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Abstract

Intraoperative brain shift during neurosurgical procedures is a well-known phenomenon caused by gravity,
tissue manipulation, tumor size, loss of cerebrospinal fluid (CSF) and use of medication. For the use of
image guided systems, this phenomenon greatly affects the accuracy of the guidance. During the last several
decades, researchers have investigated how to overcome this problem. The purpose of this paper is to present a
review of publications concerning different aspects of intraoperative brain shift especially in a tumor resection
surgery such as intraoperative imaging systems, quantification, measurement, modeling and registration
techniques. Clinical experience of using intraoperative imaging modalities, details about registration and
modeling methods in connection with brain shift in tumor resection surgery are the focuses of this review.
In total, 126 papers regarding this topic are analysed in a comprehensive summary and are categorized
according to thirteen criteria. The result of the categorization is presented in an interactive web tool. The
consequences from the categorization and trends in the future are discussed at the end of this work.

I. Introduction

In neurosurgery, one of the major challenges is
localization of the pathological tissue and rele-
vant anatomical structures within the brain dur-
ing surgery. The requirement for high accuracy
arises due to the complex three-dimensional
structure and the intraoperative deformation
of the brain. Image-Guided Neurosurgical Sys-
tems (IGNS) help to overcome this challenge.
Such systems register preoperative image data
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to an intraoperative coordinate system of the
patient, in order to display the rendering of
the brain structure and position of the region
of interest. In the literature, numerous bene-
fits arising from the use of IGNS are reported.
These are, for example integration/fusion of
MRI/CT images and functional data, accurate
localization of lesions, reduction in surgical
time, the possibility of minimally invasive cra-
nial openings and decreased complication rates
after surgery and during the stay in the in-
tensive care unit [1, 2, 3]. To guarantee the
precise localization of pathological tissue dur-
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ing surgery, a high rate of correlation between
the preoperative image data and the patient
anatomy is necessary. However, this correla-
tion is strongly limited by the intraoperative
deformation of brain tissue, the so called “brain
shift" phenomenon. The extent of brain shift
was already described in 1986 by Kelly et al.
[4]. It was observed as the displacement of
small steel reference balls which were inserted
along the stereotaxis surgical viewline before
craniotomy. With the wide-spread use of IGNS
in the operating room, brain shift gained and
continues to gain more importance. Studies re-
port, that brain shift is a highly complex spatio-
temporal phenomenon with a wide variety of
causes, such as tissue removal during surgery,
tissue swelling, loss of cerebrospinal fluid and
use of brain retractors [5, 6, 7]. The complex
nature of the brain deformation appears both
on the cortical surface and in the deep brain
structure which does not always correlate to
the direction of gravity [8]. As intraoperative
brain shift is a dynamic process and shows
time dependency [9], the assumption in com-
mercial IGNS that a patient’s head and brain is
a rigid body [1, 8, 10] is only valid for the initial
step of the surgical procedure, but not for the
intraoperative situation. As a consequence, the
correlation of structures identified in the pre-
operative image data and in the actual image
data becomes incorrect, reducing the accuracy
of the surgery. Thus, introperative brain shift
may be the most significant limitation of IGNS
[11].

II. Methods and Contribution

The purpose of this work is to review differ-
ent aspects of brain shift under craniotomy,
especially for tumor resection. To ensure com-
prehensive coverage, we first searched for pub-
lications with the term "intraoperative brain
shift" in PubMed, IEEE-Xplore, and Google.
The search was further restricted with the ex-
act phrase "brain shift", to avoid publications
which only mention the words "brain" or "shift"
but not in the context of "brain shift". In order
to cover all relevant aspects of this topic, we

searched for publications which related to at
least one of the following aspects - measure-
ment, quantification, compensation, modeling
or registration. In this work, we only consider
intraoperative brain shift under craniotomy, es-
pecially for lesion removal surgery. Thus, pub-
lications focusing on Deep Brain Stimulation
(DBS), which is a minimally invasive therapeu-
tic procedure, and papers dealing with Diffu-
sion Tensor Imaging (DTI), which is often used
for preoperative planning but does not fit the
real time constraint in lesion removal surgery,
are excluded.

To ensure that the term "intraoperative brain
shift" is distinct and no other papers are pub-
lished with its synonyms such as "intraopera-
tive brain deformation", "intraoperative brain
distortion", and "intraoperative cerebral surface
deformation", we also searched for papers on
PubMed, IEEE-Xplore, and Google with these
synonyms but without the term "intraoperative
brain shift". No additional papers were found.

In this work, we reviewed papers published
before February 2016. In total, approximately
2600 publications were found. The aim is to
provide a review which covers several aspects
of the topic, while ensuring the popularity, top-
icality and meaningfulness of the selected pa-
pers. Therefore, we do not only include all pub-
lications in Pubmed and IEEE-Xplore but also
the first 100 most relevant papers in Google
Scholar. Google Scholar sorts the publications
via Page Rank algorithm [12], which means the
directly and indirectly referenced publications
have the highest rank. After we deleted the du-
plicated publications and papers which do not
contain "brain shift" and "brain deformation"
in the abstract or use these term as keyword,
126 papers remained. This database with 126
papers forms the basis of this review.

In this review, we focus on the clinical ex-
perience of intraoperative imaging modalities
and compensation methods of brain shift espe-
cially in tumor resection surgery. First, we sur-
vey the state-of-the-art intraoperative imaging
systems, which are commonly used to correct
brain deformation. Since the measurement and
causes of brain shift for tumor resection are
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not the focus of this review, these aspects are
only introduced briefly. Different compensa-
tion methods are presented considering math-
ematical aspects and compared to each other.
To conclude the discussion, the trends and con-
sequences from the categorizations of the re-
viewed publications are discussed. To avoid
overlap with the review published by Gerard
et al. [13] which is focused on the causes and
measurement of brain shift, we categorized the
literature from a mathematical and algorithmi-
cal point of view. The thirteen categories of
interest are brain shift compensation strategy,
global transformation model, local transforma-
tion model, computational platform, registra-
tion basis, optimization method, similarity met-
ric, intraoperative modality, constitutive model
type, mesh element, quantification object, vali-
dation, and treatment 1.

In total, 116 publications are grouped
by the defined thirteen categories. With
the support of the Technical University
of Munich, the categorization of the 116
publications is presented as an interactive
web tool (http://livingreview.in.tum.de/
intraoperative_brain_shift/). The remain-
ing ten papers could not be classified in the
above categories: two publications describe the
clinical use of IGNS [14] and its application
to correct for brain shift [15]. A third publica-
tion discusses the biomechanical behavior of
brain tissue [16], a fourth which proposes the
Total Lagrangian formulation of Finite Element
method for computing organ deformation in
[17]. Two papers focus on the determination of
the position and orientation of an ultrasound
image in the preoperative image coordinate
system [18, 19]. A seventh publication aim
at the reconstruction of superficial vessels of
brain which can be used to compensate for the
brain shift by [20], an eighth presents a regis-
tration and interactive visualization framework
based on a remote high-end computer with a

1The categories in [13] are physical, surgical, biological,
intraoperative imaging, other, registration and modeling.
This categorization focuses on the causes of brain shift
rather than on the algorithmic approaches to identify and
correct for brain shift.

maximum of graphics capacity in a two page
abstract [21]. A ninth [22] presented an image-
based re-registration scheme between preop-
erative MR and intraoperative US to provide
accurate rigid patient registration and finally
a review paper with the focus on soft tissue
modeling [23].

