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• Cell division, an important  
marker in tumor diagnostics 

• Different phases in mitosis  
and differences in staining 
      

• Low intra-rater reliability in  
grading 

• Sparsely distributed in  
histology slides
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Motivation: Mitosis

[Major events in mitosis, nih.gov]

High variance

http://nih.gov
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Our Data Set

Sparsely annotated dataset of 10k cell 
annotations per type 

Full annotations drastically increase workload 
in annotation task 

Only mitotic cells with high certainty are 
annotated. 

But: How to use the data? cell types:  
mitosis,  
granulocyte, 
normal cell
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Our Data Set

  Assumption: 
  No two mitotic cells within a certain distance of each other.

dmin

Sparsely annotated dataset of 10k cell 
annotations per type 

Full annotations drastically increase workload 
in annotation task 

Only mitotic cells with high certainty are 
annotated. 

But: How to use the data? cell types:  
mitosis,  
granulocyte, 
normal cell
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A Classification Task

Classes: 

Mitotic cells | Granulocytes | Normal cells

prec rec F1

granulocyte 0.94 0.96 0.95

mitosis 0.93 0.90 0.92

normal 

cell

0.95 0.96 0.96

average 0.94 0.94 0.94
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Idea: Create a localization task and a classification task

Let’s estimate the position 

of the cell and the cell type. 

Classification and 

Localization task

Classes: 

Mitotic cells | Granulocytes | Normal cells

negative class
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Spatial Transformer Networks [Jaderberg et al., 2015]

● Affine transform within the network  

● Transformation matrix is learned unsupervised within optimization 
of the classification task.

]
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Spatial Transformer
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generator
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Figure 2: The architecture of a spatial transformer module. The input feature map U is passed to a localisation
network which regresses the transformation parameters ✓. The regular spatial grid G over V is transformed to
the sampling grid T✓(G), which is applied to U as described in Sect. 3.3, producing the warped output feature
map V . The combination of the localisation network and sampling mechanism defines a spatial transformer.

need for a differentiable attention mechanism, while [14] use a differentiable attention mechansim
by utilising Gaussian kernels in a generative model. The work by Girshick et al. [11] uses a region
proposal algorithm as a form of attention, and [7] show that it is possible to regress salient regions
with a CNN. The framework we present in this paper can be seen as a generalisation of differentiable
attention to any spatial transformation.

3 Spatial Transformers
In this section we describe the formulation of a spatial transformer. This is a differentiable module
which applies a spatial transformation to a feature map during a single forward pass, where the
transformation is conditioned on the particular input, producing a single output feature map. For
multi-channel inputs, the same warping is applied to each channel. For simplicity, in this section we
consider single transforms and single outputs per transformer, however we can generalise to multiple
transformations, as shown in experiments.

The spatial transformer mechanism is split into three parts, shown in Fig. 2. In order of computation,
first a localisation network (Sect. 3.1) takes the input feature map, and through a number of hidden
layers outputs the parameters of the spatial transformation that should be applied to the feature map
– this gives a transformation conditional on the input. Then, the predicted transformation parameters
are used to create a sampling grid, which is a set of points where the input map should be sampled to
produce the transformed output. This is done by the grid generator, described in Sect. 3.2. Finally,
the feature map and the sampling grid are taken as inputs to the sampler, producing the output map
sampled from the input at the grid points (Sect. 3.3).

The combination of these three components forms a spatial transformer and will now be described
in more detail in the following sections.

3.1 Localisation Network

The localisation network takes the input feature map U 2 RH⇥W⇥C with width W , height H and
C channels and outputs ✓, the parameters of the transformation T✓ to be applied to the feature map:
✓ = floc(U). The size of ✓ can vary depending on the transformation type that is parameterised,
e.g. for an affine transformation ✓ is 6-dimensional as in (10).

The localisation network function floc() can take any form, such as a fully-connected network or
a convolutional network, but should include a final regression layer to produce the transformation
parameters ✓.

