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Abstract. Cone-beam C-arm CT systems allow to scan patients in
weight-bearing positions to assess knee cartilage health under more re-
alistic conditions. Involuntary patient motion during the acquisition re-
sults in motion artifacts in the reconstructions. The current motion es-
timation method is based on fiducial markers. They can be tracked with
a high spatial accuracy in the projection images, but only deliver sparse
information. Further, placement of the markers on the patient’s leg is
time consuming and tedious. Instead of relying on a few well defined
points, we seek to establish correspondences on dense surface data to
estimate 3D displacements.
In this feasibility study, motion corrupted X-ray projections and sur-
face data are simulated. We investigate motion estimation by registra-
tion of the surface information. The proposed approach is compared to
a motion free, an uncompensated, and a state-of-the-art marker-based
reconstruction using the SSIM.
The proposed approach yields motion estimation accuracy and image
quality close to the current state-of-the-art, reducing the motion artifacts
in the reconstructions remarkably. Using the proposed method, Structu-
ral Similarity improved from 0.887 to 0.975 compared to uncorrected
images. The results are promising and encourage future work aiming at
facilitating its practical applicability.

1 Introduction

C-arm cone-beam CT (CBCT) offers a great variety of applications in interven-
tional and diagnostic medicine. One of the reasons for that is their high degree
of flexibility, which allows the C-arm to scan objects on arbitrary trajectories,
even enabling scanning of patients in upright, weight-bearing positions [6, 7].
Weight-bearing imaging was found to be particularly beneficial for the asses-
sment of knee cartilage health, since the knee joint has different mechanical
properties under load [19]. To this end, the C-arm rotates around the standing



2

patient on a horizontal trajectory and acquires images from different views [13].
A schematic scheme of the imaging geometry is shown in Figure 1. One of the
major problems is that patients tend to show motion during the scan time of
approximately ten seconds. This results in motion artifacts in the reconstructed
volumes, which manifest as streaks, double edges, and blurring, as can be seen
in Figure 3(b). In order to increase the image quality and the diagnostic value
of the reconstructions, motion has to be estimated and compensated for.

Recently, motion correction in extremity imaging under weight-bearing con-
ditions gained increasing attention. Choi et al. and Berger et al. use fiducial
markers placed on the patient’s knees. These markers can be detected in the
2D projection images and their position can be used for alignment with their
respective 3D reference position. Although this method has been used in various
clinical studies [7, 16, 17, 4], several limitations exist. Marker placement is time
consuming, associated with patient discomfort, and tedious since overlapping
markers in the projections would result in inaccurate motion estimates. Another
category of approaches do not rely on markers and are image-based only. Unbe-
rath et al. estimate motion by aligning the projection images with the maximum
intensity projections of a motion corrupted reconstruction [22]. However, only
2D detector shifts are evaluated. Berger et al. uses 2D/3D registration of a seg-
mented bone from a motion free supine acquisition with the acquired projection
images [4, 18]. The reconstructions show a much sharper bone outline, however,
a previously acquired supine scan might not always be available. Sisniega et al.
proposed a method to estimate 6D rigid motion by optimizing the image sharp-
ness and entropy in a region of interest in the reconstruction [20, 21]. Further,
epipolar consistency conditions were investigated to estimate motion and sho-
wed promising results [1, 5]. However, motion estimation proved to be robust
only parallel to the detector.

Range imaging has been used in different applications in medicine [2] such as
augmented reality [10], motion estimation in PET/SPECT imaging [15], and pa-
tient positioning and motion estimation in radiotherapy [12]. Recently, Fotouhi
et al. investigated the feasibility on improving iterative reconstruction quality
by incorporating information of a RGBD camera [11]. In this work, a feasibi-
lity study is conducted to investigate the motion estimation capability of range
imaging in the scenario of acquisitions under weight-bearing conditions. The-
refore, surface point cloud data and X-ray projections are simulated under the
influence of motion. Using registration of the point clouds, a motion estimate is
obtained. We compare the reconstructed images of the proposed method with
the results of the uncompensated reconstruction and the result of a marker-
based method [7]. Further, the estimated motion signals are compared to the
marker-based method using the correlation coefficient. To investigate the effects
of motion compensation on the image quality, we compare the reconstructed
images of the uncompensated case, the marker-based method and the proposed
approach to the ground truth using Structural Similarity (SSIM).
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2 Materials and Methods

detector

source range camera

Fig. 1. Schematic scheme of the imaging setup. The X-ray source and the detector
rotate around the standing patient. A range imaging camera is placed statically on the
ground in front of the object.

The method relies on 3D point clouds and X-ray projection images generated
for each time point in the same motion state. Exemplary input data are shown
in Figure 2. The section is structured as follows: First, we describe the range
camera simulation; second, we present the point cloud registration, and finally,
the X-ray simulation and reconstruction is described.

2.1 Depth Camera Simulation

(a) Projection image. (b) Point cloud.

