

FACULTY OF ENGINEERING

A Guided Spatial Transformer Network for Histology Cell Differentiation

Marc Aubreville¹, Max Krappmann¹, Christof Bertram², Robert Klopfleisch², Andreas Maier¹

¹ Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg
² Institute of Veterinary Pathology, Free University Berlin

marc.aubreville@fau.de

Motivation: Mitosis

- Cell division, an important marker in tumor diagnostics
- Different phases in mitosis and differences in staining

High variance

• Low intra-rater reliability in grading

• Sparsely distributed in histology slides

Mitotic figure

Normal tumor cells

Canine stem cell tumor, FU Berlin

Our Data Set

Sparsely annotated dataset of **10k** cell annotations per type

Full annotations drastically increase workload in annotation task

Only mitotic cells with high certainty are annotated.

But: How to use the data?

cell types: mitosis, granulocyte, normal cell

Our Data Set

Sparsely annotated dataset of **10k** cell annotations per type

Full annotations drastically increase workload in annotation task

Only mitotic cells with high certainty are annotated.

But: How to use the data?

Assumption:

No two mitotic cells within a certain distance of each other.

cell types: mitosis, granulocyte, normal cell

A Classification Task

Classes: Mitotic cells | Granulocytes | Normal cells

	prec	rec	F1
granulocyte	0.94	0.96	0.95
mitosis	0.93	0.90	0.92
normal cell	0.95	0.96	0.96
average	0.94	0.94	0.94

Idea: Create a localization task and a classification task

Let's estimate the position of the cell and the cell type.

Classification and Localization task

Classes: Mitotic cells | Granulocytes | Normal cells

negative class

Spatial Transformer Networks [Jaderberg et al., 2015]

• Affine transform within the network

 Transformation matrix is learned unsupervised within optimization of the classification task.

Spatial Transformer Network for Cell Detection

Results

approach	name	precision	recall	f1-score
CNN baseline	granulocytes	0.847	0.898	0.872
	mitotic figures	0.822	0.853	0.837
	normal t. cells	0.916	0.859	0.887
	avg / total	0.870	0.868	0.869
CNN-STN	granulocytes	0.912	0.925	0.918
	mitotic figures	0.891	0.889	0.890
	normal t. cells	0.932	0.924	0.928
	avg / total	0.915	0.915	0.915

Summary

Supervised STNs can be exploited for sparsely labeled image data

Outlook

Mitosis object detection in whole slide images

