
Abstract 

Purpose: To assess the effect of a low-rank denoising algorithm on quantitative MRI-

based measures of liver fat and iron. 

Materials and Methods: This was an IRB-approved, HIPAA compliant, 

retrospective analysis of 42 consecutive subjects who were imaged at 3T using a 

multi-echo gradient echo sequence that was reconstructed using a multi-step adaptive 

fitting algorithm to obtain quantitative proton density fat fraction (PDFF) and R2* 

maps (original maps). A patch-wise low-rank denoising algorithm was then applied 

and PDFF and R2* maps were created (denoised maps). Three readers independently 

rated the PDFF maps in terms of vessel and liver edge sharpness and image noise 

using a 5-point scale. Two other readers independently measured mean and standard 

deviation of PDFF and R2* values for the original and denoised maps; values were 

compared using intraclass correlation coefficients (ICCs) and mean difference 

analyses. 

Results: Qualitatively, the denoised maps were preferred by all three readers based on 

image noise (p<0.001) and by two of three readers based on vessel edge sharpness 

(p<0.001-0.99). No reader had a significant preference regarding liver edge sharpness 

(p=0.16-0.48). Quantitatively, agreement was near perfect between the original and 

denoised maps for PDFF (ICC=0.995) and R2* (ICC=0.995) values. Mean 

quantitative values obtained from the original and denoised maps were similar for 

PDFF (7.6+/-7.2% vs. 7.7+/-7.7%, p=0.15) and for R2* (53.8+/-4s
-1

 vs. 53.1+/-4.1s
-1

, 

p=0.11).  

Conclusion: Applying the low-rank denoising algorithm to liver fat and iron 

quantification reduces image noise in PDFF and R2* maps without adversely 

affecting mean quantitative values or subjective image quality. 
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Introduction 

MRI-based measures of liver fat and iron are becoming more widely available 

and clinically important for the assessment of fatty liver disease and iron deposition 

(1-5).  While liver biopsy is the current standard for the assessment of steatosis, it is 

an invasive procedure and is not without risk (6). MR spectroscopy (MRS) is a robust 

method to accurately and non-invasively quantify hepatic fat fraction with high 

sensitivity, but suffers from a limited sampling volume (single-voxel acquisition) and 

low spatial resolution, which can be problematic in the setting of heterogeneous 

hepatic fat or iron deposition (1,7). Chemical-shift-based MRI quantitative PDFF and 

R2* relaxometry have been shown to correlate well with MRS and biopsy, but also 

have higher spatial resolution than MRS which provides more anatomic information 

(8-11).  

Performing region of interest (ROI)-based measurements on chemical-shift-

based MRI PDFF and R2* maps can be challenging due to artifacts such as image 

noise, and noise can bias the PDFF and R2* measures themselves (12-14).  

Additionally, while imaging can be performed at low spatial resolution to reduce 

noise, resolution must be sufficient to allow visualization of vessels and liver lesions, 

so that these can be avoided during the measurement process.  Low-rank denoising is 

a method which has been described for reducing noise in image reconstructions based 

on multiple data sets which share similarities, and it has been applied to MRI-based 

PDFF measures obtained from six-echo gradient echo sequences (15).  However, 

when applying smoothing/denoising algorithms in general, there is a potential for 

edge blurring, which can make avoiding confounding structure such as blood vessels 

more difficult.  



The purpose of this study is to assess the effect of a low-rank denoising 

algorithm on quantitative MRI-based measures of liver fat and iron, specifically in 

terms of changes in PDFF values, R2* values, and subjective image quality metrics.  



Materials and Methods 

 This was an institutional review board-approved, health insurance portability 

and accountability act compliant retrospective analysis of prospectively acquired data. 

Written informed consent was obtained from all subjects. Siemens Healthcare 

provided support for the original subject recruitment and data acquisition.  The 

authors who are not employees of Siemens Healthcare had control of all data and 

information that might have presented a conflict of interest for the duration of the 

study. 

 

Subjects 

 Forty-two consecutive subjects undergoing clinical liver MRI (18 males, 24 

females; mean age 52.8 years [range 20-80 years]) were prospectively enrolled. Mean 

subject weight was 85.3 kg (range, 49.9-163.3 kg), and mean body mass index was 

29.3 kg/m
2
 (range, 17.8-46.2 kg/m

2
). Indications for imaging included oncologic 

workup (n=25), chronic liver disease (n=14), and pain/biliary obstruction (n=3). 

