preserved by the 10 HU Huber function. There is no
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Fig. 4: Reconstruction results of the proposed aPBIR method. The first row uses 100 mAs data, the second row uses 50 mAs
data. The columns from left to right correspond to the Huber function with transition values of 1, 5, and, 10 HU, respectively.
The display window is [-50 150] HU.

TABLE II: RMSE and MAE measurements of the proposed
aPBIR reconstructions in Figure 4 against the ground truth.
The measurements for MBIR reconstructions used the image
of on the reconstruction with the smallest values.

Dose level (mAs) 100 100 100 50 50 50

Huber parameter (HU) 1 5 10 1 5 10

aPBIR RMSE (HU) 28.2 28.2 28.4 29.0 29.2 29.3
MBIR RMSE (HU) 28.3 28.3 28.4 29.2 29.2 29.4
aPBIR MAE (HU) 8.24 8.59 9.04 8.51 8.93 9.46
MBIR MAE (HU) 8.19 8.41 8.63 8.51 8.79 9.05

obvious visual difference between 100 mAs and 50 mAs
reconstructions, although 50 mAs reconstructions have more
pepper noise, and the soft tissue patterns are more likely to
be distorted.

Table II shows the comparison of RMSE and MAE mea-
surements between the proposed aPBIR method and the ”best”
MBIR reconstructions. With the path seeking algorithm, we
are able to obtain the reconstruction path of MBIR, and
then compute the smallest RMSE and MAE values along
the path. Therefore, the error measurements of the MBIR
are the smallest values for the given reconstruction model.
Note that, those values are unknown in practice because there
is not ground truth. The aPBIR images have even slightly
smaller RMSE than the ”best” MBIR, because the tuning
parameters are adaptively selected for different regions. The
MAE measurements for aPBIR method are slightly larger than
the ”best” MBIR. Our simulation included beam hardening
and partial volume effects, so the error measurements will
not go down to zero. In addition, the path seeking algorithm
not only permits efficient calculation of reconstructions for
monotonically changing tuning parameter, but can also be used
to investigate the impact of changing parameters in the penalty
function itself.

V. CONCLUSION

In this paper, we present an approach to automatically select
the tuning parameter in iterative reconstruction by finding the
maximum separation between noise reduction and smoothing
effects. Simulation results show the proposed auto-tuned PBIR
produces images that are comparable to the hypothetically
”best” MBIR images. Future work will comprise validation
of the algorithm in the clinical datasets. The present paper,
however, indicates the feasibility of automatically selecting the
tuning parameter using the aPBIR method.

REFERENCES

[1] J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “A three-
dimensional statistical approach to improved image quality for multislice
helical CT,” Med. Phys., vol. 34, no. 11, p. 4526, 2007.

[2] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for
polyenergetic X-ray computed tomography,” IEEE Trans. Med. Imaging,
vol. 21, pp. 89–99, feb 2002.

[3] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization.,” Phys.
Med. Biol., vol. 53, no. 17, pp. 4777–4807, 2008.

[4] H. Nien and J. A. Fessler, “Fast X-Ray CT Image Reconstruction Using a
Linearized Augmented Lagrangian Method With Ordered Subsets,” IEEE
Trans. Med. Imaging, vol. 34, pp. 388–399, feb 2015.

[5] J. Tang, B. E. Nett, and G.-H. Chen, “Performance comparison between
total variation (TV)-based compressed sensing and statistical iterative
reconstruction algorithms.,” Phys. Med. Biol., vol. 54, no. 19, pp. 5781–
5804, 2009.

[6] A. S. Wang, J. W. Stayman, Y. Otake, G. Kleinszig, S. Vogt, G. L. Gallia,
a. J. Khanna, and J. H. Siewerdsen, “Soft-tissue imaging with C-arm cone-
beam CT using statistical reconstruction.,” Phys. Med. Biol., vol. 59, no. 4,
pp. 1005–1026, 2014.

[7] M. Wu, Q. Yang, A. Maier, and R. Fahrig, “Approximate Path Seeking
for Statistical Iterative Reconstruction,” in Proc. SPIE Med. Imaging,
pp. 9412–46, 2015.

[8] M. Wu, A. Maier, Q. Yang, and R. Fahrig, “Improve Path Seeking
Accuracy for Iterative Reconstruction Using the Karush-Kuhn-Tucker
Conditions,” in Intl. Mtg. Fully 3D Image Recon. Rad., (New Port, RI),
pp. 248 – 251, 2015.

[9] M. Wu, A. Maier, Q. Yang, and R. Fahrig, “Path-based Iterative Recon-
struction (PBIR) for X-ray Computed Tomography,” arXiv:1512, pp. 1–
10, 2015.


