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ABSTRACT
In this paper we present a smart soccer shoe that uses textile
pressure sensing matrices to detect and analyze the interaction
between players’ foot and the ball. We describe the sensor
system that consists of two 3 × 4 and one 3 × 3 matrices
sampled at over 500Hz with low power electronics that allows
continuous operation (incl. wireless transmission) for 8 hours
using a small 800mA/h Li-Po battery. We show how relevant
parameters for shot analysis such as contact speed and contact
angles can be reliably derived from the sensor signals. To en-
sure reliable ground truth we evaluated the system with a kick
robot in the adidas testing facility, which is the standard ap-
proach used by adidas to systematically and quantitatively test
new shoes and balls. The test encompasses 17 different types
of shots and achieves a near 100% classification accuracy/F-
score. The system endured extreme levels of impact resulting
in over 100km/hr ball speed.
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INTRODUCTION
As the world’s most popular sport [16], much research effort
has been put into the study of the science behind soccer [18].
From the classic projectile mathematics models [4][9] to the
more recent aerodynamics of the ball’s flight path [14][15]
[3][11]that concerns the influence of a wider range of fac-
tors such as spin, surface roughness and the seam geometry
of patches. Those studies cover trajectory data measured by
high-speed camera systems both from real players and launch-
ing machines. Wearable systems to study kinematics and
detect shot/pass actions based on inertial measurement units
(IMU) are also being investigated [2][20]. However, the ac-
tual physical contact of launching a ball (between the shoe
surface and the ball) has not been sufficiently studied. The
lack is mainly due to the constraints that the instrumentation
should not change the physical properties of the contact sur-
face, which is soft and irregular in shape; and that the impact
time can be less than 20 milliseconds, making it difficult for
tether-free implementations.

Contribution
We have developed a solution that overcomes the above prob-
lems allowing detailed monitoring of the interaction between
the shoe and the ball. The solution is based on our textile
pressure sensor matix technology [6] that we have previously
applied to the monitoring of gym exercises [21] [24]. Address-
ing the specific case of a smart soccer shoe, this paper makes
the following contributions:

• We developed a specific sensing setup for the soccer shoe.
We covered the mostly engaged surface area on the shoe
(Figure 1) with fabric pressure sensors. The electronics
includes high speed Bluetooth Classic wireless data trans-
mission and miniaturized footprint.
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Figure 1. Instrumented shoe with dummy sensor patches on the side

• We developed different methods to extract information rel-
evant for shot analysis from the pressure mapping data.
Specifically we consider shots with different foot rotation
around the leg axle, different speeds, and shift the impact
center on the ball to the left and right.

• We evaluated our systems under controlled conditions. To
this end we used a “kicking robot leg” (see Figure 9) which
is the standard method used by the shoe manufacturer to
systematically and quantitatively evaluate new soccer shoes
and balls. We varied the angle from −20◦ to 50◦, and the
leg swing speed from amateur level (10m/s) to professional
level (20m/s), overall 15 combinations plus two additional
conditions for off-center impact.

• The best performance reaches near 100% accuracy and F-
score for the 15 classes. With the same algorithms, the
system isolates the off center variations from the before-
mentioned 15 classes with 100% accuracy.

While we define the tests classes by the robot leg’s parametric
configurations (Table 1), the influence of those parameters on
the actual flight path is well studied in the relevant literature
[7] [19] and the development of the robot leg. In fact, under
controlled conditions they may be directly used to predict ball
trajectory. In a real game other factors may also play a role,
however, from the point of view of the player; being able
to control those parameters is a key aspect of being able to
perform specific shots.

State of the Art
IMU based wearable systems
Akins [2] has extensively validated IMU sensors and magnetic
field angular rate and gravity sensors embedded into soccer
shoes and shin guards; compared with high speed cameras and
vision markers; the data have shown a consistent correlation

under all the testing activities. In the work of Schuldhaus,
et al., [20] data from IMU-instrumented soccer shoes and
shin guards are also proven to be able to detect several soccer
related actions. Cappa, et al. compared in-shoe IMUs with
wearable electromyography on the leg muscles to evaluate
kinematics and muscle activation [5].

Pressure sensor based systems
Several insole foot planar pressure mapping systems can be
found in other studies [1][10]. They are mainly used for gait
analysis during walking, running, jumping, etc. ; however, the
placement would not contribute to kicking a football. A 4-by-4
pressure mapping sensor [22] is installed over the shoe laces
to visualize the kicking force and center of pressure. Yet the
framework-focused pilot research has not included sufficient
data in terms of shot variations, and the coverage of the shoe
surface is limited on the shoe lace area.