  

MRI 

 Imaging was performed on one of two 3T MRI systems (Magnetom Skyra, 

Siemens Healthcare, Erlangen, Germany) with the subjects supine, using an 18-

channel phased-array body coil centered over the upper abdomen combined with the 

table-mounted spine matrix. A whole-liver volume acquisition was performed using a 

prototypical six-echo 3D spoiled-gradient-echo acquisition. Two-dimensional parallel 

acceleration was used to allow whole liver coverage within a single breath-hold 

(controlled aliasing in parallel imaging results in higher acceleration) (16).  



Pulse sequence parameters included: TR=8.9 ms; TE1=1.23 ms, with six 

echoes collected at ΔTE 1.23 ms; flip angle=4°; receiver bandwidth=1085 Hz/pixel; 

field of view=42 x 32.8 x 24 cm³; acquisition matrix=256 x 160 x 50 interpolated to 

an image matrix of 256 x 200 with 60 slices; spatial resolution=1.6 x 2.1 x 4 mm
3
; 

parallel imaging factor=2 x 2; and acquisition time=21 seconds. 

 

Image Reconstruction 

The standard six-echo gradient echo sequence was reconstructed using a 

conventional image reconstruction, followed by the multi-step adaptive fitting 

algorithm to obtain PDFF and R2* maps (assuming the same R2* for fat and water); 

termed “original” maps (10,17). In order to obtain denoised maps, a patch-wise low-

rank denoising algorithm including automated noise adjustment was applied 

retrospectively in the scanner environment to the reconstructed six-echo image series 

prior to applying the fitting routine (15). Briefly, this algorithm makes use of the local 

spectral redundancy of the multi-echo data by patch-wise promoting low-rank 

representations of the data. To this end, a risk-minimizing optimization yields an 

optimal denoising for every patch by taking both the local data as well as the global 

image noise estimation into account. This step was followed by the same 

reconstruction using the multi-step adaptive fitting algorithm to obtain PDFF and R2* 

maps; termed “denoised” maps. 

For both the original and denoised data sets, goodness-of-fit (GOF) maps were 

reconstructed. In order to measure GOF, the PDFF and R2* maps were used to 

generate modeled 6-echo magnitude image sets, and GOF was defined on a per-voxel 

basis as the sum-of-squared residuals (modeled data – measured data) divided by the 

sum of squared values of the measured data (18). 



 

Qualitative Analysis 

 The PDFF and R2* maps were de-identified and randomized pairwise, such 

that the original and denoised maps were presented to reviewers as a pair, but in 

random order. Three abdominal radiologists with 13, 5 and 4 years post-fellowship 

experience with liver MRI, respectively, independently reviewed the original and 

denoised maps side-by-side, blinded to which image sets had been denoised. Readers 

recorded their preference between images in terms of vessel edge sharpness, liver 

edge sharpness, and image noise. After recording these preferences for all map pairs, 

results were de-randomized to yield a scale of: 1 – strongly prefer denoised; 2 – 

somewhat prefer denoised; 3 – no preference; 4 – somewhat prefer original; 5 – 

strongly prefer original.  

 

Quantitative Analysis 

 Using the original TE=6.15 ms images, two separate readers independently 

placed four regions of interest (ROIs) in the right hepatic lobe (anterior, posterior, 

medial, and lateral locations), careful to avoid hepatic vasculature and artifacts. These 

ROIs were automatically copied onto the PDFF, R2* maps, and GOF maps for both 

the original and denoised reconstructions. The mean and standard deviations for each 

ROI on the PDFF and R2* maps were recorded, as were the mean values of each ROI 

for the GOF maps. 

 

Statistical Analysis 



 All statistical analyses were performed using SPSS software (version 20.0, 

IBM, Chicago, IL) as well as R (version 3.0.3, The R Foundation for Statistical 

Computing, Vienna, Austria). 

For the qualitative analysis, inter-rater reliability was assessed using Fleiss’ 

Kappa for each evaluation criterion. Then, a mixed-effects linear model was used to 

assess reader scores for differences from an overall value of 3 (no preference) for each 

visual assessment, with the reader treated as a fixed effect and the subject treated as a 

random effect.  Post-hoc p-values were adjusted for multiple comparisons using the 

single-step method (19).  

