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Abstract

Identification and counting of cells and mitotic figures is a standard task in diagnostic histopathology. Due to the large overall
cell count on histological slides and the potential sparse prevalence of some relevant cell types or mitotic figures, retrieving
annotation data for sufficient statistics is a tedious task and prone to a significant error in assessment. Automatic classification
and segmentation is a classic task in digital pathology, yet it is not solved to a sufficient degree.
We present a novel approach for cell and mitotic figure classification, based on a deep convolutional network with an incorpo-
rated Spatial Transformer Network. The network was trained on a novel data set with ten thousand mitotic figures, about ten
times more than previous data sets. The algorithm is able to derive the cell class (mitotic tumor cells, non-mitotic tumor cells
and granulocytes) and their position within an image. The mean accuracy of the algorithm in a five-fold cross-validation is
91.45 %.
In our view, the approach is a promising step into the direction of a more objective and accurate, semi-automatized mitosis
counting supporting the pathologist.

CCS Concepts
•Computing methodologies → Object detection; Neural networks; •Applied computing → Bioinformatics;

1. Introduction

The assessment of cell types in histology slides is a standard task
in pathology. Especially in tumor diagnostics, determining the rela-
tive amount of mitotic figures, a marker for tumor proliferation and
aggressiveness, is another important task for the diagnostic pathol-
ogist [RRL∗13].

However, evaluation of the complete slide for mitotic figures
(see figure 1) is usually too time consuming in routine diagnostics.
Therefore it is suggested that only 10 high power fields (an area of
assumed equal size used for statistic comparison), presumed to con-
tain the highest density of mitoses, are subjectively chosen by the
pathologist. The area of these fields is, however, not well-defined,
as it depends on the optical properties of the microscope and which
may vary significantly in their content of mitotic figures [MMG16].
The final count thus strongly depends on the randomly but not nec-
essarily representatively selected high power fields thus the result-
ing mitotic count is usually observer-dependent [VvDW∗14]. In ad-
dition, mitotic figures may be very variable in their histologic phe-
notype, which may also lead to inter-observer variability between
pathologists.

The aim of this work is to develop a more objective and accu-
rate, automatized approach to counting of mitotic figures by assist-

ing pathologists in the selection of fields with the highest mitotic
counts and with more constant parameters of mitotic figure identifi-
cation. Detection and annotation of mitotic cells in histology slides
is a well-known task in images processing, and subject of several
challenges in recent years [VvDW∗14, RRL∗13].

Mitosis comprises a number of different phases in the cell cycle
(prophase, metaphase, anaphase, and telophase). In each phase, the
nucleus is shaped differently. This means that the variance in im-
ages showing a mitotic cell is high (see figure 1). On top of that,
there is also atypical mitosis, adding yet another factor of variance
to the picture. However, publicly available databases for mitosis
detection feature a rather low number of mitotic figures (e.g. the
2014 ICPR MITOS-ATYPIA-14 dataset with 873 images, the 2012
ICPR dataset with 326 images [RRL∗13], or the AMIDA13 dataset
with 1083 images [VvDW∗14]), especially for robust detection.

Automatic detection of mitotic figures has been widely per-
formed using the classical machine learning workflow on textural,
morphological and shape features (e.g. [SFHG12,Irs13]).Cireşan et
al. were the first to employ deep learning-based approaches for mi-
tosis detection [CGGS13], yielding significant improvements over
traditional approaches [VvDW∗14]. Yet, deep learning technolo-
gies suffer considerably from insufficient data amounts, as they
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have a large number of trainable parameters and, because of this,
are likely to overfit the data. Particularly in the field of mitosis de-
tection, we assume that detection performance could be improved
if the whole variance of mitotic processes can be captured in the
networks, requesting for a substantial increase in training data for
such networks.

normal tumor cell mitotic tumor cell granulocyte

Figure 1: Examples of cropped cells, slides stained with hema-
toxylin and eosin.

2. Related Work

Typically, the process of object detection is parted into two sub-
processes: Segmentation and classification. This setup is especially
sensible for histology since the images represent a large amount of
data and classification is usually the more complex process com-
pared to segmentation. Sommer et al. used pixel-wise classifica-
tion for candidate retrieval and then object shape and texture fea-
tures for mitotic cell classification [SFHG12]. Irshad used active
contour models for candidate selection and statistical and morpho-
logical features for classification [Irs13]. Those hand-crafted fea-
tures have significant drawbacks, however: Given the often small
data sets, automatic selection of features is prone to random corre-
lation, while using higher-dimensional classification approaches on
the complete set increases overfitting [Lea96]. Further, it is ques-
tionable, if those approaches can represent the variability in shape
and texture of mitotic figures [CDW∗16].

