Robust Seed Template Generation for Interactive Image Segmentation

Mario Amrehn¹, Stefan Steidl¹, Markus Kowarschik², Andreas Maier¹³

¹Pattern Recognition Lab., Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
²Siemens Healthcare GmbH, Erlangen, Germany
³Erlangen Graduate School in Advanced Optical Technologies (SAOT), Germany

Introduction

Basic Situation

In interactive medical image segmentation, anatomical structures are extracted. Usability studies [1], [2] illustrate, that users spend significant amounts of time and effort in the beginning of an interactive workflow to achieve segmentation accuracies also reachable by fully automated systems [3].

Challenges

Challenges of hepatic lesion segmentation are (a) high diversity in gray-values, no typical shape, (b) intensity overlaps, (c) necrotic regions/patches, and (d-f) varying appearance of the same tumor between 2-D slices. 38 volumetric lesion images fully annotated by medical experts are used as GT segmentations.

Our Approach

We propose an automatic seeding pipeline as well as a configuration based on saliency recognition, in order to skip the time-consuming initialization phase during segmentation. A median Dice score of 68.22 % is reached before the first user interaction on the test data set with an error rate in seeding of only 0.088 %.

Data

Challenges of hepatic lesion segmentation are (a) high diversity in gray-values, no typical shape, (b) intensity overlaps, (c) necrotic regions/patches, and (d-f) varying appearance of the same tumor between 2-D slices. 38 volumetric lesion images fully annotated by medical experts are used as GT segmentations.

Methods

Interactive segmentation workflow. The dashed box indicates the automated seeding process defined by \((P, S, W, M) \). Morphological operation \(M_{\text{er}}(P) \) is binary erosion or opening, respectively.

Evaluation of GC [9] (upper row) and RW [10] (lower row) segmentations’ Dice scores. Proposed method \((P, S_m, W, M) \) is highlighted.

Results & Discussion

Saliency techniques originally designed for object detection in photographic images.

For saliency, SLIC [8] superpixels are used internally. Displayed are \((0.1, 0.5, 1, 5) \) of pixels. Otsu thresholding is used to binarize largest saliency scores. A Gaussian kernel is shifted to the center of mass for seeds’ proximity weighting \(W \).

Conclusion

An automated seeding pipeline was defined and evaluated, which supports various saliency detection and thresholding based methods. An extensive comparison of pipeline element selections resulted in the proposition of configuration \((P, S_m, W, M) \) for pipeline usage. \((P, S_m, W, M) \) yields high quality segmentation results as well as low FPR errors, crucial for successful automated seed placement.

Contact

mario.amrehn@fau.de

References