III. Clinical Experience with the

State-of-the-art Intraoperative

Imaging Modalities

Since commercial IGNS assumes the patient’s
head is a rigid body and the intraoperative
navigation is based on preoperative CT- or MR-
datasets, intraoperative brain shift, which is a
non-rigid deformation of the brain tissue, influ-
ences the accuracy of the surgery result. If the
surgeon does not have real-time image data of
the complex anatomical structure of the brain,
the benefit of IGNS may turn into an increased
risk for the patient. Commercial intraopera-
tive imaging techniques, such as intraopera-
tive magnetic resonance imaging (iMR) and
intraoperative ultrasound (iUS), provide the
neurosurgeon with the essential intraoperative
image data. The clinical experience with image
guided neuronsurgery systems combined with
intraoperative imaging devices, either iMR or
iUS, have been reported [9, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]
and will be reviewed in the following section.

i. Intraoperative MR

It is a very challenging task to determine the
magnitude and direction of brain tissue de-
formation during surgery. The introduction
of intraoperative magnetic resonance imaging
into neurosurgery in 1994 [35] opened new
opportunities to increase the accuracy of neu-
rosurgical procedures by providing frequent
image updates with high soft tissue resolution
for the neurosurgeon. These images can be
used to estimate the intraoperative brain shift
in real time.

The most common use of intraopertive MR
updates image data during neurosurgery, to
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Table 1: A summary of the clinical result by using iMRI for tumor resection

Publication Author Year Contribution Number of Patient Result
[33] Hadani et al. 2001 iMR development 20 Total resection of all low grade tumors
[31] Knauth et al. 1999 Clinical usage evaluation 41 Complete resection was diagnosed in

15 cases, but was performed in 31
cases with iMRI

[35] Hall et al. 2000 iMR development 30 Complete resection in 24 cases
[30] Hall et al. 2000 Clinical usage evaluation 30 Complete resection in 24 cases
[29] Nimsky et al. 2001 Clinical usage evaluation 16 Complete resection in 14 cases
[26] Black et al. 1999 Clinical usage evaluation 31 In more than one third of the cases,

tumor residual was detected with
iMRI where the surgeon considered a

complete removel without iMRI

assess the extent of the tumor resection and
to identify surrounding functional structure
to minimize morbidity after the intervention
[28]. One of the first experiences with iMR
was reported in [38]. The authors described
the surgical setting of intraoperative MR in a
twin operating theater, known as the "Heidel-
berg concept", combining a conventional op-
erating room with a radio-frequency-shielded
operating room, containing an open low-field
0.2T MRI scanner with a static magnetic field.
Twenty-seven patients underwent neurosur-
gical procedures, such as biopsy and tumor
resection in this iMR operating environment.
The surgical interventions were performed in
the standard operating room and with intra-
operative control provided at intervals using
the iMR scanner. The image quality of stan-
dard sequences, such as T1 and T2, was accept-
able. However, compared to a scanner with su-
perconducting magnets, the scanning time re-
quired to achieve comparable results is longer,
because the number of acquisitions has to be
increased [38]. The benefits of such a system
include accurate localization and targeting of
the tumor with minimal resection of normal
brain tissue, observation of brain shift in se-
rial images and information redundancy when
using fiducial markers.

Other clinical studies that either describe the
development and application of iMR in neuro-
surgical procedures [35, 33] or evaluate the clin-
ical usage and outcomes of iMR[26, 29, 31, 35]
have shown that the integration of iMRI in
a neurosurgical procedure helps the surgeon
to reduce the tumor residual and leads to a
high rate of complete resection. A Summary is
given in Tab. 1. Hadani et al. [33] implemented

a concept similar to [38], and report elimina-
tion of inaccuracies from brain shift. Black et
al. [26] found that their low-field, 0.5T iMR
system, which is designed with coils in two
separate but communicated cryostats, offered
several advantages combined with image guid-
ance systems. Knauth et al. [31] showed that
the integration of low-field iMR in intracranial
high-grade glioma operations increased the ex-
tent of the tumor resection significantly. The
safety, efficacy and functionality of low- (0.2T)
and high-field (1.5T) iMR scanners were ana-
lyzed by [30, 35]. They demonstrated similar
experiences as [26] and [38] by using iMR in
various neurosurgical procedures such as brain
biopsy, tumor resection and cyst drainage. In
addition, the high-field system also benefits
from functional techniques including MR spec-
troscopy, functional MRI, MR angiography,
chemical shift imaging and diffusion-weighted
imaging. Both technologies allow compensa-
tion for intraoperative brain shift [35, 30] and
lead to increased extent of tumor resection [9].
Nimsky et al. [29] analyzed the feasibility of
the image update procedure with iMR in a
group of patients undergoing craniotomy for
brain tumor surgery. The tumors were micro-
scopically completely removed in 14 out of 16
cases. Thus, iMR image data compensate for
the effects of brain shift with a high degree of
accuracy. Updating the neuronavigation sys-
tem with intraoperative MR images seems to
be the most reliable way to compensate for
intraoperative brain shift [29].

ii. Intraoperative US

Ultrasound has been used as an intraoperative
instrument since the 1980s [27]. In contrast to
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intraoperative MR, the most important advan-
tage of intraoperative US is that it provides
inexpensive image data in real-time [25, 29].
The mapping of preoperative MR and intraop-
erative US image data can be used to evalu-
ate the effects of registration error and tissue
movement on the overall accuracy of IGNS
[39]. Lunn et al. validated the usability of
iUS in three in vivo porcine experiments [42].
The quantitative analyses show that coregis-
tered iUS could measure the intraoperative dis-
placement effectively and could be used with
a computational model. Due to its poor image
quality, iUS has not entered common use in
neurosurgery. However, with improved image
quality and new technical developments such
as three-dimensional ultrasound, iUS imaging
has seen a revival in the last years. White et
al. [41] designed, constructed and tested an
intraoperative transcranial ultrasound monitor
via shear mode in ten healthy human subjects,
which utilizes shear wave propagation instead
of longitudinal waves through the skull. Lin-
ear regression analysis shows that the local-
ization of brain structures with the new shear
mode ultrasound monitoring system correlates
well with MRI-based localization. The intro-
duction of three-dimensional ultrasound has
increased the value of neuronavigation sub-
stantially, making it possible to update intra-
operative images several times during surgery
and thereby minimize the problem of brain
shift [24, 34]. For example, Gronningsaeter
et al. [36] describe a system that integrates a
high-end three-dimensional ultrasound system
into a neuronavigation system - the SonoWand.
This system can be used not only as a stand-
alone ultrasound, but also as a conventional
preoperative MRI- or CT-based neuronaviga-
tion system. Keles et al. [25] reported that the
coregistration accuracy of preoperative MR and
intraoperative US achieved 1.36mm. Ohue et al.
[27] evaluated brain shift effectively by compar-
ing real-time US images with corresponding
preoperative images. Compared to iMR sys-
tems, iUS is more time effective [34] because
the intraoperative images of patients are ac-
quired in situ. The expenditure of time for

one intraoperative US data set is only 5 min-
utes [24]. Beltagy et al. [40] demonstrate the
benefits of intraoperative ultrasound during
resection of fourth ventricular tumors in chil-
dren. They were able to detect and correct
tissue shifts at any time during step wise tu-
mor resection, update new scans and verify
new tumor size by a neuro-navigated pointer.
In general, the fusion of intraoperative two-
or three-dimensional ultrasound images with
MRI makes perception of available informa-
tion easier both by providing updated image
data and an extended overview of the oper-
ating field during surgery [32]. It is reliable,
accurate, easy to use and provides a contin-
uous real-time feedback without interrupting
surgery [43].

IV. Measurement of

Intraoperative Brain Shift

Since intraoperative brain shift is the most sig-
nificant source of error in image-guided cran-
iotomy, the understanding of this phenomenon
is a crucial step towards its modeling and com-
pensation. Two different approaches are com-
monly used to measure and quantify magni-
tude and direction of brain shift. One is direct
measurement which compares the preopera-
tive MR image data with the data acquired
directly on the brain surfaces of the patient
during the surgery. A coagulation device such
as the ACUSTAR may be used [1, 44][45]. The
second approach is to analyze the pre- and in-
traoperative image data based on registration
procedures [5, 8, 46, 47, 48, 49]. If using pre-
and intraoperative MR data, gradient echo im-
ages are acquired. That is because of the high
resolution and high readout gradient [8, 47]
of gradient echo image. These result in rela-
tively little geometric distortion in the readout
direction caused by B0 inhomogenity [47].