3.2 Parameterised Sampling Grid

To perform a warping of the input feature map, each output pixel is computed by applying a sampling
kernel centered at a particular location in the input feature map (this is described fully in the next
section). By pixel we refer to an element of a generic feature map, not necessarily an image. In
general, the output pixels are defined to lie on a regular grid G = {Gi} of pixels Gi = (xt

i, y
t
i),

forming an output feature map V 2 RH0⇥W 0⇥C , where H 0 and W 0 are the height and width of the
grid, and C is the number of channels, which is the same in the input and output.

3

Jaderberg et al., 2015, on arXiV
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Spatial Transformer Network for Cell Detection

Standard CNN-approach  
(+ inception layers)  
for classification

Supervised training of 
the STN 
==> focus on the cell
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Loss function [Localizer]
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assume priors for the cell types, the distributions for the training
were made uniform by random deletion of non-minority classes
within the training set. A five-fold cross-validation was used.

4.3.1. Classification network

In order to achieve good localization and classification perfor-
mance, we propose a three stage process: In a first step, centered
cell images are presented to the network, and the classification-part
of the network is trained for 50 epochs using an initial learning
rate of 10−3. This serves as a good initialization of the network for
later use. As loss function, denoting the (one hot coded) ground-
truth cell class c and the estimated class probabilities ĉ, standard
cross-entropy is used:

lcla =−

3

∑
i=1

ln(ĉi) · ci (4)

4.3.2. Training of the localization network

In the next step, the localization network is trained. For this, the im-
ages were cropped with a random offset from the original image, as
described in section 4.1. Knowledge of this random offset enables
to define a ground truth transformation matrix θ for optimizing the
network. This is used to regress the estimated transformation vector
θ̂ with its elements

θ̂ =

[
ϑ̂1 ϑ̂2 ϑ̂x

ϑ̂3 ϑ̂4 ϑ̂y

]
(5)

We want θ̂ to be an affine transform with no skew and known
scale ϑs. To achieve this, we first derive the scaling of the estimated
transform as:

ϑ̂sx =

√
ϑ̂1

2
+ ϑ̂3

2
(6)

ϑ̂sy =

√
ϑ̂2

2
+ ϑ̂4

2
(7)

Further, we want the diagonal elements ϑ̂1 and ϑ̂4 to be equal
and the off-diagonal elements ϑ̂2 and ϑ̂3 equal with opposite sign,
resulting in a rotation matrix with scale. These constraints compile
into the loss for the localization network:

lloc =
∣∣∣ϑ̂x −ϑx

∣∣∣
2
+
∣∣∣ϑ̂y −ϑy

∣∣∣
2
+
∣∣∣ϑ̂sx −ϑs

∣∣∣
2
+

∣∣∣ϑ̂sy −ϑs

∣∣∣
2
+
∣∣∣ϑ̂1 − ϑ̂4

∣∣∣
2
+
∣∣∣ϑ̂2 + ϑ̂3

∣∣∣
2

(8)

The rotation angle of the transform is a degree of freedom and
thus not covered by the loss. The localization part of the network is
trained for 200 epochs using an initial learning rate of 10−4.

4.3.3. Final refinement of the classification network

Finally, the whole network is trained for 100 epochs, using an ini-
tial learning rate of 10−4. This final step is calculated on the trans-
lated images that were estimated by the localization network and
the STN, and it is using a combined loss:

l = lloc +κ · lcla (9)

This loss thus incorporates knowledge about the proper class of
the image, about the position of the cell within the image and about
the scaling of the patch representing the cell, yet the rotation angle
is not known.

4.4. Baseline comparison

It is hard to compare our results to other authors’ works, because
unlike them, we consider different cell types within the image and
our data set is sparse and not fully annotated. For a baseline com-
parison, we took a 12-layer CNN like the one described by Cireşan
et al. [CGGS13] for Mitosis detection, but aimed at a three class
problem and with an input size of 128x128 px. This classification
network was trained for 200 epochs using an initial learning rate of
10−3.