HARDWARE
Instead of introducing add-ons to the shoe, our vision is that
the sensing element should be eventually integrated inside the
shoe surface material in an unobtrusive fashion that can be
manufactured together with the shoes; to this end we have
been close working with the shoe manufacturer. We use textile
resistive pressure mapping sensing as in our previous work[24],
and instrumented an adidas Messi 15.3 indoor soccer shoe.
The sensors consist of two layers of fabric which have parallel
metallic stripes, and one layer of pressure sensitive resistor
fabric in the middle. The metallic stripes have 1.5cm pitch,
and 0.7cm width. The sensors are separately tailored into 3
patches; instead of 90◦ crossings used in previous work, each
of them have a 40◦ angle to accompany the profile of the shoe
surface, indexed as A (outside front), B (inside front) and C
(inside heel) as in Figure 1. Every crossing of the metallic
stripes form a sensitive node (pixel), and the resolutions of A,
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B, C are 3− by− 4, 3− by− 4 and 3− by− 3. We covered
the front two patches with very thin and soft protective textile
sport tapes, which do not significantly influence the sensors’
readouts.

We scan the sensors with a micro-controller which has an 12-
bit multi-channel analog-digital converter. The data is sent
via Bluetooth to Android-powered devices (in our experiment
we tested with a Samsung Galaxy Tab 2 or S6) at around
30KB/s datarate, reaching the scanning speed of > 550Hz per
sensing node. The smartphone/tablet saves the data for further
processing. The sensors measure the pressure on the shoe
surface cover material, which can be caused by higher speed
ball impacts or the lower speed movements from the wearer’s
foot (i.e. toes). As shown in Figure 2, every 1.8ms there is a
data point, and for every actual ball impact we have around
ten observations, with the Bluetooth data bandwidth being the
limitation.

While implementing the system, we keep in mind how plau-
sible it is to eventually use it in real sports. With a small
800mAh Li-Po battery, the system can operate continuously
for 8 hours. In the experiment of this work, we have only
one side of the shoe paired to one Android device, we also
implemented connecting two shoes (a pair) with one Android
device, which has a slight drop of scanning speed from 550Hz
to 420Hz per sensing node. The dimensions of the printed cir-
cuit board and the battery are 2.6×3.5cm and 4.4cm×3.4cm.

Figure 2. Average pressure from every sensor patch during a ball impact

ALGORITHMS

Preprocessing
The sensors provide a stream of data organized into 3 matrices
{A,B,C}, each corresponding to one of the sensor patches:
front-outside, front-inside and front-heel. The temporal res-
olution is approximately 1.8ms. As shown in Figure 3, for
each patch, this essentially gives us the impact pressure pro-
file. In processing the data, we first apply a high-pass filter to
the temporal data per pixel with passband of 2Hz to remove
any static offset and drifting. We then resize the matrices by
a factor of four in x and y dimensions. Then, we calculate
the mean w{A,B,C}(t), centroid (x,y){A,B,C}(t) and maximum

max{A,B,C}(t) for each submatrix, denoting them as S(t). We
then segment the continuous temporal data stream based on

Figure 3. Example of pressure mapping readings during a ball impact,
t corresponds to the data point in Figure 2; Pressure axis has a static
range across all subplots while colormaps are adapted to individual ma-
trix values

the highest peak value of mean w{A,B,C}(t) to detect individual
ball contacts. Every segment i is a 90ms window centered at
the peak. We refer to the the time span as time domain Ti. S(t)
of every data sample is a time-varying sequence Si(t), t ∈ Ti.

Figure 4 shows that for an impact of the same class, S(t) have
reproducible patterns. (The class definition is explained later
in Evaluation) Therefore, for every t ∈ Ti we calculate the
average of S(t) from all training data samples. We use the
result as a template STemplate(t), t ∈ Ti for every specific class.

Feature Extraction
To extract features that best represent the force mapping signa-
ture of different types of impact, we have investigated multiple
methods.

Method 1: Template Matching
For every iteration of the cross validation, the templates
STemplate(t), t ∈ Ti are calculated anew from the training sam-
ples, excluding testing samples, and every class has one set
of templates. We then calculate the mean of multiplication,
and mean of subtraction between the template and every data
sample i, using the products as features F1(i). Since every
STemplate(t), t ∈ Ti has 12 members, and overall 15 classes,
F1(i) has 180 members.