Independent of the availability of intraoper-
ative image data, various questions concerning
the magnitude, direction and sources of brain
shift have been investigated by several groups
[1, 5, 8, 9, 11, 44, 46, 47, 48, 49]. Table 2 catego-
rizes these ten publications according the imag-
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ing modality, global transformation method,
registration basis, similarity measure and quan-
tification objective. The first quantitative stud-
ies of brain shift analyzed the magnitude and
direction of the deformation of the dura and
brain surface between imaging and surgery
[44], at two time points separated nearly by
one hour after the dura opening but before the
tumor resection [1] or before and after dura
opening [45]. With the development and appli-
cation of iMR and iUS, quantitative analysis of
subcortical deformation was facilitated. Mau-
rer et al. [46] used a 1.5T iMR to investigate
the magnitude of brain shift during and after
surgery. An extention of this work was pub-
lished by Hill et al. [47] which provides more
quantitaive results and includes the analysis
of 3D deformation maps. Low-field iMR was
used in [5, 9] to compare pre- and intraopera-
tive three-dimensional images, allwoing evalu-
ation and visualization of the extent of cortical
surface and subcortical structure. Hartkens et
al. [8] investigated the predictability of brain
shift by comparing the iMR images at the start
and end of the surgery. Deformation patterns
were analyzed quantitatively with respect to
the magnitude and direction. In order to evalu-
ate and analyze the maximum deformation for
the on cortical surface and in the subcortical
structure, different strategies were applied in
[48]. Letteboer et al. [49] used iUS data and
compared it to the preoperative MR data in
order to analyze the magnitude and direction
of brain shift. This study also shows that the
three-dimensional ultrasound data is feasible
to measure the intraoperative brain shift. An
exception to the above categorization is a ret-
rospective study in 2005 [11]. In this study, the
authors determine influences of various factors
such as tumor size, periventricular location,
patient age, prior surgery or radiation ther-
apy, patient positioning, use of medication (e.g.
mannitol) and length of operation time, on in-
traoperative brain shift. Pre- and postoperative
gadolinium enhanced T1-weighted MRI data
are statistically compared to validate whether
the factors mentioned above correlate with the
success of tumor resection using image-guided

techniques.

i. Result of Quantitative Analysis of
Brain Shift Phenomenon

As the measurement and causes of brain shift
is not the focus of this review, only a short
summary of the quantitative analysis of brain
shift will be provided. The interested reader
is directed to [13] for a detailed overview of
causes and quantification.

Brain shift is a slow, time dependent phe-
nomenon [5] and changes continually during
the surgery [9]. A significant deformation can
be observed after the dura is opened due to
release of intracranial pressure alone. The mag-
nitude of this effect is typically a few mm’s (e.g.
up to 10 mm in [1, 44] and 13.4 mm in [49]). Af-
ter the dura is opened , the displacement of the
brain increases continuously but slowly [44].
Of course tumor resection and tissue manipu-
lation increase the magnitudes of cortical and
deep tumor margin deformations dramatically.
Deformation after resection is highly variable
and depends on the volume of tissue removed
[11] with values as high as 23.8 mm reported
[5]. Statistical analysis shows, brain shift does
not show significant correlation with patient
age, mannitol dose, fluid volume change, par-
tial pressure of arterial carbon dioxide, prior
surgery or radiation therapy [1, 11, 5]. In con-
trast to cortical surface and deep tumor margin,
midline shift is much smaller: in some cases
of the study by [47] the midline does not shift.
Even tumor resection causes only minor defor-
mation in the midline [46].

After the dura opening, the direction of in-
traoperative brain shift is both a sinking of the
brain surface as well as a bulging [1]. The re-
lationship between patient position and brain
shift is complex. The study by [5] claims that
the direction of brain shift was influenced pri-
marily by patient and head positioning, but it
has no significant effect on the amount of brain
shift. The measurement by [49] shows that the
angle between the main direction of shift and
gravity is on average 60◦, with a maximum of
88◦.
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Table 2: A summary of publications regarding measurement and quantification of intraoperative brain shift

Publication Author Year Modality Global Transformation Registration Basis Similarity Measurement Quantification Object
[1] Maurer et al. 1998 Coagulation Rigid feature-based Magnitude, Direction, Risk Factor
[5] Nimsky et al. 2000 iMR Rigid feature-based Euclidean Distance Magnitude, Direction, Risk Factor
[8] Hartkens et al. 2003 iMR Non-rigid intensity-based Mutual Information Magnitude
[9] Trantakis et al. 2003 iMR Non-rigid intensity-based Mutual Information Magnitude, Direction
[11] Benveniste and Germano 2005 Risk Factor
[46] Maurer et al. 1998 iMR Non-rigid intensity-based Mutual Information Magnitude
[47] Hill et al. 1999 iMR Non-rigid intensity-based Mutual Information Magnitude, Direction
[48] Hastreiter et al. 2004 iMR Rigid feature-based Mutual Information Magnitude, Direction, Risk Factor
[44] Hill et al. 1997 Coagulation Rigid Magnitude
[49] Letteboer et al. 2005 iUS Rigid Mutual Information Magnitude, Direction
[45] Dorward et al. 1998 Coagulation Magnitude, Direction

V. Compensation for

Intraoperative Brain Deformation

As one of the most important error sources
in IGNS, intraoperative brain shift must be
compensated in order to increase the accu-
racy of neurosurgery, especially in the case
of non-minimally invasive craniotomy, because
the extent of brain shift depends primarily on
the size of the craniotomy and the duration
of the surgery [50]. Basically, there are two
different strategies to compensate for intraop-
erative brain shift. The first is to use regis-
tration techniques based on intraoperative im-
age data. Modalities such as iMR, iUS but
also Laser Range Scanner (LRS) and Stereo
Vision are used to acquire intraoperative im-
age data [50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. Usu-
ally, LRS and Stereo Vision are used to acquire
the intraoperative cortical surface deformation
which is then integrated into a pre-computed
patient specific biomedical model in order to
estimate the volumetric deformation. How-
ever, these papers [51, 52, 53, 58, 67, 69, 70] are
still categorized as registration-based method,
because they only presented the registration
approaches which register the intraoperative
surface data either with preoperative MR or
between data acquired at different time points.
The model-based purpose is not described di-
rectly in these works, therefore the purpose of
these works is not clear without any additional
knowledge. Nevertheless, it should be kept
in mind, once LRS or Stereo Vision are used
as intraoperative modalities, a model-based
strategy is commonly pursued. An alterna-
tive strategy is to build a computational model

(e.g. a finite element model) of the brain based
on constitutive constraints, which describe the
stress-strain response of the tissue under var-
ious loading conditions. This model is com-
bined with sparse intraoperative image data to
update preoperative images [48, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. A
summary of the compensation techniques for
brain shift is shown in Table 3. Various aspects
of image registration-based and model-based
compensation strategies are explained in the
following section.

i. Fundamentals of Non-rigid Regis-
tration of Medical Images

The fundamental challenge of compensation
for intraoperative brain shift is to find the op-
timal geometric transformation T : (x, y, z) 7→
(x′, y′, z′) which maps the source image to the
target image. Since the brain consists of elastic
tissue, finding the optimal image to image or
image to model, non-rigid registration method
considering boundary conditions, such as cran-
iotomy size and tumor size, is the most crucial
task.

Non-rigid registration methods can be cate-
gorized by their transformation model, registra-
tion basis or similarity measurement. Different
techniques which are found in our literature
database are introduced here briefly.

i.1 Transformation Model

There are two ways to model a non-rigid reg-
istration. The first method is to model the
transformation in a parametric fashion by us-
ing a set of unknowns and the second is to
describe the deformation at every voxel in a
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non-parametric fashion. Typically, the number
of parameters used in the parametric models
is much smaller than the number of voxels in
the non-parametric models.