5. Results and Discussion

There were only minor differences in the results of the individ-
ual test sets in cross-validation, which is why we concatenated
the respective test vectors and calculated the following metrics on
the ensemble. We achieved an accuracy of 91.8%, with precisions
reaching from 90.4% to 93.4% and recall reaching from 90.1% to
92.8%, as described in table 1. Compared to the baseline CNN de-
scribed in section 4.4, this is a significant increase, with the added
benefit of retrieving also segmentation information.

Regarding misclassifications, it is noteworthy that for many false
decisions the root cause of error seems to be within the scope of the
localizer (see right column of figure 4). In the top and bottom ex-
amples depicted there, the localizer selected a different cell than
the one originally annotated. Particularly for tumor cells, this is not
always a definite fault, since we do not consider annotation infor-
mation of the direct environment of the annotated cell. If, in a direct
surrounding of a tumor cell, a granulocyte or mitotic cell is present,
the localizer in fact behaves completely correct in presenting this
cell to the classifier. Since we do not aim at finding or classifying
all cells, this is no major drawback. In fact, we inherently prioritize
classification this way: Since we crop around a known sparse event
(mitotic cells or granulocyte), and give this label to our classifier,
we incorporate the knowledge that sparse events are more impor-
tant than others into the loss function.

We think that the acquired data set provides a good fundament
for further approaches in mitosis detection, where in our opinion
the lack of a sufficient amount of samples may limit the methodic
progress.

The acquired data set is also a very interesting candidate for
transfer learning. Assuming that many known CNN-approaches

submitted to Eurographics Workshop on Visual Computing for Biology and Medicine (2017)
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4. Methods

Spatial Transformer Networks (STN), first described by Jaderberg
et. al, provide a learnable method to focus the attention of a classifi-
cation network on a specific subpart of the original image [JSZ∗15].
To achieve this, parameters of an affine transformation matrix θ are
regressed by the network, alongside with the optimization of the
actual classifier.

Spatial Transformer Networks were originally successfully em-
ployed on a distorted MNIST data set, where translation, scale, ro-
tation and clutter were used to increase the difficulty for the detec-
tion task. The approach has shown to be able to – without any prior
knowledge about the actual transform that was applied beforehand
– increase accuracy of the classification network by focusing its at-
tention to the area where the number was present and by compen-
sating for the deformation [JSZ∗15]. The approach can be used in a
joined learning approach, where both the transform and the classi-
fication are learned end-to-end, something that could be described
as a weakly supervised learning approach for the transformation.
The optimization on the MNIST data set is, however, a much eas-
ier task than on real-world data. In a typical patch extracted from a
histology slide, a lot of similar and valid objects may be contained
in the image, and joined optimization suffers from local extrema in
the gradient descend approach.

In this work, we aim to use STN as a method of not only directing
the attention of a classification network to a sub-area of a larger
image, and thus hopefully improving classification performance,
but also as a segmentation approach to derive the information about
where the respective cells are located.

We believe that Spatial Transformer Networks are an ideal can-
didate for this kind of task because they can be used to model two
sources of natural variance into the machine learning process with
a comparatively small overhead in complexity: Scaling and transla-
tion. Scaling is relevant in microscopy for two reasons: Firstly, the
actual magnification of the microscope is dependent on the opti-
cal properties of the ocular, notably on the field number [MMG16].
Secondly, cells differ in size, dependent on their function and the
species they originate from.

Localizer

dense dense

Spatial
Transformer
Network

20 6

256 3

dense dense

Classi er

32x32x3128x128x3

ϑ

Figure 3: Overview of the network. The cell’s position is estimated

by the localizer, which regresses an affine transform applied on the

original image, to feed the classifier with cell images.