Method 2: Wavelet Analysis
In Method 1, when there is a new training sample, the tem-
plates are recalculated and all the features will change accord-
ingly. For a more generic algorithm, we use wavelet analy-
sis with the LTFAT toolbox [17]. First we use Mallat’s fast
wavelet transform ( f wt) algorithm [13] on every Si(t), t ∈ Ti
with 10 iterations of the Daubechies-8 wavelet [8]. It produces
a scaleogram of f wt coefficients of 11 sub-bands as shown in
Figure 6. For every sub-band, we calculate the mean of coeffi-
cients; for sub-bands d9−d1, we also calculate the variance,
standard deviation, skewness and kurtosis that describes the
distribution of the wavelet coefficients. For every data sample,
47×12 = 564 features are used as F2(i).
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Figure 4. Data samples of class α = 40◦,υ = 10, thin solid lines are raw data Si(t) , and thick dash lines are template STemplate(t)

Figure 5. Method 1 algorithm

Method 3: 2-Dimensional Analysis
While in Method 1 and 2, (x,y){A,B,C}(t) and max{A,B,C}(t)
are beneficial from the pressure mapping matrix in con-
trast against single-sensor FSR installments, the entire 2-
dimensional mapping information is not fully used. For ev-
ery data sample, we take the stream of 2D pressure map-
ping PM(i,{A,B,C}), for every pixel, we apply zero-phase high-
pass filtering to remove DC. Then four special pressure map-
ping frames are extracted: we isolate the positive and neg-
ative values per pixel and calculate the mean per pixel as

Figure 6. Method 2 algorithm

PM+(i,{A,B,C}) and PM−(i,{A,B,C}), the mean value of every
pixel as PMmean(i,{A,B,C}) (PMmean(i,{A,B,C}) is similar to the
long exposure method in photography), and the frame at the
time when the sum of PM(i,{A,B,C})(t) is maximum within
the data sample, as PMmax(i,{A,B,C}). We then calculate ten
image moments of those speical frames (first three central
moments and Hu’s seven moments) [12]. Image moments are
image descriptors that can represent certain properties of the
pixel density distribution. Overall, 120 image moments are
extracted for every data sample as features F3(i).
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Figure 7. Method 3 algorithm

EVALUATION

Robotic Leg
To test the sensors’ capability of measuring different football
shot angles and forces, we conducted an experiment with a
robotic leg that is designed specifically for simulating football
kicking actions as shown in Figure 9. Its mechanical details
and the variation of ball flight paths are documented [23]. The
robotic leg has a controlled motor at the thigh joint, which
offers a controllable leg swing speed υ . At the ankle joint,
there are two adjustable hinges:

• the angle of the foot’s rotation around the length axle of the
leg cylinder α;

• the angle of the foot’s tilt around the radius direction of the
leg cylinder β .

Figure 8. measured ball speed distribution

Experiment Design
During the experiment, we use adidas Brazuca 2014 match
balls with 0.6 Bar pressure. The foot-ball impact position
is marked on the ball with a laser cross and is controlled to
be at the vertical center of the ball from the view of the foot
as in Figure 13. We define different classes of kicking with
various α and υ combinations listed in Table 1. Since in
some of the combinations, the ball would fire to the lab ceiling
or out of the protected field at the speed of 100km/hr , we
adjust the β angle, horizontal impact position of the ball and
the orientation of the robotic leg’s platform to ensure that the
trajectory will point towards the goal direction like a realistic
shot. With real players, the trajectory is typically controlled
by the combination of multiple factors such as the foot angle
and the body orientation of the players.

Figure 9. Graphical illustration of the kicking robot leg, ankle angles α ,
β and leg speed upsilon. Free view (left), side view (up-right) and top
view (down-right)

Table 1. Class Definition
υ = 10 υ = 15 υ = 20

α = 50◦ C1 C2 C3
α = 40◦ C4 C5 C6
α = 20◦ C7 C8 C9
α = 0◦ C10 C11 C12
α =−20◦ C13 C14 C15

The speed of the ball is measured with a combination of hawk-
eye system and speed radar. The ball speed ranges from around
40km/hr at υ = 10m/s to over 100km/hr at υ = 20m/s, and
varies with different impact insertion angle from the foot to
the ball.

With multiple footballs, we fire the ball 10 times per class,
overall 170 shots are recorded. Before every shot, the
shoe is manually readjusted on the robot’s foot to intro-
duce some variance of the initial position. The ball speeds
are shown in Figure 8; to compare the variance and offer
a reference for further classification accuracy, the average
StandardDeviation/MeanValue ratio of ball speeds is 5.74%.