Parametric Transformation Models Para-
metric models based on splines such as Thin
Plate Splines and Free Form Deformation with
B-splines are commonly used. Assume a set of
corresponding feature points exist in the source
and target image. The location of the feature
points in the target image can be mapped onto
its counterparts in the source image either by
using splines to interpolate or approximate the
displacements. Splines provide a smooth ap-
proximation of the displacement field between
the feature points. For the transformation func-
tion T : Rd → Rd with d as dimensionality of
the images to register, the interpolation condi-
tion can be written as

T(pi) = qi, i = 1, . . . , n (1)

where pi ∈ Rd and qi ∈ Rd denote the location
of the feature points in the source and target
image.

• Radial Basis Functions (RBF) are defined
as radially symmetric functions R(x) =
R(‖x‖) in which the value depends only
on the Euclidean distance of the argument
from the origin c [88]. RBFs construct a
linear function space which depends on
the position of the known data points to
an arbitrary distance measure [89].
• Thin Plate Splines [90] is a sub-family of

Radial Basis Functions. The concept of
Thin Plate Splines is based on the theory
of deformation of thin elastic plates, where
the bending forces are orthogonal to the
surface. The superposition of the bending
forces must be zero, otherwise the thin
plate will shift.
The Thin Plate Spline is defined as a linear
combination of the sum of m basis func-
tions and a weighted sum of a set of n
arbitrary Radial Basis Functions:

t(pi) =
m

∑
k=1

αkφk(pi) +
n

∑
j=1

βjR(r) (2)

where φk(x) is the k-th basis function, α
and β are vectors with coefficients which
define the Thin Plate Splines. The Radial
Basis Function of the Thin Plate Spline
R(r) is defined as

R(r) =

{
r2 ln r in 2-D
r in 3-D

(3)

with r =
∥∥pi − pj

∥∥
2 as the distance be-

tween the control points and the point
under consideration. Inserting Equation
2 into Equation 1 and solving for the
coefficients α = (αᵀ

1 , . . . , αᵀ
m)

ᵀ and β =
(βᵀ

1 , . . . , βᵀ
n)

ᵀ yields a Thin Plate Spline
transformation. To guarantee the unique-
ness of the solution the following con-
straints formulated in Equations 4 and 5
must be considered: Since the bending
forces are orthogonal to the control points
and the sum of the forces is zero, the coef-
ficients β must sum up to zero and their
inner products with the coordinates of the
control points are also zero.

n

∑
j=1

βj = 0 (4)

n

∑
j=1

βjφk(pi) = 0, k = 1 . . . m (5)

Thus, Equation 2 can be expressed in ma-
trix form as(

R P
Pᵀ 0

)(
β
α

)
=

(
Q
0

)
(6)

where R ∈ R3n×3n is a symmetric distance
matrix, and P ∈ R3n×3m is a matrix given
by Pik = φk(pi), and Q = (qᵀ

1 , . . . , qᵀ
n)

ᵀ.
Once the coefficients α and β are known,
each point on the source image can be
transformed via Equation 2. This equa-
tion can be interpreted as follows: In a
three dimensional case, the first term is
the linear part which defines a volume
that best matches all control points, the
second term corresponds to the bending
forces provided by n control points.
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• The basic idea of Free Form Deformation
is to deform an object by manipulating the
underlying mesh of control points. The re-
sulting deformation controls the shape of
the three dimensional object and produces
a smooth transformation. It is a power-
ful tool for modeling three dimensional
deformable objects introduced by [91]. A
popular choice to interpolate the defor-
mation between control points is to use
tri-variant B-spline tensor products as the
deformation function. This approach was
first proposed by [92]. Denote the domain
of the image volumes as Ω = {(x, y, z)|0 ≤
x < X, 0 ≤ y < Y, 0 ≤ z < Z} and let Φ
denote a nx × ny × nz uniform mesh of
control points φi,j,k. The Free Form Defor-
mation can be written as the three dimen-
sional tensor product of the one dimen-
sional cubic B-splines [92].

T(x, y, z) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n

(7)

where i = b x
nx
c − 1, j = b y

ny
c − 1, z =

b z
nz
c − 1, u = x

xn
− b x

nx
c, v = y

ny
−

b y
ny
c, w = z

nz
− b z

nz
c and Bl represents the

l-th basis function of the B-spline:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6

B3(u) = u3/6

The choice of a mesh with adequate spac-
ing is the most important question in this
approach. Since the control points Φ act as
parameters of the Free Form Deformation
based on B-splines, the resolution of the
mesh has a major influence on the degree
of the deformation and defines the num-
ber of degrees of freedom and therefore
the computational complexity.

Non-parametric Transformation Model
By definition, Optical Flow is image velocity

approximating image motion from sequential
time-ordered images. In the context of medical
image processing, it has been applied to
motion detection and motion compensation.
The class of optical flow registration covers
a very large number of methods. A detailed
comparison of various Optical Flow methods
has been given by [93].

One formulation of Optical Flow used as a
transformation model to register pre- and in-
traoperative MRI images of the brain has been
proposed by [54] as follows: Assume the image
intensity I of a point (x, y, z) on a deformable
image at a time point t is constant for a short
duration of time δt. If a vector (u, v, w) repre-
sents a velocity of the point and the intensity
of the point does not change over the time δt,
then

I(x, y, z, t) =

I(x + uδt, y + vδt, z + wδt, t + δt)
(8)

Assuming the image intensity varies smoothly
with x, y, z and t, Equation 8 can be formulated
with a first-order Taylor expansion.

I(x, y, z, t) ≈

I(x, y, z, t) + uδt
∂I
∂x

+ vδt
∂I
∂y

+ wδt
∂I
∂z

+ δt
∂I
∂t
(9)

Dividing by δt, the constraint equation to solve
for (u, v, w) can be obtained:

Ixu + Iyv + Izw + It = 0 (10)

where Ix, Iy, Iz and It denote ∂I
∂x , ∂I

∂y , ∂I
∂z and

∂I
∂t , respectively. Since the brain deforms slowly
[5] after the dura is opened, brain shift can be
modeled as a slow motion which can be well
describe with the Optical Flow method. How-
ever, even for the sudden deformation caused
by skull and dura opening, this method is insuf-
ficient, and certainly cannot be used to model
deformation caused during surgical resection.

i.2 Registration Basis

The registration basis is a measure of the align-
ment of the images. Usually, images can be
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aligned either with a feature-based approach
or with an intensity-based method. The aim of
feature-based registration approaches is min-
imizing the distance between corresponding
features, such as points, lines or surfaces in
the source and target images. This means that
feature-based registration approaches require
the extraction of the features as well as the
estimation of correspondences [94]. Since the
features are extracted before the registration,
segmentation errors will propagate into later
stages. These errors cannot be corrected in the
registration step.