4.1. Image Preprocessing

All images were cropped around the cell center in a first processing
step. In a second processing step, we introduce a random translation
∆x, ∆y to the origin area of the input image before cropping, so it
is no longer centered around the cell, i.e. the cell can be anywhere
on the image, with the restriction that the whole cell will be within
the image (see figure 2). From the introduced translation, we can
derive a new ground truth transformation vector

θ =

[
ϑs 0 ϑx

0 ϑs ϑy

]
(1)

where ϑs is the (in our case) fixed scaling vector. The scaling
vector is dependent on the (manually chosen) expected cell size dc.
For our data, prior investigation has shown that all typical cells in
our case are fully contained within an area of 64 px around the cell
center, so with di = 128 px being the length of the input image, we
can derive:

ϑs =
di

dc
= 0.5 (2)

The (relative) coordinate grid for the STN is spaced from -1.0 to
1.0, with 0.0 being the center pixel. The translation elements of the
ground truth transformation vector in eqn. 1 thus become:

ϑ{x,y} =−

2∆{x,y}

di
(3)

4.2. Network layout

Our network consists of three main blocks, as depicted in Figure 3:
The localizer, the classifier and the Spatial Transformer Network.
The localizer is a deep convolutional network with two stacked
convolutional and max-pooling layers, one inception layer and two
fully connected layers. It regresses an estimate θ̂ of the transform
matrix θ.

The classifier is a rather small convolutional neural network with
7 layers, using also convolutional, max-pooling and inception lay-
ers. It outputs a vector of dimension 3, which represents the class
probabilities for the three cell types depicted in Figure 1.

Inception [SLJ∗14] blocks were introduced by Szegedy et al. in
2014, and have been since then widely used in classification tasks.
They are based on the idea that visual information should be pro-
cessed at different scales, and described to be particularly useful for
localization [SLJ∗14]. We incorporated an inception layer, much
like Szegedy, between the initial convolutional and max-pooling
layers and the fully connected layers. In our case, the inception
layer increased convergence and performance in both localizer and
classifier.

4.3. Training

The network was trained with the TensorFlow framework using the
Adam optimizer. Each image was augmented with an arbitrarily
rotated copy of itself to increase robustness of the system. To not

submitted to Eurographics Workshop on Visual Computing for Biology and Medicine (2017)
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assume priors for the cell types, the distributions for the training
were made uniform by random deletion of non-minority classes
within the training set. A five-fold cross-validation was used.

4.3.1. Classification network

In order to achieve good localization and classification perfor-
mance, we propose a three stage process: In a first step, centered
cell images are presented to the network, and the classification-part
of the network is trained for 50 epochs using an initial learning
rate of 10−3. This serves as a good initialization of the network for
later use. As loss function, denoting the (one hot coded) ground-
truth cell class c and the estimated class probabilities ĉ, standard
cross-entropy is used:

lcla =−

3

∑
i=1

ln(ĉi) · ci (4)

4.3.2. Training of the localization network

In the next step, the localization network is trained. For this, the im-
ages were cropped with a random offset from the original image, as
described in section 4.1. Knowledge of this random offset enables
to define a ground truth transformation matrix θ for optimizing the
network. This is used to regress the estimated transformation vector
θ̂ with its elements

θ̂ =

[
ϑ̂1 ϑ̂2 ϑ̂x

ϑ̂3 ϑ̂4 ϑ̂y

]
(5)

We want θ̂ to be an affine transform with no skew and known
scale ϑs. To achieve this, we first derive the scaling of the estimated
transform as:

ϑ̂sx =

√
ϑ̂1

2
+ ϑ̂3

2
(6)

ϑ̂sy =

√
ϑ̂2

2
+ ϑ̂4

2
(7)

Further, we want the diagonal elements ϑ̂1 and ϑ̂4 to be equal
and the off-diagonal elements ϑ̂2 and ϑ̂3 equal with opposite sign,
resulting in a rotation matrix with scale. These constraints compile
into the loss for the localization network:

lloc =
∣∣∣ϑ̂x −ϑx

∣∣∣
2
+
∣∣∣ϑ̂y −ϑy

∣∣∣
2
+
∣∣∣ϑ̂sx −ϑs

∣∣∣
2
+

∣∣∣ϑ̂sy −ϑs

∣∣∣
2
+
∣∣∣ϑ̂1 − ϑ̂4

∣∣∣
2
+
∣∣∣ϑ̂2 + ϑ̂3

∣∣∣
2

(8)

The rotation angle of the transform is a degree of freedom and
thus not covered by the loss. The localization part of the network is
trained for 200 epochs using an initial learning rate of 10−4.

