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Transcatheter Arterial Chemoembolization (TACE)

Feeding vessels
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Roughly segmented tumor and subsequently generated vessel tree
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Tumor Therapy — Impact of Segmentation Quality

Occluded vessel
stops feeding
healthy tissue

Additional vessel
still feeding the

\/ tumor

Why an exact segmentation?

e segmented volume too big — healthy tissue gets occluded (toxicity increases)
e segmented volume too small — tumor growth unimpeded (efficacy decreases)
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Hepatic Lesion Segmentation — C-Arm CT Volumetric Input Data
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Hepatic Lesion Segmentation — Outcome
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Interactive Segmentation Interface Prototypes

Manual
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¢ Fully manual segmentation takes a lot of time; accurate outcome
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¢ Fully manual segmentation takes a lot of time; accurate outcome

e Fully automatic segmentation can take a lot of time to compute;
quality correlated with size of ground truth database
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Interactive Segmentation Interface Prototypes

Interactive
Segmentation

@ —@

Manual Fully Automatic
Segmentation Segmentation

¢ Fully manual segmentation takes a lot of time; accurate outcome

¢ Fully automatic segmentation can take a lot of time to compute;
quality correlated with size of ground truth database

¢ Interactive segmentation introduces a feedback loop for the user
via seed points and scribbles

=> ldea: increase efficiency during segmentation via assisted interaction
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Interactive FCN — Seed Update

a) Current seed mask with background and foreground seeds

b) Compute segmentation mask based on a), compare to ground truth

¢) User selects misclassified image element position(s) from difference mask
d) User updates seed mask

e) Compute improved segmentation mask w. r.t. old segmentation mask
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Interactive FCN — Proposed Topology Changes
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Traditional FCN training procedure (left) and proposed training method by user simulation (right).
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image, seed mask

Schematic FCN computation including user information as additional input.

Purple arrows represent further computational layers based on the U-net topology.

Mario Amrehn | FAU | Interactive Neural Networks for Medical Image Segmentation September 8, 2017 10



SIEMENS ..,
Healthineers "

Interactive FCN — User Seed Mask Integration

Input channels: gray value

image, seed mask

Mario Amrehn | FAU | Interactive Neural Networks for Medical Image Segmentation

September 8, 2017



SIEMENS ..,
Healthineers "

Interactive FCN — User Seed Mask Integration

Input channels:
gray value image, seed mask

Mario Amrehn | FAU | Interactive Neural Networks for Medical Image Segmentation

September 8, 2017



SIEMENS ..,
Healthineers "

O

Interactive FCN — User Seed Mask Integration

Input channels:
gray value image, seed mask
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Interactive FCN — User Seed Mask Integration

Input channels:
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Interactive FCN — User Seed Mask Integration

\ Output channels: FG

and BG probabilities
Input channels: gray value
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Schematic FCN computation including user information as additional input.

Purple arrows represent further computational layers based on the U-net topology.
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Interactive FCN — Rule-Based Simulated User Input

a) b) ()] L)) e)
a a

User Model: Probabilistic seed placement using difference mask from GT and current segmentatiol
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Interactive FCN Results — Without a User Model
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Ul-nets trained with a) varying contour width and b) randomized seed masks for initial seeding.
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Segmentation quality after one to five iterations: c) interactive Ul-net and d) GrowCut.
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Example Workflow:
1. Click on Show Hint @ to observe an outline of the object to segment.

2. While observing the object, use the windowing sliders —e— to adjust the pixel values in the
image to improve object to background contrast, or choose Automatic Windowing

3. Draw seed points =, lines 3, or complex shapes & onto the image, representing either
foreground/object 4 or regions, until you are satisfied with the result
© Try ot to draw directly on the contour line of the object, but clearly inside or outside of it
* Play around with all the controls. If things get out of hand, you can always easily restart

Tip: use the left and right mouse buttons for easy
foreground and background seed label drawing N
without changing labels via the =/~ buttons above -

h et
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Thank you for your attention!

Are there any questions?

Participation: www.bit.ly/vcbmseqg

User Study

In order to participate in the user study, please fill in the password provided in your invitation.
If you did not receive an invitation, but like to participate in the study,
please just send me a short request per email.

Thank you!

H
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