While feature-based registration algorithms
can reliably align boundaries, quantify the
change of certain anatomical structures with
high precision, and are used both for mono-
and multi-modality registration, intensity-
based registration algorithms use the intensi-
ties throughout the whole images and there-
fore yield deformation values based on the
image content also in regions where it is dif-
ficult to detect distinct features. The idea of
intensity-based registration approaches is the
optimization of a similarity metric such as
Sum of Squared Differences (SSD), Normal-
ized Cross Correlation (NCC), and Normalized
Mutual Information (NMI) measuring the de-
gree of shared information of the image inten-
sities. As an advantage, intensity-based meth-
ods carry out registration without any fiducial
markers and without explicit segmentation of
corresponding features. However, the choice
of a suitable similarity measure is not trivial,
especially when used for multi-modality regis-
tration.

i.3 Similarity Measure

Similarity measure is a function used to quan-
tify the similarity between two objects. In a
feature-based approach, the most intuitive sim-
ilarity measure is based on feature points. As-
suming that the correspondence of two given
point sets p and q are known a priori, the point-
based similarity measure can be defined as the
squared distance of the points. However, in
practice the correspondence of the points is

usually unknown. Aligning surfaces can over-
come this problem. Anatomically relevant sur-
faces are first segmented manually or automati-
cally from the source and target images. These
surfaces are then described by point clouds.
Since the correspondences of the points are
unknown, the Iterative Closest Point (ICP) al-
gorithm [95] can be used, because it assumes
only that a correspondence between each point
in the source point set and target point set exist.
The similarity measure is defined as [94]

S = −∑
i
‖yi − T(pi)‖2 (11)

where

yi = min
qj∈q

{∥∥qj − T(pi)
∥∥2
}

(12)

With correspondences estimated with Equa-
tion 12, the point sets are registered by mini-
mizing Equation 11. Another similarity mea-
sure used in feature-based registration is the
Chamfer Similarity Function. This function
was developed and described by [96] as a tech-
nique for finding the best fit of edge points
from two different images by minimizing a
generalized distance between them. The algo-
rithm takes as input binary images represent-
ing the edges. A chamfer distance map is then
computed corresponding to the source image.
This is an image where every non-edge voxel
is given a value approximating the Euclidean
distance to the closest edge voxel. The target
image is then superimposed onto the distance
map and translated and rotated in an iterative
manner until the root mean square of the vox-
els in the distance map corresponding to edge
points in the target image is at a minimum.

The similarity measures in intensity-based
approaches measure the degree of shared infor-
mation of the image intensities. The simplest
is the Sum of Squared Differences(SSD) be-
tween the intensities in the source image and
the target image. The use of this similarity mea-
sure supposes that the source image and target
image have the same characteristics. This is a
very restrictive assumption, thus the Sum of
Squared Differences is only used to register
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images from the same modality. A more gen-
eral formulation of similarity measure is the
Normalized Cross Correlation (NCC) which
assumes a linear relationship between the two
images. Because of its accuracy and robustness
for aligning intermodal images as well as its
invariance to changes in overlapping regions,
Mutual Information has become one of the
most important similarity measures. The un-
derlying idea of this similarity measure is to
interpret the feature space of the image inten-
sities as the joint probability distribution. It
makes no assumption of the relationship be-
tween image intensities in source and target im-
ages and can be seen as a metric that measures
how good one image "describes" the other. To
avoid any dependence on the amount of im-
age overlap, Normalized Mutual Information
(NMI) has been suggested [94].

ii. Compensation Methods Guided by
Intraoperative Image Data

One strategy to compensate for intraoperative
brain shift in tumor resection surgery is to reg-
ister intraoperative two- or three-dimensional
image data captured with iMR, iUS, LRS or
Stereo Vision with the preoperative MR data.
While a standard rigid body registration is suf-
ficient to initialize the alignment between the
pre- and intraoperative MR images, a sophis-
ticated multimodal registration must be per-
formed as the initial step, when using iUS.
This is due to the fact that the MR and US
images have very different characteristics and
resolution, which makes the registration more
challenging. An automated rigid registration
method was shown in [61] to align the three-
dimensional US and MR images before per-
forming the non-rigid registration of three-
dimensional US time sequences. To more com-
pletely accommodate the nature of US images,
a generalized correlation ratio is chosen as the
similarity measure. Phantom study and clin-
ical evaluation shows the registration error is
below 1.5 mm.

In order to capture the elastic deformation
of the brain, a group of researchers of Vander-

bilt University use the Laser Range Scanner to
acquire the intensity and geometric informa-
tion of the cortical surface [51, 52, 58, 67]. The
process begins with the acquisition of a point-
cloud by standard principles of laser/camera
triangulation. In addition, a digital image of
the field of view is captured and the coor-
dinates are assigned to the point cloud data
[51, 52]. By using an intensity-based algorithm
based on the maximization of Mutual Infor-
mation (MI), the intraoperative LRS images
are registered to the preoperative segmented
cortex, which is expressed as a textured point
cloud by using ray casting. Radial basis func-
tions are used here as the local transformation
model. This method, which relied on intensity-
based non-rigid registration to register the two
dimensional images, is able to track the brain
shift with an accuracy of 1.6 mm in a phantom
study. However, since parts of the segmented
cortex visible in the preoperative images may
not be visible in the intraoperative images and
vice-versa, the purely intensity-based registra-
tion method as proposed in [51] and [52] is
not very robust. Ding et al. [58] use a feature-
based algorithm. Landmarks on the surface
blood vessels are manually selected from the
two-dimensional and three-dimensional LRS
image. A Robust Point Matching (RPM) al-
gorithm proposed in [98], which is a modi-
fied Iterative Closest Point (ICP) method using
Thin Plate Splines (TPS) as the transformation
model, is performed on three-dimensional LRS
images. In contrast to the method proposed
in [51, 52], this feature-based method is appro-
priate for relatively large brain displacements.
The comparison of the results with 2D and 3D
images based on five data sets shows that the
method with 2D image data is more suitable
than the one with 3D range images. The al-
gorithm proposed in [67] differs from others
in the following ways: The final deformation
field is computed iteratively across spatial res-
olutions and different scales of transformation
by creating a standard image pyramid. After
the scale of the transformation is adapted for
each resolution, the final deformation field is
computed as the sum of deformation fields. In
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Table 3: A summary about the compensation techniques for brain shift

Modality

iMR [54, 59, 60, 64, 75, 48, 71, 80, 66, 84, 85]
iUS [50, 55, 56, 57, 61, 62, 63, 68]

laser Range Scanner [51, 52, 53, 58, 76, 72, 77, 78, 79, 83, 67, 97]
Stereo Vision [52, 53, 69, 70, 81, 82, 86, 87]

Compensation Strategy
image registration based [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70]

model-based [48, 72, 73, 74, 71, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 97, 87]

Global Transformation
rigid [61, 82, 66]

non-rigid [50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 48, 71, 75, 76, 77, 78, 69, 70, 79, 80, 81, 82, 65,
83, 66, 67, 84, 85, 68, 86, 97, 87]

Transformation Model

thin plate spline [50, 53, 57, 58, 76, 68, 97, 87]
radial based function [51, 52, 72, 66, 67]

spline [77, 78]
free form deformation [59, 60, 61, 62, 63, 64]

optical flow [54]

Registration Basis
intensity-based [48, 51, 52, 54, 55, 59, 60, 61, 62, 63, 72, 79, 71, 80, 66, 67, 86]
feature-based [50, 56, 57, 58, 75, 76, 77, 78, 48, 71, 81, 65, 83, 66, 84, 85, 68, 97, 87]

hybrid [53, 64, 69, 70]

Optimization Technique

gradient descent [52, 61, 64, 72]
powell [59, 60, 79, 48, 71]

expectation
maximization

[58, 76, 65, 83, 66]

levenberg-marquadt [53, 62]
multi-resolution [54, 55, 63, 67]

C
omputational Platform GPU [48, 59, 60]

cluster computer [80]

Similarity Measurement

euclidean distance [57, 58, 76, 77, 78, 83, 48, 71, 81]
(normalized) mutual

information
[48, 51, 52, 59, 60, 63, 64, 72, 79, 48, 71, 82, 66, 67, 86]

(normalized) correlation
coefficient

[55, 75, 80, 85]

sum of squared
difference

[53, 61, 62]

chamfer similarity [56]
correlation ratio [61]

gaussian mixture model [65, 66]
energy function [84, 97]

Validation
phantom [50, 51, 52, 53, 56, 61, 62, 63, 72, 75, 77, 78, 69, 70, 79, 65, 67, 68]
clinical [51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 72, 76, 79, 48, 71, 83, 80, 81, 66, 84, 97, 87]
animal [61, 62]

the phantom study and the in vivo test, this
registration approach produces subpixel error,
even if the differences of the images is large
due to the resection. However, manual inter-
ventions to find the region of interest are still
necessary for the in vivo case. Another exam-
ple of a flexible surface registration approach
for optical imaging, either LRS or Stereo Vi-
sion, was proposed in [53]. The approach com-
bines image intensities, texture information,
and sparse landmark matching to perform the
surface registration. Although validation with
one clinical data set shows that this method
has a precision around 2 mm, which was in the
same range as the rigid registration error of the
neuronavigation system before tissue deforma-
tion [53], its robustness and the reproducibility
of the result need to be proved.