4.3.3. Final refinement of the classification network

Finally, the whole network is trained for 100 epochs, using an ini-
tial learning rate of 10−4. This final step is calculated on the trans-
lated images that were estimated by the localization network and
the STN, and it is using a combined loss:

l = lloc +κ · lcla (9)

This loss thus incorporates knowledge about the proper class of
the image, about the position of the cell within the image and about
the scaling of the patch representing the cell, yet the rotation angle
is not known.

4.4. Baseline comparison

It is hard to compare our results to other authors’ works, because
unlike them, we consider different cell types within the image and
our data set is sparse and not fully annotated. For a baseline com-
parison, we took a 12-layer CNN like the one described by Cireşan
et al. [CGGS13] for Mitosis detection, but aimed at a three class
problem and with an input size of 128x128 px. This classification
network was trained for 200 epochs using an initial learning rate of
10−3.

5. Results and Discussion

There were only minor differences in the results of the individ-
ual test sets in cross-validation, which is why we concatenated
the respective test vectors and calculated the following metrics on
the ensemble. We achieved an accuracy of 91.8%, with precisions
reaching from 90.4% to 93.4% and recall reaching from 90.1% to
92.8%, as described in table 1. Compared to the baseline CNN de-
scribed in section 4.4, this is a significant increase, with the added
benefit of retrieving also segmentation information.

Regarding misclassifications, it is noteworthy that for many false
decisions the root cause of error seems to be within the scope of the
localizer (see right column of figure 4). In the top and bottom ex-
amples depicted there, the localizer selected a different cell than
the one originally annotated. Particularly for tumor cells, this is not
always a definite fault, since we do not consider annotation infor-
mation of the direct environment of the annotated cell. If, in a direct
surrounding of a tumor cell, a granulocyte or mitotic cell is present,
the localizer in fact behaves completely correct in presenting this
cell to the classifier. Since we do not aim at finding or classifying
all cells, this is no major drawback. In fact, we inherently prioritize
classification this way: Since we crop around a known sparse event
(mitotic cells or granulocyte), and give this label to our classifier,
we incorporate the knowledge that sparse events are more impor-
tant than others into the loss function.

We think that the acquired data set provides a good fundament
for further approaches in mitosis detection, where in our opinion
the lack of a sufficient amount of samples may limit the methodic
progress.

The acquired data set is also a very interesting candidate for
transfer learning. Assuming that many known CNN-approaches
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assume priors for the cell types, the distributions for the training
were made uniform by random deletion of non-minority classes
within the training set. A five-fold cross-validation was used.

4.3.1. Classification network

In order to achieve good localization and classification perfor-
mance, we propose a three stage process: In a first step, centered
cell images are presented to the network, and the classification-part
of the network is trained for 50 epochs using an initial learning
rate of 10−3. This serves as a good initialization of the network for
later use. As loss function, denoting the (one hot coded) ground-
truth cell class c and the estimated class probabilities ĉ, standard
cross-entropy is used:

lcla =−

3

∑
i=1

ln(ĉi) · ci (4)

4.3.2. Training of the localization network

In the next step, the localization network is trained. For this, the im-
ages were cropped with a random offset from the original image, as
described in section 4.1. Knowledge of this random offset enables
to define a ground truth transformation matrix θ for optimizing the
network. This is used to regress the estimated transformation vector
θ̂ with its elements

θ̂ =

[
ϑ̂1 ϑ̂2 ϑ̂x

ϑ̂3 ϑ̂4 ϑ̂y

]
(5)

We want θ̂ to be an affine transform with no skew and known
scale ϑs. To achieve this, we first derive the scaling of the estimated
transform as:

ϑ̂sx =

√
ϑ̂1

2
+ ϑ̂3

2
(6)

ϑ̂sy =

√
ϑ̂2

2
+ ϑ̂4

2
(7)