Triggered by the ground-breaking initial works of Lecun
[LBBH98], Convolutional Neural Networks (CNN) have spread
widely in the use for various image classification tasks. CNN-based
recognition algorithms have won all major image recognition chal-
lenges in recent years because of their ability to capture complex
shapes and still remain sensitive to minor variations in the image.
In the field of mitosis detection, CNN-based approaches have been
used for classification [CGGS13], feature extraction [WCRB∗14]
as well as candidate generation [CDW∗16]. Yet, CNNs, through
their inherent ability to capture complex structures, are also prone
to overfitting, a problem which is usually targeted by data augmen-
tation and regularization strategies like dropout and other mech-
anisms or by means of transfer learning. Another regularization
strategy is to constrain the capacity of the approach [Goo16] by
reducing effectively the free parameters of the model. We aim to
attempt this by splitting the problem into an attention task and a
classification task. The general issue however, that the training data
might be a non-representative sample of the classification task and
thus parts of real-world data are not recognized because the data set

does not generalize well, can be best targeted with a bigger training
data set, as it was the base for this work.

3. Material

For this study, digital histopathological images were acquired using
Aperio ScanScope (Leica Biosystems Imaging, Inc., USA) slide
scanner hardware at a magnification of 400x. Candidate patches for
three different cell types (mitotic cells, eosinophilic granulocytes
and normal tumor cells) were annotated by an expert with profound
knowledge on cell differentiation and classified by a trained pathol-
ogist. The cells were selected from histologic images of 12 different
paraffin-embedded canine mast cell tumors, stained with standard
hematoxylin and eosin (H&E). In order to train a deep learning
classifier with a sufficient amount of data, our emphasis was not on
complete annotation of the slides but on finding enough candidates
for the above-mentioned cell types within the image.

More specifically, the emphasis was on finding mitotic cells.
Commonly, in all major related works, the number of mitotic cells
in the data set was proportional to the actual occurrence in the re-
spective slides, as whole slides where annotated, resulting in a rel-
atively low number of mitotic cells. On the contrary, we purposely
selected a similar number of cells from each category to not assume
any priors in distribution.

We acknowledge that this procedure might add a certain bias
in cell selection, and that our dataset might not be representative.
However, this argument can also be made for the case where only
a small number of mitotic figures is available. Further, because of
the high inter-rater variability in mitosis expert classifications, we
assume that an unbiased ground truth is hard to retrieve and a mi-
nor bias by image pre-selection can be tolerated. Finally, we do not
target at finding all mitotic cells, but rather to guide the patholo-
gist in finding a representative part of the slide and to thus reduce
variability in expert grading.

In the data set, we have approx. 37,800 single annotations of cells
of the three different types (about 10,400 granulocytes, 10,800 mi-
totic figures and 16,600 normal tumor cells). The majority of cells
was rated by the pathologist to be normal tumor cells, however also
a significant amount of mitotic cells and eosinophil granulocytes
was annotated.

4. Methods

Spatial Transformer Networks (STN), first described by Jaderberg
et. al, provide a learnable method to focus the attention of a classifi-
cation network on a specific subpart of the original image [JSZ∗15].
To achieve this, parameters of an affine transformation matrix θ are
regressed by the network, alongside with the optimization of the
actual classifier.

Spatial Transformer Networks were originally successfully em-
ployed on a distorted MNIST [LBBH98] data set, where transla-
tion, scale, rotation and clutter were used to increase the difficulty
for the detection task. The approach has shown to be able to – with-
out any prior knowledge about the actual transform that was applied
beforehand – increase accuracy of the classification network by fo-
cusing its attention to the area where the number was present and by
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Figure 2: Image preprocessing. The offset ∆x, ∆y is set randomly
while keeping the cell within the image.

compensating for the deformation [JSZ∗15]. The approach can be
used in a joined learning approach, where both the transform and
the classification are learned end-to-end, something that could be
described as a weakly supervised learning approach for the trans-
formation. The optimization on the MNIST data set is, however,
a much easier task than on real-world data. In a typical patch ex-
tracted from a histology slide, a lot of similar and valid objects may
be contained in the image, and joined optimization suffers from lo-
cal extrema in the gradient descend approach.

In this work, we aim to use STN as a method of not only directing
the attention of a classification network to a sub-area of a larger
image, and thus hopefully improving classification performance,
but also as a segmentation approach to derive the information about
where the respective cells are located.