To capture the deformation not only on
the cortical surface, but also in the deeper
brain structure, several approaches using iUS
as an intraoperative modality are presented
[50, 55, 56, 57, 22, 61, 62, 63, 68]. A set of ho-
mologous landmarks in the ultrasound image
volume and the MR or CT volume are used

to estimate the non-linear transformation in
[50] and [68]. Small circles around the ventricle
cavity on a phantom [50] or fiducial balloons
[68] are chosen as landmarks. TPS interpola-
tion is performed between the landmark points.
Reinertsen et al. [56, 57] presented two MR-US
registration algorithms that use the segmented
blood vessels from both preoperative MR an-
giograms (MRA) or gadolinium enhanced MR
images and intraoperative Doppler US images
in their work. One algorithm compares the
chamfer distance map (described in [96]) of
segmented blood vessels, where the vessels are
segmented with a vesselness filter. The second
applies the ICP algorithm based on selected
points on the segmented blood vessels. A se-
ries of simulation experiments, phantom study
in [56] and clinical validation of the method in
[57] shows, that this method is able to recover
large portions of non-linear deformations even
when only a very limited region of the MR im-
age is covered by the US acquisition. Blood ves-
sels could be seen as powerful features for the
registration of preoperative MR and intraoper-
ative US images [57]. However, the landmarks
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in a feature-based approach need to be selected
manually and the correspondence of the point
set should be known a priori. Therefore, the
registration process cannot be automated. A
sophisticated method proposed in [65] makes
the knowledge about the correspondence of the
point set redundant. The so called Coherent
Point Drift (CPD) method aligns the feature
point set as a probability density estimation,
where one point set presents the Gaussian Mix-
ture Model (GMM) centroids and the other
represents the data point. The phantom study
shows that this approach resolves almost 80%
of brain deformation in the region of interest.
An intensity-based algorithm overcomes the
correspondence problem in the feature-based
method. Letteboer et al. [63] shows in two
tumor resection cases that an intensity-based
non-rigid registration method based on free
form deformation using B-splines and using
normalized Mutual Information as the similar-
ity measure improved the volume overlap of
the tumor from an average of 76% to 96%. An-
other intensity-based approach has been pro-
posed in [61] and [62], where a “uniform elas-
tic" assumption of the brain tissue is made.
Instead of using nMI, the authors optimized
Sum of Squared Differences (SSD) with gra-
dient descent optimization. This algorithm is
able to recover an important part of the defor-
mations and features a smooth deformation,
despite the noisy nature of the US images [61].
The validation result shows that the SSD cri-
terion is well adapted for the registration of
successive images in the time sequence [62].
In general, intensity-based US-MR non-rigid
registration poses a significant challenge due
to the low Signal to Noise Ratio (SNR) of the
ultrasound images and different image char-
acteristics and resolution of US and MR im-
ages. Taking these into account, Arbel et al.
[55] developed a strategy to generate pseudo
US images from the preoperative MR based
on anatomical structures, which generate suffi-
ciently strong acoustic signals. After anatomi-
cal structures like white matter, ventricles and
cortical grey matter are segmented from the
MR image, a radial gradient operator is used

to generate gradient magnitude data to simu-
late boundaries apparent in typical US images
[55]. The nonlinear pseudo US and US im-
age registration is performed with Normalized
Cross Correlation (NCC) as a similarity mea-
surement. A multiresolution scheme is used to
speed up the registration process. Quantitative
results in 12 surgical cases show correction for
brain shift is up to 87% at the tumor boundary.

The intensity-based nonlinear registration
method using optical flow as transformation
model and multiresolution to accelerate the
iterative scheme has also been adapted for
monomodal MR image registration e.g. in [54].
With this algorithm, a maximum cortical sur-
face shift of 11 mm was estimated and a sub-
surface shift around the ventricle of 4 mm. This
results are in the same range as the quantifica-
tion results introduced in Section IV. The clini-
cal validation indicated the proposed method
is capable of capturing surface and sub-surface
shifts of the brain [54]. In order to reduce the
computation time of an intensity-based non-
rigid registration algorithm, Soza et al. [59, 60]
introduced an intensity-based approach with
computations done on graphics cards. The im-
age data were deformed using the Free Form
Deformation method and the deformation of
the space is proposed with three-dimensional
Bézier functions. Because this kind of Free
Form Deformation contains inherent elasticity,
it is a good choice for describing the move-
ments of soft tissue [59]. Evaluation with pa-
tient data shows this approach recovers the
brain deformation within a precision range of
1.5 mm - 2.0 mm [59, 60]. However, in some
pathological cases, Free Form Deformation is
not flexible enough [60]. Also, the intensity-
based registration of MR images can fail in
a tumor resection case because of a lack of
intensity correspondences. To avoid this prob-
lem, Hartkens et al. [64] proposed a hybrid
registration algorithm, where the feature infor-
mation is incorporated into the intensity-based
method in order to include higher level infor-
mation about the expected deformation. In this
work nMI is linearly combined with the fea-
ture similarity measure. Either point or surface
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information are detected semi-automatically
both in the reference and source images. The
tissue deformation is then performed as Free
Form Deformation using B-spline interpolation
between the control points. Another approach
to address the registration of pre- and post-
resection MR images has been proposed in [66].
In this work, the pre- and post-resection MR
images are first aligned rigidly to each other by
maximizing the Mutual Information of salient
structures enhanced by the joint saliency map.
Difference of Gaussian (DoG) key points are
then detected and clustered on the contiguous
matching area of the aligned images. The dis-
placement is then estimated by warping the
clustered DoG key points with Radial Base
Functions. The evaluation shows this method
is able to correct the brain shift induced by
small (average distance error < 1 pixel) and
large (average distance error < 1.2 pixel) resec-
tion, while four other intensity-based registra-
tion methods failed in these cases.

iii. Modeling of Intraoperative Brain
Deformation

The key issue in the model-based compensa-
tion method is to model the brain and the brain
shift phenomenon in an adequate way. The
anatomy and physiology of the human brain
shows that the brain is a very complex organ
consisting of gray matter, white matter, dura,
pia membrane, and four ventricles which are
filled with cerebrospinal fluid (CSF). The stiff-
ness of the brain is almost the same as gel,
plastic or pasta [99, 100, 101]. To compute an
accurate brain model, which can be updated in-
traoperatively, two essential decisions are typi-
cally made - which constitutive model should
be used to describe the brain tissue and which
type and size of mesh element should be used
to compute the brain model. Table 4 shows
a summary of the categorization of the brain
modeling issue.

iii.1 Constitutive Models

Constitutive models are used to quantify the
behavior of soft tissue under loading condi-

tions. The choice of the biomechanical model
must take into account prior knowledge of
patient-specific brain structure and the indi-
vidual dynamics of brain shift. To date, four
biomechanical models have been presented in
the literature: linear elastic, non-linear elastic,
viscoelastic and biphasic. The simplest consti-
tutive model is the linear elastic model, which
assumes a linear relationship between stress
and strain [75, 80, 82, 74, 102, 103, 104, 105,
106, 107, 108, 109, 110, 85, 84]. While linear
elasticity is a very good model for bone tissue,
it does not serve very well for soft tissue me-
chanics for two reasons. First, most soft tissues
undergo strains that qualify as large deforma-
tion. Second, the relationship between stress
and strain for soft tissues is generally nonlinear
[143]. Therefore in theory, a nonlinear elastic
model is more suitable to model brain defor-
mation [112, 113, 114]. As a classic model for
time dependent effects, the viscoelastic model
[10, 115, 116, 117, 118, 119, 120, 121, 122] is able
to model the time dependency of the brain shift
phenomenon because it consideris the strain
history in addition [16]. The model combines
the aspects of both fluid behavior, which is suit-
able to model the CSF, and solid behavior of
the brain tissue. Once we consider brain as a
composition of porous solid matrices (e.g. soft
tissue) with fluid (e.g. CSF) filling the pores,
the biphasic model [73, 72, 81, 124, 125, 126,
127, 128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 42, 83] may provide
an adequate constitutive model. The mechanics
of this model depend both on the solid matrix
deformation and on the movement of the fluid
in and out of the pores during the deformation
[143]. This is exactly the situation when the
brain deforms under a craniotomy.