Further, we want the diagonal elements ϑ̂1 and ϑ̂4 to be equal
and the off-diagonal elements ϑ̂2 and ϑ̂3 equal with opposite sign,
resulting in a rotation matrix with scale. These constraints compile
into the loss for the localization network:

lloc =
∣∣∣ϑ̂x −ϑx

∣∣∣
2
+
∣∣∣ϑ̂y −ϑy

∣∣∣
2
+
∣∣∣ϑ̂sx −ϑs

∣∣∣
2
+

∣∣∣ϑ̂sy −ϑs

∣∣∣
2
+
∣∣∣ϑ̂1 − ϑ̂4

∣∣∣
2
+
∣∣∣ϑ̂2 + ϑ̂3

∣∣∣
2

(8)

The rotation angle of the transform is a degree of freedom and
thus not covered by the loss. The localization part of the network is
trained for 200 epochs using an initial learning rate of 10−4.

4.3.3. Final refinement of the classification network

Finally, the whole network is trained for 100 epochs, using an ini-
tial learning rate of 10−4. This final step is calculated on the trans-
lated images that were estimated by the localization network and
the STN, and it is using a combined loss:

l = lloc +κ · lcla (9)

This loss thus incorporates knowledge about the proper class of
the image, about the position of the cell within the image and about
the scaling of the patch representing the cell, yet the rotation angle
is not known.

4.4. Baseline comparison

It is hard to compare our results to other authors’ works, because
unlike them, we consider different cell types within the image and
our data set is sparse and not fully annotated. For a baseline com-
parison, we took a 12-layer CNN like the one described by Cireşan
et al. [CGGS13] for Mitosis detection, but aimed at a three class
problem and with an input size of 128x128 px. This classification
network was trained for 200 epochs using an initial learning rate of
10−3.

5. Results and Discussion

There were only minor differences in the results of the individ-
ual test sets in cross-validation, which is why we concatenated
the respective test vectors and calculated the following metrics on
the ensemble. We achieved an accuracy of 91.8%, with precisions
reaching from 90.4% to 93.4% and recall reaching from 90.1% to
92.8%, as described in table 1. Compared to the baseline CNN de-
scribed in section 4.4, this is a significant increase, with the added
benefit of retrieving also segmentation information.

Regarding misclassifications, it is noteworthy that for many false
decisions the root cause of error seems to be within the scope of the
localizer (see right column of figure 4). In the top and bottom ex-
amples depicted there, the localizer selected a different cell than
the one originally annotated. Particularly for tumor cells, this is not
always a definite fault, since we do not consider annotation infor-
mation of the direct environment of the annotated cell. If, in a direct
surrounding of a tumor cell, a granulocyte or mitotic cell is present,
the localizer in fact behaves completely correct in presenting this
cell to the classifier. Since we do not aim at finding or classifying
all cells, this is no major drawback. In fact, we inherently prioritize
classification this way: Since we crop around a known sparse event
(mitotic cells or granulocyte), and give this label to our classifier,
we incorporate the knowledge that sparse events are more impor-
tant than others into the loss function.

We think that the acquired data set provides a good fundament
for further approaches in mitosis detection, where in our opinion
the lack of a sufficient amount of samples may limit the methodic
progress.

The acquired data set is also a very interesting candidate for
transfer learning. Assuming that many known CNN-approaches
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assume priors for the cell types, the distributions for the training
were made uniform by random deletion of non-minority classes
within the training set. A five-fold cross-validation was used.