We believe that Spatial Transformer Networks are an ideal can-
didate for this kind of task because they can be used to model two
sources of natural variance into the machine learning process with
a comparatively small overhead in complexity: Scaling and transla-
tion. Scaling is relevant in microscopy for two reasons: Firstly, the
actual magnification of the microscope is dependent on the opti-
cal properties of the ocular, notably on the field number [MMG16].
Secondly, cells differ in size, dependent on their function and the
species they originate from.

4.1. Image Preprocessing

All images were cropped around the cell center in a first processing
step. In a second processing step, we introduce a random translation
∆x, ∆y to the origin area of the input image before cropping, so it
is no longer centered around the cell, i.e. the cell can be anywhere
on the image, with the restriction that the whole cell will be within
the image (see figure 2). From the introduced translation, we can
derive a new ground truth transformation vector

θ =

[
ϑs 0 ϑx
0 ϑs ϑy

]
(1)

Localizer

dense dense

Spatial
Transformer
Network

20 6

256 3

dense dense

Classifier

32x32x3128x128x3

ϑ

Figure 3: Overview of the network. The cell’s position is estimated
by the localizer, which regresses an affine transform applied on the
original image, to feed the classifier with cell images.

where ϑs is the (in our case) fixed scaling vector. The scaling
vector is dependent on the (manually chosen) expected cell size dc.
For our data, prior investigation has shown that all typical cells in
our case are fully contained within an area of 64 px around the cell
center, so with di = 128 px being the length of the input image, we
can derive:

ϑs =
di

dc
= 0.5 (2)

The (relative) coordinate grid for the STN is spaced from -1.0 to
1.0, with 0.0 being the center pixel. The translation elements of the
ground truth transformation vector in eqn. 1 thus become:

ϑ{x,y} =−
2∆{x,y}

di
(3)

4.2. Network layout

Our network consists of three main blocks, as depicted in Figure 3:
The localizer, the classifier and the Spatial Transformer Network.
The localizer is a deep convolutional network with two stacked
convolutional and max-pooling layers, one inception layer and two
fully connected layers. It regresses an estimate θ̂ of the transform
matrix θ.

The classifier is a rather small convolutional neural network with
7 layers, using also convolutional, max-pooling and inception lay-
ers. It outputs a vector of dimension 3, which represents the class
probabilities for the three cell types depicted in Figure 1.

Inception [SLJ∗14] blocks were introduced by Szegedy et al. in
2014, and have been since then widely used in classification tasks.
They are based on the idea that visual information should be pro-
cessed at different scales, and described to be particularly useful for
localization [SLJ∗14]. We incorporated an inception layer, much
like Szegedy, between the initial convolutional and max-pooling
layers and the fully connected layers. In our case, the inception
layer increased convergence and performance in both localizer and
classifier.
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4.3. Training

The network was trained with the TensorFlow framework using the
Adam optimizer [KB14]. Each image was augmented with an arbi-
trarily rotated copy of itself to increase robustness of the system. To
not assume priors for the cell types, the distributions for the train-
ing were made uniform by random deletion of non-minority classes
within the training set. A five-fold cross-validation was used.

4.3.1. Classification network

In order to achieve good localization and classification perfor-
mance, we propose a three stage process: In a first step, centered
cell images are presented to the network, and the classification-part
of the network is trained for 50 epochs using an initial learning
rate of 10−3. This serves as a good initialization of the network for
later use. As loss function, denoting the (one hot coded) ground-
truth cell class c and the estimated class probabilities ĉ, standard
cross-entropy is used:

lcla =−
3

∑
i=1

ln(ĉi) · ci (4)

4.3.2. Training of the localization network

In the next step, the localization network is trained. For this, the im-
ages were cropped with a random offset from the original image, as
described in section 4.1. Knowledge of this random offset enables
to define a ground truth transformation matrix θ for optimizing the
network. This is used to regress the estimated transformation vector
θ̂ with its elements

θ̂ =

[
ϑ̂1 ϑ̂2 ϑ̂x

ϑ̂3 ϑ̂4 ϑ̂y

]
(5)

We want θ̂ to be an affine transform with no skew and known
scale ϑs. To achieve this, we first derive the scaling of the estimated
transform as:

ϑ̂sx =

√
ϑ̂1

2
+ ϑ̂3

2
(6)

ϑ̂sy =

√
ϑ̂2

2
+ ϑ̂4

2
(7)