For the quantitative analysis, mean and standard deviation of PDFF and R2* 

values were calculated. Agreement between the mean values of ROIs measured by 

each reader was assessed using intraclass correlation coefficients (ICCs). Differences 

between PDFF, R2* and GOF values were compared between the original and 

denoised maps using the Mann-Whitney-U test as well as a linear model on the log-

transformed data. The anatomical location and the use of denoising were modeled as 

fixed effects, and post-hoc comparisons were performed using Tukey’s honest 

significant difference (HSD) test to correct for multiple comparisons. 

  



Results 

Representative PDFF and R2* maps demonstrate visual reduction in noise by 

the denoising algorithm in subjects with high (Fig. 1) and normal (Fig. 2) PDFF 

values. 

 

Qualitative Analysis 

Subjective reader preferences are summarized in Figure 3 and Table 1. None 

of the readers preferred the original PDFF maps over the denoised maps for any of the 

evaluated criteria. For vessel edge sharpness, readers 1 and 2 significantly preferred 

the denoised maps (p<0.01), while reader 3 had no significant preference (p=0.99). 

None of the readers had a significant preference with respect to liver edge sharpness 

(p=0.86-1.00). With regard to image noise, all three readers significantly preferred the 

denoised maps (p<0.001). 

 

Quantitative Analysis 

Agreement between the two readers for ROI-based quantitative PDFF and R2* 

measures was near perfect (ICC=0.96 for PDFF and 0.98 for R2*), and the readers 

were treated as equivalent for the remainder of the analysis. 

For liver PDFF measurements, the mean value across all subjects was 

7.7±7.7% (7.7±7.7% for the original maps and 7.7±7.8% for the denoised maps, 

p=0.12).  In the linear model comparison of the ROI measurements on the original vs. 

denoised images, the mean PDFF was not significantly different (p=0.12) between 

original and denoised images.  However, the standard deviation of values within ROIs 

was 41% smaller for the denoised images (from 2.6±1.9% for the original maps to 



1.6±1.6% for the denoised maps, p<0.001), indicating that the heterogeneity of the 

liver within the ROIs was reduced by the denoising algorithm. 

For the R2* measurements, the overall mean value was 49.0±44.3 s
-1

 

(52.9±40.3 s
-1

 for the original maps and 52.8±41.1 s
-1

 for the denoised maps, p=0.20). 

In the linear model comparison of the ROI measurements on the original vs. the 

standard images, the mean R2* was not significantly different (p=0.89) between the 

original and denoised maps.  However, the standard deviations were 29% smaller 

(from 12.1±10.5 s
-1

 for the original maps to 8.6±8.4 s
-1

 for the denoised maps, 

p<0.001), indicating that the heterogeneity of the liver within the ROIs was reduced 

by the denoising algorithm. 

Mean GOF was improved by 46% using the denoising algorithm (from 

3.08±1.51% for the original maps to 1.67±0.94% for the denoised maps), which was 

statistically significant (p<0.0001).   



Discussion 

In this study, a low-rank denoising algorithm was applied to gradient echo 

magnitude images prior to the multi-step adaptive fitting algorithm for calculation of 

quantitative proton density fat fraction and R2* maps. The quantitative PDFF and 

R2* measurements were not significantly affected, but liver heterogeneity was 

improved visually and quantitatively, while preserving or improving edge features 

such as vessel sharpness. These findings suggest that the described low-rank 

denoising algorithm improves image heterogeneity without causing edge blurring. 