4.3.1. Classification network

In order to achieve good localization and classification perfor-
mance, we propose a three stage process: In a first step, centered
cell images are presented to the network, and the classification-part
of the network is trained for 50 epochs using an initial learning
rate of 10−3. This serves as a good initialization of the network for
later use. As loss function, denoting the (one hot coded) ground-
truth cell class c and the estimated class probabilities ĉ, standard
cross-entropy is used:

lcla =−

3

∑
i=1

ln(ĉi) · ci (4)

4.3.2. Training of the localization network

In the next step, the localization network is trained. For this, the im-
ages were cropped with a random offset from the original image, as
described in section 4.1. Knowledge of this random offset enables
to define a ground truth transformation matrix θ for optimizing the
network. This is used to regress the estimated transformation vector
θ̂ with its elements

θ̂ =

[
ϑ̂1 ϑ̂2 ϑ̂x

ϑ̂3 ϑ̂4 ϑ̂y

]
(5)

We want θ̂ to be an affine transform with no skew and known
scale ϑs. To achieve this, we first derive the scaling of the estimated
transform as:

ϑ̂sx =

√
ϑ̂1

2
+ ϑ̂3

2
(6)

ϑ̂sy =

√
ϑ̂2

2
+ ϑ̂4

2
(7)

Further, we want the diagonal elements ϑ̂1 and ϑ̂4 to be equal
and the off-diagonal elements ϑ̂2 and ϑ̂3 equal with opposite sign,
resulting in a rotation matrix with scale. These constraints compile
into the loss for the localization network:

lloc =
∣∣∣ϑ̂x −ϑx

∣∣∣
2
+
∣∣∣ϑ̂y −ϑy

∣∣∣
2
+
∣∣∣ϑ̂sx −ϑs

∣∣∣
2
+

∣∣∣ϑ̂sy −ϑs

∣∣∣
2
+
∣∣∣ϑ̂1 − ϑ̂4

∣∣∣
2
+
∣∣∣ϑ̂2 + ϑ̂3

∣∣∣
2

(8)

The rotation angle of the transform is a degree of freedom and
thus not covered by the loss. The localization part of the network is
trained for 200 epochs using an initial learning rate of 10−4.

4.3.3. Final refinement of the classification network

Finally, the whole network is trained for 100 epochs, using an ini-
tial learning rate of 10−4. This final step is calculated on the trans-
lated images that were estimated by the localization network and
the STN, and it is using a combined loss:

l = lloc +κ · lcla (9)

This loss thus incorporates knowledge about the proper class of
the image, about the position of the cell within the image and about
the scaling of the patch representing the cell, yet the rotation angle
is not known.

4.4. Baseline comparison

It is hard to compare our results to other authors’ works, because
unlike them, we consider different cell types within the image and
our data set is sparse and not fully annotated. For a baseline com-
parison, we took a 12-layer CNN like the one described by Cireşan
et al. [CGGS13] for Mitosis detection, but aimed at a three class
problem and with an input size of 128x128 px. This classification
network was trained for 200 epochs using an initial learning rate of
10−3.

5. Results and Discussion

There were only minor differences in the results of the individ-
ual test sets in cross-validation, which is why we concatenated
the respective test vectors and calculated the following metrics on
the ensemble. We achieved an accuracy of 91.8%, with precisions
reaching from 90.4% to 93.4% and recall reaching from 90.1% to
92.8%, as described in table 1. Compared to the baseline CNN de-
scribed in section 4.4, this is a significant increase, with the added
benefit of retrieving also segmentation information.

Regarding misclassifications, it is noteworthy that for many false
decisions the root cause of error seems to be within the scope of the
localizer (see right column of figure 4). In the top and bottom ex-
amples depicted there, the localizer selected a different cell than
the one originally annotated. Particularly for tumor cells, this is not
always a definite fault, since we do not consider annotation infor-
mation of the direct environment of the annotated cell. If, in a direct
surrounding of a tumor cell, a granulocyte or mitotic cell is present,
the localizer in fact behaves completely correct in presenting this
cell to the classifier. Since we do not aim at finding or classifying
all cells, this is no major drawback. In fact, we inherently prioritize
classification this way: Since we crop around a known sparse event
(mitotic cells or granulocyte), and give this label to our classifier,
we incorporate the knowledge that sparse events are more impor-
tant than others into the loss function.

We think that the acquired data set provides a good fundament
for further approaches in mitosis detection, where in our opinion
the lack of a sufficient amount of samples may limit the methodic
progress.

The acquired data set is also a very interesting candidate for
transfer learning. Assuming that many known CNN-approaches
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