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Abstract—Involuntary patient motion decreases image quality
of cone-beam CT acquisitions acquired under weight-bearing
conditions. Thus, motion compensation is crucial for assessing
knee cartilage health in the reconstructed images. Previous met-
hods for motion compensation used externally attached fiducial
markers and 3D/2D registration of prior scans to the projection
data. Recently, the combination of cone-beam CT and range-
imaging has received increasing attention, as it allows motion
compensation based on 3D surface data. We recently proposed
an Iterative Closest Point (ICP)-based method to compensate for
motion by alignment of surface data. Despite promising results,
motion estimates parallel to the rotation axis proved error prone.
Yet, motion in this direction is usually estimated very well with
projection domain methods, such as Amsterdam Shroud (AS).
In this work, we investigate sensor fusion of ICP and AS based
on particle filtering. The ICP motion estimates are improved with
a motion surrogate signal obtained by the AS method.
Compared to the ICP-based approach, the proposed fusion yields
superior motion estimation accuracy and reconstruction quality,
improving the Structural Similarity from 0.96 to 0.99. Our
preliminary results are promising and suggest a high potential
of particle filter-based sensor fusion for motion compensation
in cone-beam CT. Future work will investigate possibilities to
derive fusion parameters automatically from improvements in
image quality achieved with a particular estimate.

I. INTRODUCTION

OVEL cone-beam CT (CBCT) image acquisition pro-

tocols facilitate imaging of the human knee joint under
weight-bearing conditions [1], [2]. This enables the assessment
of knee joint health under more realistic conditions. In these
scans, the X-ray source and the detector rotate horizontally
around the standing patient, who tends to show involuntary
motion during the scan time of approximately ten seconds.
This motion leads to inconsistencies in the acquired projection
images, resulting in motion artifacts in the reconstructions that
manifest as streaks, double edges, and blurring. In order to
increase the diagnostic value of the reconstructions, motion
estimation and compensation is indispensable.
One method to compensate for motion relies on fiducial
markers placed on the patient’s skin. These markers can be
detected in the 2D projection images and afterwards aligned
to a 3D reference position. However, attaching markers is
time consuming and tedious, since overlapping markers in the
projection images decrease the estimation accuracy. Another
category of approaches are purely image-based and use prior
knowledge [3], 2D/3D registration [4], [3], or autofocus [2].
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Recently, methods based on dense surface information acqui-
red simultaneously to the CBCT have received increasing
attention [5], [6]. In a first feasibility study [5], we registered
point clouds using an Iterative Closest Point (ICP) algorithm.
The results were promising, but also indicated that motion
estimates parallel to the rotation axis are unreliable.

In this work, the ICP-based motion estimation method is
extended and combined with the Amsterdam Shroud (AS)
method [7]. This method was initially developed for ex-
tracting diaphragmatic motion. Despite good performance, it’s
applicability is limited to motion occurring parallel to the
rotation axis. Here, we utilize a particle filter to fuse estimates
from both approaches. Evaluation is performed qualitatively
by comparing reconstructions visually and quantitatively by
computing the Structural Similarity (SSIM).

II. MATERIALS AND METHODS

Data: X-ray projections and point clouds are simulated on
a segmented knee, extracted from a clinical high resolution
supine reconstruction. The data was acquired on a clinical
C-arm CT system (Artis Zeego, Siemens Healthcare GmbH,
Erlangen, Germany). For each time point, an X-ray image and
point cloud is simulated in the same motion state, which is
real patient motion acquired with a motion capture system [5].
Other than the X-ray source, the depth camera does not rotate
around the patient but is static. Motion is simulated to be 3D
translation. Figure 1a shows an exemplary X-ray projection.

ICP-based Motion Estimation: Dense surface point clouds
are registered to the first motion state using a point-to-surface
ICP algorithm [5]. The registration yields 3D translations,
representing object motion. Whilst the results are reliable in x
(perpendicular to rotation axis) and y (depth) direction, the z
direction, parallel to the rotation axis proved to be unreliable.