In order to obtain PDFF and R2* measurements that are independent of T1 

bias, low flip angles and long relaxation times must be used, which can result in 

acquisitions with low signal-to-noise ration (SNR) (12,15,20-23). The resulting image 

noise can hinder ROI placement when measuring PDFF and R2*, and noise has been 

shown to bias quantitative measurements of PDFF and R2* (12,13). To improve 

image quality in low-SNR images in general, a variety of image post-processing 

techniques have been studied. While post-processing algorithms do not increase 

image acquisition time, images are subject to blurring and other artifacts introduced 

by the post-processing algorithms themselves. Simple spatial averaging, in which a 

pixel is given the value of the average of the adjacent pixels, will reduce noise, but 

also degrades sharp details (lines and edges), as these structures are inadvertently 

averaged with the adjacent pixels of interest (24). Edge-preserving filters, such as the 

anisotropic diffusion filter, can distort small features and make images look unnatural 

(24,25). Wavelet-based filters are subject to the introduction of artifacts that can affect 

subjective image quality (25,26). In our study, the described low-rank denoising 

algorithm appears to have no adverse effect on subjective liver and vessel edge 

definition, and all three readers preferred the denoised datasets with respect to image 



noise. These data suggest that the low-rank denoising algorithm does not adversely 

affect subjective edge sharpness, unlike many other smoothing algorithms. With 

decreased subjective image noise and similar edge sharpness, ROI placement on 

PDFF and R2* maps could theoretically be facilitated. 

In addition to hindering ROI placement when measuring PDFF and R2*, poor 

SNR has been shown to bias quantitative measurements of PDFF and R2* (12,13). In 

our quantitative analysis, the measured PDFF and R2* values were not significantly 

changed by application of the low-rank denoising algorithm.  The accuracy of PDFF 

values using the acquisition and image reconstruction chain utilized in this study has 

been previously validated, thus a lack of change due to application of the algorithm is 

desirable (17).  It is unclear what effect the low-rank denoising algorithm would have 

on MRI data affected by bias due to lower SNR; we were unable to explore this 

scenario using the available data. 

There are limitations to this study. It was a retrospective analysis of 

prospectively acquired data, and a relatively small number of patients were included. 

In addition, all imaging was performed on one of two identical MRI systems from a 

single vendor, and may not be applicable to other vendors or scanner platforms. As 

described, our data had adequate SNR for accurate PDFF estimation, and we were 

unable to investigate the potential effect of the low-rank denoising algorithm on data 

with lower SNR. 

In conclusion, applying the described low-rank denoising algorithm to a liver 

fat/iron quantification technique reduces image noise in PDFF and R2* maps without 

adversely affecting mean values of the quantitative measures or subjective edge 

sharpness. 
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Tables 

Table 1. Reader preference for each qualitative image feature on the PDFF maps 

based on the following rating scale:  1=strongly prefer denoised; 2=somewhat prefer 

denoised; 3=no preference; 4=somewhat prefer original; 5=strongly prefer original.  

Ratings are summarized as mean +/- standard deviation. 

 Vessel Edge Liver Edge Image Noise 

 Rating p-value* Rating p-value* Mean p-value* 

Reader 1 

 

 

2.12 

+/- 0.67 

<0.001 2.98 

+/- 0.35 

0.86 1.45 

+/- 0.80 

<0.001 

Reader 2 

 

 

2.76 

+/- 0.48 

<0.01 3.0 

+/- 0.0 

1.000 2.02 

+/- 0.81 

<0.001 

Reader 3 

 

 

2.98 

+/- 0.27 

0.99 2.98 

+/- 0.15 

0.86 2.45 

+/- 0.71 

<0.001 

* p-values are for an adjusted linear effects model with post-hoc test comparing the 

reader ratings against a rating of 3 (no preference). 



Figure Legends 

Figure 1. Representative images from a patient with a relatively high PDFF value of 

23.7% and an R2* value of 47.4 s
-1

 on the original image reconstructions. (a) original 

PDFF map; (b) denoised PDFF map; (c) original R2* map; (d) denoised R2* map. 

Readers strongly preferred the denoised PDFF map based on image noise (average 

rating among 3 readers = 2.0). 

 

 



Figure 2. Representative images from a patient with a normal PDFF value of 4.6% 

and an R2* value of 42.4 s
-1

 on the original image reconstructions. (a) original PDFF 

map; (b) denoised PDFF map; (c) original R2* map; (d) denoised R2* map. Readers 

strongly preferred the denoised PDFF map based on image noise and slightly 

preferred the denoised images based on vessel edge sharpness (average rating among 

3 readers = 2.62). 

 

 



Figure 3. Summary of reader preferences for each of the three visual assessments 

performed in this study. * indicates statistically significant preferences for the 

denoised images for 2/3 readers based on vessel edge sharpness and all three readers 

based on image noise. 

 


