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Abstract. Ablation guided by focal impulse and rotor mapping (FIRM)
is an alternative treatment for atrial fibrillation in particular for per-
sistent atrial fibrillation. To this end, a basket catheter comprising 64
electrodes is inserted into both the right atrium and left atrium un-
der X-ray guidance to locate electric anomalies. The 3-D positions of
the electrodes are needed to determine the ablation region. We propose
a improved model-based method for 3-D reconstruction of this basket
catheter based on two X-ray views. In our experiments, we found that
the proposed approach outperformed our previous approach. The me-
dian error using the proposed method are 1.5mm for phantom data and
2.6mm for clinical data. We also introduced a novel error metric, the
overlap rate between ground truth ablation region and reconstructed ab-
lation region. The overall mean overlap rate under optimized viewing
angle conditions is 84± 14% for phantom data and 72± 16% for clinical
data.

1 Introduction

Atrial fibrillation (Afib) is the most common heart rhythm disorder. Ablation
guided by focal impulse and rotor mapping (FIRM) has been proposed as a new
treatment option. Clinical evaluations performed in the US suggests that FIRM-
based ablation offers better long-term outcomes in particular for patients with
persistent Afib [1]. A multielectrode basket catheter is used in a FIRM-guided
ablation. The basket catheter is placed first in the right atrium and then moved
into left atrium during the treatment. The basket catheter has eight splines, each
spline comprises eight electrodes. The electrical anomalies and their positions,
which are relative to the splines and the electrodes, are found using the Topera
Rhythm View 3-D electrophysiological mapping system (Topera Inc., Pal Alto,
CA, USA). However, for ablation, a method is required to remap impulse or
rotor positions, initially only known relative to the basket, to their associated
anatomical positions.

Currently, the EnSite Velocity mapping system (St. Jude Medical, St. Paul,
MN, USA) is used to show the ablation region relative to the ablation catheter.
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Unfortunately, not only does the use of this mapping system increase the cost
of the procedure, it may also introduce inaccuracies due to electrical field dis-
tortions [2]. Our previous paper [3] proposed an alternative navigation method
using X-ray images to reconstruct the basket catheter relative to the coordinate
system of C-arm X-ray imaging system. Good results were found during exper-
iments involving phantoms, but results obtained for clinical data left room for
improvement. This is why we present an improved method based on our pre-
vious approach. We also combined this with a more in-depth evaluation of the
proposed method with respect to clinical data.

1.1 Related Work

Many image based 3-D device detection or reconstruction methods have been
proposed already. Hoffman et al. [4] suggested a graph based method to re-
construct catheters from two views. Canero et al. [5] proposed a method using
B-snakes to formulate catheter detection as an energy minimization problem.
Hasse et al. [6] introduced a 3-D attenuation model based method for ablation
catheter detection. Barbu et al. [7] proposed a learning based method to detect
guidewires.

In this paper, we suggest an improved version of our previous method [3] to
reconstruct a basket catheter from two views. The original method comprises
three steps - catheter model training, detection of electrodes and splines, as well
as model initialization and adaption. In the first step, a basket catheter spline
model is set up. Using this model, the basket catheter can be described as

M (b1, . . . , b8, α1, . . . , α8) = {pk,j |k, j = 1, . . . , 8}. (1)

where pk,j is the jth electrode on the kth spline. The parameter bk denotes the
shape of the kth spline, and αk reflects the spline rotation. In the second step, the
potential positions of electrodes EA, EB and potential splines SA, SB in image
plane A and B are detected. The potential electrode positions make up a 3-D
point cloud E3D. In the third step, multiple basket catheter models are initialized
by assuming the deformation parameter bk is identical for each spline. We refer
to this initialization as symmetric initialization. The ith symmetric model in all
N initialization models can be described as M i(bi, . . . , bi, αi,1, . . . , αi,8). Each
model M i must satisfy the length constraint. The overall length of the basket
catheter is obtained by having the user select start point, end point, and at least
one of eight marker electrodes in both views. The rotation of the model can then
be estimated using the 3-D point cloud and 2-D features found in the X-ray
images. When using 2-D features, rotation estimation can be formulated as an
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optimization problem by introducing the energy term D as follows
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The rotation αi of model M i is estimated by minimizing D. Then, the model
Mmin which corresponds to lowest value of D will be used as the model for image
based model adaption. A regularization term R is introduced here to perform a
combined optimization when calculating deformation and rotation

b,α = argmin
b1...b8,α1,...,α8

D(b1, . . . , b8, α1, . . . , α8) +R(b1, . . . , b8, α1, . . . , α8) (3)