Visualizing
Combining (x,y){A,B,C}(t), and max{A,B,C}(t), the track of the
center of impact with its intensity can be visualized as in
Figure 10, where the position of circles are (x,y){A,B,C}(t) co-

ordinates and the radius of circles are scaled to max{A,B,C}(t).
The method is similar to the work by Weizman, et al. [22].
From it, it can be concluded that as the swing speed increases,
the impact has greater intensity over its curve; and different α
angles result in distinct tracks of impact center. It is also very
obvious while the shoe rotates from α = 50◦ to α =−20◦ as
in Figure 9, the major impact area shifts from the heel part to
more on the front-inner, then front-outside.

Cross-validation
To evaluate if it is possible to distinguish the α angle and
leg speed combinations defined during the experiment from
the sensor data, we carry out cross-validation with standard
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Figure 10. Combined visualization of impact center ((x,y){A,B,C}(t) (on horizontal and vertical axes) and max{A,B,C}(t)) (circle radius) of all classes from
{C1−C15}. Circles’ radii are scaled to the same factor.

Figure 11. F-scores of cross-validation on different feature sets F1(i), F2(i),F3(i) and F23(i)
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Figure 12. Example confusion matrix of F2(i)−NB−2−Fold with 0.915
F-score

classifiers: KNN, Naive Bayes, linear discriminant analysis
and decision tree to compare the performances. We perform
10-fold, 5-fold and 2-fold cross-validation, to examine the
influence of less training data. For every feature-classifier-
fold combination we run the algorithm for 20 iterations and
calculate the F-scores (2× (Precision×Recall)/(Precision+
Recall)) from the average value of confusion matrices from
the 20 iterations.

The resulting F-scores are summarized in Figure 11. In 10-
fold, for F1(i) feature set, multiple classifiers (KNN, NB,
LDA) generate similar classification result; with F2(i), F3(i),
LDA has higher F-score, but the other classifiers have poorer
result; on average, combined F23(i) has slightly better result
than individual F2(i), F3(i). As the fold number decreases,
there are less training data samples and more testing, and most
of the classifiers’ f-scores decrease; however, with F2(i) from
wavelet analysis, LDA classifier, the f-score is robust against
such condition.

To show where the actual miss-classifications are located, we
take the confusion matrix from F2(i)−NB− 2−Fold with
0.915 F-score as an example in Figure 12. It can be seen that
most confusions happen between same α angle with different
leg speeds, as well as between adjacent α angles. This shows
that even if the data sample is classified as a different type,
the actual foot angle and swing speed lies within the adjacent
possibilities.

Shift of Kicking Center
As explained in Section Experiment Design, the impact po-
sition on the ball is regulated to be at the vertical center with
a laser. To evaluate whether the sensor is capable to distin-
guish the change of the kicking center, we move the ball center
30mm away from the vertical center to both the left and right,

at the combination of α = 40◦ and υ = 15m/s, giving them
the class index of C5L and C5R as shown in Figure 13. This
is primarily to introduce spinning variance on the ball.

With feature set F2(i) derived by wavelet analysis, and linear
discriminant analysis classifier, we reach accuracy and F-score
of both 100%. Yet it is possible that moving the center of the
ball might fall into the impact condition of other α angles, we
therefore combine {C5L,C5R} with {C1−C15}, overall 17
classes. In a 10-fold cross-validation with F2(i) features and
LDA classifier, as shown in Figure 14, the change of the ball
impact center is distinctly different from other classes by the
information from our sensor.

Figure 13. Illustration of the impact center on the ball with the view
from the foot, and defination of Class {C5L,C5,C5R} (α = 40◦ and υ =
15m/s)

Figure 14. Confusion matrix with F2 feature set and LDA classifier, 10-
fold of 17 classes including Class {C5L,C5R}

CONCLUSION AND OUTLOOK
The results presented in this paper show that a simple textile
pressure matrix sensor embedded in a soccer shoe can provide
sufficient information to reliably distinguish different ways
in which the players foot strikes the ball. The evaluation
was done in the same was as the shoe and ball manufacturer
evaluates the performance of shoes and balls, which is through
a robotic leg that provides well defined, reproducible shots.
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Having established that we can accurately capture the param-
eters of the foot ball interaction, the next step would be to
combine this functionality with inertial sensors in the shoe
and investigate how well the characteristics of the shot can be
predicted in a real game.

The sensor design has been done together with the shoe manu-
facturer and in the next version, the sensors will be integrated
under the standard upperlayer material of the shoe, making it
indistinguishable from standard shoe. The electronics can be
integrated in the sole as has been already demonstrated by the
shoe manufacturer for inertial sensors.
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