Further, we want the diagonal elements ϑ̂1 and ϑ̂4 to be equal
and the off-diagonal elements ϑ̂2 and ϑ̂3 equal with opposite sign,
resulting in a rotation matrix with scale. These constraints compile
into the loss for the localization network:

lloc =
∣∣∣ϑ̂x−ϑx

∣∣∣2 + ∣∣∣ϑ̂y−ϑy

∣∣∣2 + ∣∣∣ϑ̂sx −ϑs

∣∣∣2+∣∣∣ϑ̂sy −ϑs

∣∣∣2 + ∣∣∣ϑ̂1− ϑ̂4

∣∣∣2 + ∣∣∣ϑ̂2 + ϑ̂3

∣∣∣2 (8)

The rotation angle of the transform is a degree of freedom and

thus not covered by the loss. The localization part of the network is
trained for 200 epochs using an initial learning rate of 10−4.

4.3.3. Final refinement of the classification network

Finally, the whole network is trained for 100 epochs, using an ini-
tial learning rate of 10−4. This final step is calculated on the trans-
lated images that were estimated by the localization network and
the STN, and it is using a combined loss:

l = lloc +κ · lcla (9)

This loss thus incorporates knowledge about the proper class of
the image, about the position of the cell within the image and about
the scaling of the patch representing the cell, yet the rotation angle
is not known.

4.4. Baseline comparison

It is hard to compare our results to other authors’ works, because
unlike them, we consider different cell types within the image and
our data set is sparse and not fully annotated. For a baseline com-
parison, we took a 12-layer CNN like the one described by Cireşan
et al. [CGGS13] for Mitosis detection, but aimed at a three class
problem and with an input size of 128x128 px. This classification
network was trained for 200 epochs using an initial learning rate of
10−3.

5. Results and Discussion

There were only minor differences in the results of the individ-
ual test sets in cross-validation, which is why we concatenated
the respective test vectors and calculated the following metrics on
the ensemble. We achieved an accuracy of 91.8%, with precisions
reaching from 90.4% to 93.4% and recall reaching from 90.1% to
92.8%, as described in table 1. Compared to the baseline CNN de-
scribed in section 4.4, this is a significant increase, with the added
benefit of retrieving also segmentation information.

Regarding misclassifications, it is noteworthy that for many false
decisions the root cause of error seems to be within the scope of the
localizer (see right column of figure 4). In the top and bottom ex-
amples depicted there, the localizer selected a different cell than
the one originally annotated. Particularly for tumor cells, this is not
always a definite fault, since we do not consider annotation infor-
mation of the direct environment of the annotated cell. If, in a direct
surrounding of a tumor cell, a granulocyte or mitotic cell is present,
the localizer in fact behaves completely correct in presenting this
cell to the classifier. Since we do not aim at finding or classifying
all cells, this is no major drawback. In fact, we inherently prioritize
classification this way: Since we crop around a known sparse event
(mitotic cells or granulocyte), and give this label to our classifier,
we incorporate the knowledge that sparse events are more impor-
tant than others into the loss function.

We think that the acquired data set provides a good fundament
for further approaches in mitosis detection, where in our opinion
the lack of a sufficient amount of samples may limit the methodic
progress.
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Figure 4: Random choice of correct and false image classifications
alongside with selected focus areas, as picked by the localizer. The
probabilities denoted are those for the classes: P(G)=granulocytes,
P(M)=mitosis, P(T)=normal tumor cells

approach name precision recall f1-score
CNN baseline granulocytes 0.847 0.898 0.872

mitotic figures 0.822 0.853 0.837
normal t. cells 0.916 0.859 0.887
avg / total 0.870 0.868 0.869

CNN-STN granulocytes 0.912 0.925 0.918
mitotic figures 0.891 0.889 0.890
normal t. cells 0.932 0.924 0.928
avg / total 0.915 0.915 0.915

Table 1: Overall classification results of the proposed network.

The acquired data set is also a very interesting candidate for
transfer learning. Assuming that many known CNN-approaches
suffer from networks that partially do not have well defined filters
due to lack of training data, in-domain transfer learning from our
mitosis data to other, fully labeled data sets like the competition
data sets should be beneficial.

6. Summary

In this work the potential of Spatial Transformer Networks within
a convolutional neural network approach, applied to segmentation
and classification tasks in digital histology images, has been shown.

The presented approach focuses the attention of a classification
network to a part of the original image where most likely a sparsely
distributed cell type (mitosis or granulocyte) can be found.

Further, we have acquired and introduced a data set of cell im-
ages from different classes of H&E stained histology images, with
at least ten thousand pathologist-rated samples per class.