2 Materials and Methods

While using a similar approach as stated in previous paper, we made modifica-
tions to the second and the third step to improve the outcomes. First, a more
robust electrode detection algorithm was implemented to reduce the false pos-
itive rate. False detection is mainly caused by the presence of other catheters
and devices during the intervention. Given the fact that electrodes of the basket
catheter are different in size and attenuation from other instruments, we ap-
plied suitably selected threshold to our detection results to distinguish basket
catheter electrodes from other objects. Second, the assumption of a symmetric
basket catheter model in the initialization step was relaxed. Instead, we propose
to construct an asymmetric basket catheter which is closer to the clinical envi-
ronment and search for the best asymmetric basket catheter model during our
optimization step.

2.1 Electrode Detection

We first use the same method in our former paper to extract the positions of
electrode candidates EA and EB in both image planes based on the estimated
pixel size wim in the X-ray image. We defined a neighborhood WA

i for the ith

electrode candidate eAi in image A with a size of 4wim × 4wim. Respectively
WB

i denotes the neighborhood for eBi . We then perform an unsharp masking
for each WA

i followed by binarization using Otsu thresholding. In the binary
image we then calculate the areas of pixels connected to the electrode candidates.
We trained a threshold to classify whether the electrodes belong to the basket
catheter.
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2.2 Asymmetric Model Initialization

In last paper, we assumed symmetric basket catheter models in the initializa-
tion step. The model which showed the best fit according to the energy term
D was chosen for image based adaption. We refined this step by allowing the
model to be asymmetric. Let M i(bi, . . . , bi, αi,1, . . . , αi,8) be the ith symmetric
model of N models sorted in ascending order of corresponding D value. We now
construct an asymmetric model as a combination of these N models and ar-
rive at MASY(bASY

1 , . . . , bASY
8 ,αASY) where bASY

n ∈ {bi|i = 1, . . . , N} ,αASY ∈
{αi,j |i = 1, . . . , N ; j = 1, . . . , 8}. When bASY

n = bi, we assume αASY
n = αi,n for

simplicity. The problem of finding the best asymmetric model can be addressed
by solving the following combinatorial optimization problem.

{bASY
n |n = 1, . . . , 8} = argmin

{bn|n=1,...,8}∈bi

D(bASY
1 , . . . , bASY

8 ,αASY) (4)

The computational complexity to perform a full search is O(N8). We reduced the
complexity by choosing the firstm < N of the weighting factors {bi|i = 1, . . . , N}
and optimize Eq. 4 by greedy search. The complexity is reduced to O(mt) where
t denotes the number iterations for greedy search.

2.3 Evaluation

We carried out two different evaluations. First, we compared our new approach to
previous method based on available phantom data and clinical data. In all, 18 sets
of phantom data and 8 sets of clinical data were evaluated. The basket catheter in
phantom data has an identical radius of 60mm while in clinical data the radius of
the basket catheter varies between 50, 60, and 70mm depending on the patient.
We evaluated the distance between the reconstructed basket catheter electrodes
and ground truth electrodes. Second, we introduced an ablation region overlap
rate evaluation which we find more clinically relevant. In a FIRM-guided ablation
procedure, the ablation region is usually defined by neighboring electrodes on
neighboring splines around a rotor region [1]. The evaluation is to calculate
the overlap between the ablation region region defined by four electrodes either
derived from ground truth and reconstructed model. We express this overlap as
a overlap rate defined as the area of intersection between estimated and ground
truth ablation region divided by area of the ground truth ablation region.

