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Transcatheter Arterial Chemoembolization (TACE)

10.11.2014   |   Jens Glasbrenner

Figure 1: Vessel tree and corresponding ROI (blue sphere). 

Transarterial Chemoembolization (TACE)

3

Tumor Catheter
Feeding vessels

Roughly segmented tumor and subsequently generated vessel tree
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Tumor Therapy – Impact of Segmentation Quality

Additional vessel
still feeding the
tumor

Occluded vessel
stops feeding
healthy tissue

Why an exact segmentation?

• segmented volume too big → healthy tissue gets occluded (toxicity increases)
• segmented volume too small → tumor growth unimpeded (efficacy decreases)
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Hepatic Lesion Segmentation – C-Arm CT Volumetric Input Data
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Hepatic Lesion Segmentation – Outcome
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Interventional Segmentation Environment

Exam Room

Control Room
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Interactive Segmentation Interface Prototypes

• Fully manual segmentation takes a lot of time; accurate outcome

• Fully automatic segmentation can take a lot of time to compute;
quality correlated with size of ground truth database

• Interactive segmentation introduces a feedback loop for the user
via seed points and scribbles

⇒ Idea: increase efficiency during segmentation via assisted interaction
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Interactive FCN – Seed Update

a) b) c) d) e)

a) Current seed mask with background and foreground seeds

b) Compute segmentation mask based on a), compare to ground truth

c) User selects misclassified image element position(s) from difference mask

d) User updates seed mask

e) Compute improved segmentation mask w. r. t. old segmentation mask
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Interactive FCN – Proposed Topology Changes
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Traditional FCN training procedure (left) and proposed training method by user simulation (right).
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Interactive FCN – User Seed Mask Integration

Input channels: gray value 

image, seed mask 
Conv, ReLU Pooling Upconv 

Output channels: FG 

and BG probabilities 

Conv, ReLU 

Schematic FCN computation including user information as additional input.

Purple arrows represent further computational layers based on the U-net topology.
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Interactive FCN – Rule-Based Simulated User Input

a) b) c) d) e)

User Model: Probabilistic seed placement using difference mask from GT and current segmentation.
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Interactive FCN Results – Without a User Model

a) b)

UI-nets trained with a) varying contour width and b) randomized seed masks for initial seeding.
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Interactive FCN Results – With a User Model

c) d)

Segmentation quality after one to five iterations: c) interactive UI-net and d) GrowCut.
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Thank you for your attention!

Are there any questions?

Participation: www.bit.ly/vcbmseg
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