Modeling the localization and classification process indepen-
dently but with a joint training cuts down on computational com-

plexity of the overall system. We believe that this work is an im-
portant step towards a microscope-embeddable algorithm that can
help the pathologist in counting of mitotic figures by finding a rep-
resentative area within a histology slide, an algorithm which could
reduce inter-rater-variability and thus improve overall quality of tu-
mor grading systems.
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[CGGS13] CIREŞAN D. C., GIUSTI A., GAMBARDELLA L. M.,
SCHMIDHUBER J.: Mitosis Detection in Breast Cancer Histology Im-
ages with Deep Neural Networks. International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI) 16, Pt
2 (2013), 411–418. 1, 2, 4

[Goo16] GOODFELLOW I.: Deep Learning. The MIT Press, Cambridge,
Massachusetts, 2016. 2

[Irs13] IRSHAD H.: Automated Mitosis Detection in Histopathology us-
ing Morphological and Multi-channel Statistics Features. Journal of
Pathology Informatics 4, 1 (2013), 10. 1, 2

[JSZ∗15] JADERBERG M., SIMONYAN K., ZISSERMAN A., ET AL.:
Spatial transformer networks. In Advances in Neural Information Pro-
cessing Systems (2015), pp. 2017–2025. 2, 3

[KB14] KINGMA, D, BA, J: Adam: A method for stochastic optimiza-
tion. arXiv.org (2014). arXiv:1401.4983v4. 4

[LBBH98] LECUN Y., BOTTOU L., BENGIO Y., HAFFNER P.: Gradient-
based Learning Applied to Document Recognition. In Proceedings of the
IEEE (November 1998), vol. 86, pp. 2278–2324. 2

[Lea96] LEARDI R.: Genetic Algorithms in Feature Selection. In Genetic
Algorithms in Molecular Modeling. Elsevier, 1996, pp. 67–86. 2

[MMG16] MEUTEN D. J., MOORE F. M., GEORGE J. W.: Mitotic
Count and the Field of View Area. Veterinary Pathology 53, 1 (Jan.
2016), 7–9. 1, 3

[RRL∗13] ROUX L., RACOCEANU D., LOMÉNIE N., KULIKOVA M.,
IRSHAD H., KLOSSA J., CAPRON F., GENESTIE C., LE NAOUR G.,
GURCAN M. N.: Mitosis Detection in Breast Cancer Histological Im-
ages - An ICPR 2012 Contest. Journal of Pathology Informatics 4
(2013), 8. 1

[SFHG12] SOMMER C., FIASCHI L., HAMPRECHT F. A., GERLICH
D. W.: Learning-based Mitotic Cell Detection in Histopathological Im-
ages. In Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012) (2012), IEEE, pp. 2306–2309. 1, 2

[SLJ∗14] SZEGEDY C., LIU W., JIA Y., SERMANET P., REED S.,
ANGUELOV D., ERHAN D., VANHOUCKE V., RABINOVICH A.: Go-
ing Deeper with Convolutions. arXiv.org (Sept. 2014). arXiv:1409.
4842v1. 3

[VvDW∗14] VETA M., VAN DIEST P. J., WILLEMS S. M., WANG
H., MADABHUSHI A., CRUZ-ROA A., GONZALEZ F., LARSEN A.
B. L., VESTERGAARD J. S., DAHL A. B., SCHMIDHUBER J., GIUSTI
A., GAMBARDELLA L. M., TEK F. B., WALTER T., WANG C.-W.,
KONDO S., MATUSZEWSKI B. J., PRECIOSO F., SNELL V., KITTLER
J., DE CAMPOS T. E., KHAN A. M., RAJPOOT N. M., ARKOUMANI
E., LACLE M. M., VIERGEVER M. A., PLUIM J. P. W.: Assessment
of Algorithms for Mitosis Detection in Breast Cancer Histopathology
Images. arXiv.org, 1 (Nov. 2014), 237–248. arXiv:1411.5825v1.
1

[WCRB∗14] WANG H., CRUZ-ROA A., BASAVANHALLY A.,
GILMORE H., SHIH N., FELDMAN M., TOMASZEWSKI J., GONZALEZ
F., MADABHUSHI A.: Mitosis Detection in Breast Cancer Pathology
Images by Combining Handcrafted and Convolutional Neural Network
Features. Journal of Medical Imaging 1, 3 (Oct. 2014), 034003. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

http://arxiv.org/abs/1401.4983v4
http://arxiv.org/abs/1409.4842v1
http://arxiv.org/abs/1409.4842v1
http://arxiv.org/abs/1411.5825v1