3 Results

We first show the results of a comparison using the original method and the
proposed method in Fig. 1. The results of our comparison between the original an
the proposed algorithm are shown in Fig. 2. The graphs show that the proposed
method outperforms the original approach. Median errors on phantom data using
the former method were 1.7mm using a single marker electrode for initialization
and 1.6mm when involving all eight marker electrodes, respectively. Using the
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Fig. 1. Result in electrodes detection (left), model initialization (middle), and model
adaption using original method (first row) and proposed method (second row) on the
same X-ray images. The blue crosses denotes the detected position of electrode candi-
dates. As shown in the figure, the previous method also detects electrodes of ablation
catheter (upper right in each images) while proposed method reduce the number of
detection error.
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Fig. 2. Evaluation using previous method vs. proposed method in phantom data (left)
and clinical data (right). Single marker refers to initialization using one marker elec-
trode, and all markers refers to initialization using each marker electrode on every
spline.

new method, the error reduced to 1.5mm for both cases.When evaluating clinical
data, the median error improved from 3.4mm with the original approach to
2.6mm for the proposed method using a single marker. Applying the proposed
method, the median errors in the phantom data and the clinical data are below
the clinical important threshold of 3mm [8]. The results of the overlap rate
evaluation are shown in Fig. 3. Using the initial C-arm view angles, the mean
overlap rate is 67±29% for the phantom data and 56±28% for the clinical data.
The viewing angle can be optimized by aligning the view angle with the normal
vector according to the estimated patch of interest. If we assume such a view
configuration, the overall mean overlap rate is 84 ± 14% for the phantom data
and 72± 16% for the clinical data respectively.

4 Discussion

Our results demonstrate that the proposed approach outperforms our previous
method especially for clinical data. By applying a more robust electrode detec-
tion, fewer false electrodes were used to estimate the basket catheter model. The
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Fig. 3. Mean overlap rate between estimated ablation region and ground truth ablation
region in phantom data (1-18) and clinical data (19-26)

asymmetric model allowed a more realistic initialization. The initialization is
very important for successful 2D/3D registration due to the high number of lo-
cal minima in high dimensional optimization space. The overlap rate evaluation
reveals that the overlap rate largely depends on the viewing angle. Adjusting
viewing angles properly, we could increase the mean overlap rate by 15%, and
this way provide a better view on the ablation region.

Acknowledgments We gratefully acknowledge the feedback given to us by the
Klinikum Coburg, Germany, and we would also like to thank them for the test
images. This work was supported by Siemens Healthcare GmbH, Forchheim,
Germany. The concepts and information presented in this paper are based on
research, and are not commercially available.

References

1. Narayan SM, Krummen DE, Shivkumar K, et al. Treatment of Atrial Fibrillation
by the Ablation of Localized Sources: {CONFIRM} Trial. J Am Coll Cardiol.
2012;60(7):628–636.

2. Eitel C, Hindricks G, Dagres N, et al. EnSite Velocity cardiac mapping system: a
new platform for 3D mapping of cardiac arrhythmias. Expert Rev Med Devices.
2010;7(2):185–192.

3. Zhong X, Hoffmann M, Strobel N, Maier A. Semi-Automatic Basket Catheter Re-
construction from Two X-Ray Views. Proc GCPR. 2015;9358:379–389.

4. Hoffmann M, Brost A, Koch M, et al. Electrophysiology Catheter Detection and
Reconstruction from Two Views in Fluoroscopic Images. IEEE Trans Med Imaging.
2015 ahead of print;.

5. Canero C, Radeva P, Toledo R, et al. 3D curve reconstruction by biplane snakes.
Proc Pattern Recognit. 2000;4:563–566.

6. Haase C, Schaefer D, Doessel O, Grass M. 3D ablation catheter localisation using
individual C-arm x-ray projections. Phys Med Biol. 2014;59(22):6959.

7. Barbu A, Athitsos V, Georgescu B, et al. Hierarchical Learning of Curves Appli-
cation to Guidewire Localization in Fluoroscopy. Proc IEEE Comput Soc Conf
Comput Vis Pattern Recognit. 2007; p. 1–8.

8. Bourier F, Fahrig R, Wang P, et al. Accuracy Assessment of Catheter Guid-
ance Technology in Electrophysiology Procedures. J Cardiovasc Electrophysiol.
2014;25(1):74–83.