iii.2 Mesh Element

A three-dimensional biomechanical brain
model is commonly computed with Finite El-
ement (FE) analysis. It must be ensured that
the complexity of the brain shift is reflected
by updating the model. Thus, the quality of
the mesh is an important issue in this prob-
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Table 4: A summary of publications about brain shift modeling

Constitutive Model

linear elastic [75, 80, 82, 74, 102, 103, 104, 105, 106, 107, 108, 109, 110, 85, 84, 97, 111]
non-linear elastic [112, 113, 114]

viscoelastic [10, 115, 116, 117, 118, 119, 120, 121, 122, 123]
biphasic [73, 72, 81, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,

141, 142, 42, 83]

Mesh Element

tetrahedral [72, 73, 74, 75, 125, 126, 48, 71, 80, 81, 124, 115, 129, 130, 131, 132, 133, 103, 135, 136, 137,
138, 139, 140, 141, 142, 104, 106, 118, 119, 10, 120, 107, 113, 114, 121, 108, 109, 110, 83, 85,

84, 122, 97, 134, 111]
quadrilateral [102, 128]
pentahedral [105]
hexahedral [82, 105, 112, 113, 114, 115, 116, 117, 118, 119, 121]

Validation
clinical [102, 115, 125, 126, 124, 127, 128, 129, 130, 131, 132, 133, 138, 139, 141, 142, 104, 117, 105,

106, 118, 119, 107, 109, 110, 83, 97]
phantom [128, 111]
animal [134, 137, 42]

lem. As the most elementary and flexible mesh
element, tetrahedrons [72, 73, 74, 75, 125, 126,
48, 71, 80, 81, 124, 115, 129, 130, 131, 132, 133,
103, 134, 135, 136, 137, 138, 139, 140, 141, 142,
104, 106, 118, 119, 10, 120, 107, 113, 114, 121,
108, 109, 110, 83, 85, 84, 122] are able to simu-
late the dynamical process of brain deforma-
tion and are therefore commonly used. On the
other hand, as the time to estimate the brain
shift in neurosurgery is limited, the Finite El-
ement Model (FEM) of the brain should be
able to be updated in real time. The speed
of the FEM directly depends on the number
of degrees of freedom the system has. Since
the accuracy achieved with numerous tetrahe-
drons can be attained with only a handful of
hexahedrons, hexahedral mesh elements are
frequently applied [82, 105, 112, 113, 114, 115,
116, 117, 118, 119, 121]. However, the flexibility
of such a model is not as high as the FEM gener-
ated with tetrahedrons. Compromises between
the flexibility and quality are pentahedral ele-
ments used in [105] as well as a combination
of tetrahedrons and hexahedrons proposed in
[113, 114, 115, 119, 121]. When only a two-
dimensional mesh is generated, quadrilateral
elements [102, 128] are sufficient.

iv. Model-Based Compensation Tech-
niques

The idea of a model-based compensation ap-
proach is to first pre-compute a patient-specific
brain model-based on the preoperative MR
data, then combine this model with intraop-
erative data to update the preoperative image.

Commonly, the widely accepted iMR tech-

nology estimates the deformation field only
at sparse locations, because MR suffers from
lower resolution, lack of image structure, noise,
and intensity artifacts. Clatz et al. [80] and
Drako et al. [85] presented a robust model
driven brain shift compensation algorithm that
relies on a sparse displacement field estimated
with a block matching method and a linear
elastic model. The same constitutive model is
also used in [74, 75, 84], in which the displace-
ment field is estimated on iMR images based
on selected key features. Another example is
the work from Hastreiter et al. [48, 71] where
a model-based approach using adaptively re-
fined nonlinear intensity-based registration is
proposed. Since a huge number of interpo-
lation operations must be performed in this
method, the algorithms are implemented us-
ing openGL on GPUs to accelerate the image
update procedure.

Since iMR is very time consuming, model
driven algorithms based on iMR images often
have difficulties fitting within the intraopera-
tive time constrain. In contrast, optical imaging
(LRS and Stereo Vision) is more suitable. Gen-
erally, the patient specific volumetric model is
computed with preoperative MR images be-
fore the surgery. Surface images are acquired
with LRS [76, 77, 78, 79, 72, 73, 83, 97] or Stereo
Vision [81, 82, 86, 87, 97]. After the surface im-
ages are registered with the model non-rigidly,
the volumetric model is deformed considering
the boundary conditions. To obtain the defor-
mation in deep brain structure, visible cortical
surface displacement is applied directly as a
boundary condition (e.g.[76, 77, 78, 81, 82]).
However, the registration inaccuracy is prop-
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agated into the model updating step without
any correction. To characterize the geometry
and intensity properties of the brain surface in
an effective way, Miga et al. [79] use a LRS sys-
tem that generates three-dimensional intensity-
encoded point cloud data. When compared
to point-based and iterative closest point reg-
istration methods, textured LRS registration
results demonstrated an improved accuracy in
both phantom and in vivo experiments. The
volumetric deformation was calculated by ana-
lyzing a biphasic FEM. Dumpuri et al. [72, 73],
Sun et al. [83] and Chen et al. [111] determined
a distribution of possible conditions, such as
gravity direction, CSF loss and effect of drugs,
in order to generate a deformation atlas. The
optimum of the deformation predicted by the
deformation atlas and measured by the corti-
cal surface is used as the boundary condition
to update the pre-computed patient specific
biphasic brain model. Between 70% and 80% of
the shift could be corrected with this method.

VI. Discussion

The review presented in this study shows that
intraoperative MR is used widely to compen-
sate for brain shift because it has good soft
tissue resolution and neurosurgeons are famil-
iar with MR images. In an invited review [28],
G. E. Keles summarized the benefits and dis-
advantages of iMR. It enables image updates
and the evaluation of the extent of tumor re-
section during surgery. Additionally, it also
can be used to identify surrounding functional
structures to minimize morbidity and to com-
pensate for the effect of brain shift. Generally,
iMR increases the clinical outcome of tumor
resection under craniotomy. The length of hos-
pital stay decreased from 9.4 days (when no
iMRI was used) to 5.1 days using iMRI. On
the other side, MR-compatible instruments are
necessary in the operating room [28, 38]. The
main limitation of intraoperative MR is its cost
including the surgical equipment and modi-
fication of the operating room [28]. In addi-
tion, longer operation times must be accepted
[31, 38]. Each intraoperative scan with iMR

takes 15min and the patient needs to be trans-
ferred between imaging position and operating
position [29]. Therefore, the iMR images can
not be updated frequently. However, serial
iMRI without frequent updates is not able to
present and quantify the dynamic character of
brain shift, because brain shift is a time depen-
dent phenomenon affected by various forces,
which magnify or neutralize each other [37].
Thus, the use of this complex, expensive and
time consuming intraoperative imaging modal-
ity [29] remains limited with respect to the
compensation for brain shift.