Motion Estimation using Amsterdam Shroud: The AS [7]
algorithm has been developed to extract a breathing signal
from a consecutive stack of projection images, resulting in
a 1D signal corresponding to motion parallel to the rotation
axis (z component). In a first step, the vertical image gradient
is computed for each projection, see Figure 1b. Then, all 2D
images are integrated horizontally and the resulting 1D signals
are stacked next to each other, see Figure 1. Line shifts in
vertical direction, are optimized such that the sum of squared
distances between neighboring lines is minimal, see Figure 1d.
In our application, cortical bone of the distal femur and the
proximal tibia serve as orientation points as they yield large
contributions to the AS signal. This is especially valuable,
since this area is of particular interest for improvements in
reconstruction quality.
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Fig. 1: (a) shows an exemplary projection image. (b) shows
a gradient image. (c) and (d) show the shrouded image before
and after optimization, respectively.

Farticle Filter Motion Estimation: The two motion estima-
tes in z direction of the ICP and the AS method are considered
to be observations of the same true motion state with certain
uncertainties. A particle filter is able to predict the optimal
state of the estimation, given observations and their variances.
We set these values empirically to ¢ = 1 mm for the signal
of the AS algorithm and o = 5 mm for the ICP-based output.
Note that the shifts of the ICP-based method are estimated
on the object surface, while the AS estimates motion in the
isocenter of the object corresponding to scaled versions of
vertical detector shifts.

Experiments: We use the real scanner geometry with 248
projection images over a rotation of 200°. Detector resolution
is 1240x960 pixels with an isotropic pixel size of 0.308 mm.
Volumes with a size of 5123 and an isotropic voxel size of
0.5mm are reconstructed. The processing, simulation, and
reconstruction pipeline is implemented in the open-source
framework CONRAD [8]. In order to compare the image
quality of the results, the SSIM is computed. To this end,
all reconstructions are registered to the motion free reference
reconstruction. The estimated motion is incorporated in the
projection matrices prior to reconstruction.

III. RESULTS

In Figure 2, the ground truth, the ICP, the AS, and the
particle filter signal of the z-direction is plotted. The noisy
estimate of the ICP algorithm is substantially stabilized by the
particle filter. Further, the offset in the estimation will effect
the reconstruction to be shifted in the world coordinate space,
but not the reconstruction quality. Therefore, we calculated the
correlation coefficient between the ground truth and the ICP
estimated signal and achieved an improvement from 0.59 to
0.94 using the particle filter.

In Figure 3, reconstruction results of the ground truth, the
uncorrected, the marker-based, the ICP-based and the proposed
method are shown. Severe motion artifacts are visible if no
correction is applied. All other methods reduce the motion
artifacts remarkably. Prominent streaks in the marker-based
result appear due to overlapping markers in the projection
images. Reconstructions obtained with the purely ICP-based
method still exhibit slight streak artifacts that are notably
reduced when the proposed method is used.

To quantify the performance, SSIM is shown in Table I. The
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Fig. 2: Particle filter output for estimation shifts in z direction.
Note that an offset is not relevant for reconstruction.

(a) Ground truth. (b) Motion corrupted.

(c) Marker-based [1].

(d) ICP-based [5]. (e) Proposed method.

Fig. 3: Reconstructed axial slices through the knee joint.

results support the visual impression: all methods improve the
image quality compared to the corrupted case. Further, the
ICP-based results were improved from 0.96 to 0.99 when the
proposed fusion is applied.

IV. DISCUSSION AND CONCLUSION

We present a sensor fusion framework to improve motion
compensation performance in weight-bearing CBCT imaging
of knees. Using a particle filter, we combine two inaccurate
motion estimates obtained with an ICP-based and an AS-based
method operating on depth and projection images, respectively.
Currently, only 3D translation is investigated. Future work
has to address the behavior of noise in the data. Moreover,
practical issues such as calibration and synchronization have
to be addressed when moving towards real data application [9].
Yet, this work constitutes the next step towards using dense
surface data for estimation of patient motion.

TABLE I: SSIM of the reconstructed images.

Method SSIM
Uncorrected 0.90
Marker-based [1] 0.98
ICP-based [5] 0.96
Proposed particle filter-based 0.99
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