An inexpensive way to update the intraop-
erative image in real time is to use iUS. Al-
though the real time visualization of different
anatomical structures of the brain such as tu-
mor remnants, vessel structures, skull base and
the intraoperative repeatability of iUS offer con-
siderable benefits with respect to improved in-
traprocedural information [24], this technology
still has not gained more acceptance than in-
traoperative MR. This lack of adoption may be
attributed to the fact that neurosurgeons are
more familiar with imaging technologies such
as MR and CT rather than US [24, 43]. Addi-
tionally, US images are often difficult to inter-
pret because echogenic structures cannot reli-
ably differentiate normal from abnormal tissue
[25]. Ultrasound technology also has poor spa-
tial and contrast resolution, and suffers from
artifacts or dropout from blood and air [36, 43].
The development of three-dimensional ultra-
sound has increased the popularity of this tech-
nology in the recent years. However, one must
always keep in mind that compared to iMR, the
use of iUS is not contact-less, which increases
the risk of an infection.

The magnitude and direction of brain shift
are generally measured in two ways: either
directly in the physical space of the patient or
by registering the pre- and intraoperative im-
ages. The risk factors and causes of brain shift
have been estimated via statistical analysis (e.g.
in [11]). As shown in Section IV, intraopera-
tive brain shift is a very complex phenomenon.
Each tumor group shows unique patterns of
brain shift [45]. The quantitative analysis of
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brain shift shows that brain shift is a small
deformation, but the introduction of surgical
tools and the removal of tissues near the region
of interest may introduce large local deforma-
tions. The displacement field is shaped like a
bowl, with the largest displacement near the
center of the craniotomy [1]. The deformation
on the cortical surface and deep tumor margin
is larger than the midline shift, but the shift
of the cortical surface is uncorrelated to the
deformation of the deep tumor margin [48].
Based on the fact that the magnitude of dis-
placement for resection cases is generally larger
than for that of biopsies [8], the cause of brain
shift may be simplified as following: the brain
collapses under the force of gravity and fills
the space previously occupied by cerebrospinal
fluid (CSF) and resected tissue [8]. Although
the opening of the ventricular system is related
to increased brain shift [5], measuring the loss
of CSF is still not sufficient to predict the mag-
nitude of brain shift; Hartkens et al. showed
that substantial deformation is not always as-
sociated with substantial CSF loss [8]. A shift
of the deep tumor margin was not significantly
affected by the opening of the ventricular sys-
tem [5]. The direction of brain shift can not
be predicted only by prior knowledge about
patient positioning and gravity, because the di-
rection of the brain shift is not simply parallel
or perpendicular to gravity, but rather a con-
sequence of a complex interplay between the
force of gravity, boundary conditions (e.g. re-
sected regions), fluid pressure and other forces
[8]. This has consequences for the modeling
of brain shift: The assumption that gravity-
induced brain deformation is parallel to the
gravity is not valid. Because of the high com-
plexity and dynamic variability of the brain
shift phenomenon, predictions using only a
brain model in the absence of intraoperative
data are difficult.

Since soft tissues deform nonlinearly, the
intuitive approach to compensate for brain
deformation is to register pre- and intraop-
erative images non-rigidly. When using iUS
to acquire intraoperative image data, feature-
based multi-modal registration methods are

commonly used because the image characteris-
tics and resolution of preoperative MR and iUS
are very different. Therefore a purely intensity-
based approach fails. Another way to regis-
ter MR and US images is to generate pseudo
US images from MR images, resulting in an
intensity-based US-US registration. Intensity-
based approaches are also applied to register
pre- and intraoperative MR images. However,
there is a trade-off between image resolution
and intraoperative time constraints. When the
intraoperative MR image has the same reso-
lution as the preoperative images, intensity-
based non-rigid registration will lead to a huge
number of interpolation operations. To fit the
intraoperative time constraints, GPUs or cluster
computers [80] are used to accelerate the regis-
tration process. When the intraoperative MR
has a lower resolution, only sparse displace-
ment fields can be estimated. A model-based
approach where the intraoperative sparse data
guides a patient specific Finite Element Model
overcomes this problem. Combined with a FE
Model, optical imaging such as a Laser Range
Scanner and Stereo Vision are gaining popular-
ity. These inexpensive and contact-less modali-
ties provide geometric and intensity informa-
tion of the cortical surface, which is registered
to the surface of a FE brain model in order to
update the volumetric model. In our opinion,
the most promising approach for volumetric
brain shift compensation should make use of
intraoperative information, both volume and
surface, and include a model of the brain shift
phenomenon. Since the blood vessels are dis-
tributed all over the cortex and in the deeper
brain structure, calculating the volumetric de-
formation of the brain based on the deforma-
tion of the blood vessel tree could also deliver
sufficient results. Another advantage of this
approach is the tracking of important vessels
during the surgery, providing the surgeon with
additional information about blood supply of
the brain. To date, only few vessel driven brain
shift compensation publications (e.g. [56, 57])
have been published. The authors used intraop-
erative ultrasound images in their publications.
The results are limited by the image quality of
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the ultrasound images.

The accuracy of a model-based compensa-
tion method depends on the choice of the con-
stitutive model to describe the biomechanical
behavior of the brain. Linear elastic, non-linear
elastic, viscoelastic and biphasic models are
applied, with the biphasic model used most
commonly. The biphasic model describes the
brain as a solid porous matrix filled with fluid
which roughly matches the complex anatomi-
cal structure of the brain. In contrast, simple
biomechanical models such as linear elastic
models are able to predict brain deformation
if they have sufficiently good boundary con-
ditions [8]. The quality of the FE model and
the computational time to update the model
depend directly on the chosen mesh element.
Tetrahedrons are commonly used because of
their flexibility and their ability to simulate the
brain shift realistically. Since the FEM meshed
with tetrahedrons has a very high degree of
freedom, the computation time to update this
model is much higher than the model gen-
erated with hexahedrons. A compromise be-
tween flexibility and computational time is the
combination of tetrahedrons and hexahedrons,
where tetrahedrons are used to generate the
volume undergoing large deformations such
as grey and white matter and hexahedrons are
used to mesh the ventricle systems which only
deform slightly.

Although intraoperative brain shift is the
major source of error in Image Guided Neuro-
surgery and has been a topic of interest since
1980s, comprehensive studies that quantify the
complexity and time dependency is still lack-
ing. Our findings in this review either inves-
tigate the brain deformation before and after
the dura opening or measure the pre- and post-
resection volumetric displacement. None of
these studies quantify the brain shift in the
whole tumor resection surgery. Additionally,
a state-of-the-art method to measure the brain
shift was not found. Both direct measurement
on physical space and non-rigid registration
of pre- and intraoperative images are used. In
the future, studies to quantify the magnitude,
direction and causes of brain shift from the

beginning to the end of a neurosurgery are
desirable. A further subject of studies in the
future is the performance of learning based
registration methods to compensate for intra-
operative brain shift. It is well-known that
the human brain is a highly individual organ,
brain tumors differ in shape and size, and brain
shift is a very complex process with various
causes. Therefore, learning based registration
methods can be more appropriate for correc-
tion of brain shift once enough training data
are available. To date, the state-of-the-art im-
age modalities to compensate for brain shift are
iMR and iUS. The first clinical study with LRS
and FEM to correct brain deformation [144]
was also published recently. However, another
important interventional image modality - Dig-
ital Subtraction Angiography (DSA) has not
been considered, although it is less expensive
than iMR and is able to provide surgeons real
time intraoperative image data with anatom-
ical structures such as blood vessels in high
resolution. In our further studies, we will pro-
pose new compensation methods for brain shift
based on 3D DSA images.

VII. Conclusion

This work presents a comprehensive review
of intraoperative brain shift in tumor resec-
tion surgery with the focus on clinical expe-
rience of state-of-the-art intraoperative imag-
ing modalities and mathematical and algorith-
mic aspects of different compensation tech-
niques. It can be seen as a good complement
of the existing review by [13]. In total, 126
relevant papers were reviewed and 116 were
categorized and discussed according to sev-
eral aspects including intraoperative modality,
compensation strategy, global and local trans-
formation model, registration basis, optimiza-
tion technique, similarity measure, computa-
tional platform, constitutive model and mesh
element. The categorized publications are in-
tegrated in an interactive web tool which is
available on the page http://livingreview.
in.tum.de/intraoperative_brain_shift/.
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