Fig. 2. Simulated projection image (a) with its corresponding point cloud (b).
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Camera position. Different camera positions are feasible in combination with
a C-arm CT system. Either the camera is mounted on the detector or statically
on the ground. If mounted on the C-arm, only one calibration between the two
modalities is necessary. However, in the weight-bearing scenario occlusion from
the second leg occurs. Further, the registration task is more difficult due to
partial overlap. Especially for imaging cylindrical, smooth objects such as the
knees, ambiguities in the surface will make the registration task difficult. For a
static camera position, this is not the case. Therefore, in this study, the camera is
placed in front of the standing patient, such that the object of interest is always
completely in the field of view, as shown in Figure 1. Further, the registration
problem simplifies since partial overlap at the surface border is smaller and some
anatomical structures, e.g. the patella, are visible.

Creation of the point clouds. Depth images are simulated by casting rays
through a mask volume, which is obtained from a motion free supine recon-
struction, where one leg is segmented. The geometry of the camera is described
by projection matrices similar to the ones of the C-arm. For each ray, a depth
value is obtained, which can be represented in a depth map or a point cloud.
The camera and its noise properties are selected to be similar to the Microsoft
Kinect One v2 [24]: The sampled points lie on a grid like pattern, as shown in
Figure 2(b). In the area of the object, the resolution is 160×120 pixels with an
approximate distance of the sampling points of 1.4 mm in image space and a
depth resolution of 1 mm. Noise free and noise corrupted point clouds are crea-
ted for our experiments. For this purpose, Gaussian noise with a zero mean and
a standard deviation of σ = 1 and σ = 2 is added on the depth coordinates. The
camera to object distance is 75 cm.

2.2 Motion Simulation

In order to simulate rigid 3D translation on the depth camera, the volume is
shifted for each time point by a reference motion vector in the 3D volume,
resulting in a different point cloud for each time point. The applied reference
motion is 3D translation derived from real patient motion captured with a motion
capture system [6].

The same reference motion is used to create motion corrupted X-ray projecti-
ons. To this end, the projection matrices P ∈ R4×3, which describe the imaging
geometry of the C-arm system, are modified. Rigid motion can be directly in-
corporated in the projection matrices using the following formula:

P̂j = Pj ·
(
Rj tj
0 1

)
(1)

Pj is the calibrated projection matrix from the system and Rj ∈ R3×3 and
tj ∈ R1×3 are the rotation and translation for each time step j, respectively.
These motion corrupted projection matrices are used to create motion corrupted
projection images, shown in Figure 2(a).
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2.3 Point Cloud Registration

The registration is initialized by aligning the centroids of all point clouds. In
order to speed up the registration, all point clouds are registered to the point
cloud corresponding to the first frame that is assigned the translation vector
t0 = (0, 0, 0). Afterwards, a point-to-surface Iterative Closest Point (ICP) al-
gorithm [3] is used to refine the estimation result. In contrast to the common
ICP algorithm that optimizes for point-to-point distance, point-to-surface ICP
seeks to minimize the distance of points to the other point cloud’s surface. This
strategy proved more accurate in this application. Further, the common ICP
is heavily influenced by the grid pattern of the point clouds, which results in
an estimate that is a multiple of the spacing between the points. The optimal
motion estimate is found by solving the following objective function for a pair
of point clouds:

t̂ = arg min
t

(
N∑
i=1

||((pi + t)− qi)ni||

)
, (2)

where t̂ is the translation to be estimated, N is the number of points in the
source point cloud with pi and qi being a point on the source point cloud and its
corresponding point on the target point cloud, respectively. The corresponding
point is defined by the projection of pi along the normal vector ni of the target
point cloud. This is implemented by triangulating the point cloud and computing
the distance of the point to the respective triangles with a defined normal vector.
The normal vector is obtained from the cross product of two vectors of the
triangle. The function is solved with a gradient descent algorithm1.

2.4 Reconstruction

Images are reconstructed using the Feldkamp-David-Kress backprojection al-
gorithm [9]: the projection data is preprocessed using cosine weighting, Parker
redundancy weighting, and row-wise ramp filtering. In a last step the projections
are backprojected. The projection matrices used are real calibrated projection
matrices from a clinical C-arm system, which has been operated on a horizontal
trajectory. In order to incorporate the motion estimate into the reconstruction,
Equation 1 can be used to modify the projection matrices before the backpro-
jection step.

2.5 Experiment

The simulation is performed on a segmented knee, extracted from a clinical high
quality supine reconstruction. The data was acquired on a clinical C-arm CT sy-
stem (Artis Zeego, Siemens Healthcare GmbH, Erlangen, Germany). We use the
real scanner geometry with 248 projection images on a horizontal trajectory over

1 https://www5.cs.fau.de/research/software/java-parallel-optimization-package/
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a rotation of 200◦. Detector resolution is 1240×960 pixels with an isotropic pixel
spacing of 0.308 mm. Volumes with a size of 5123 and an isotropic voxelsize of
0.5 mm are reconstructed. The entire processing, simulation, and reconstruction
pipeline is implemented in the open-source framework CONRAD, dedicated to
the simulation and reconstruction of CBCT data [14]. In order to compare the
image quality of the results, the SSIM [23] is computed. To this end, all recon-
structions are registered to the motion free reference reconstruction using the
open-source software 3D slicer [8].

3 Results

(a) Motion free. (b) Corrupted. (c) Marker-based. (d) Proposed.

(e) Motion free. (f) Corrupted. (g) Marker-based. (h) Proposed.

Fig. 3. Axial and sagittal slices of the reconstruction results of the motion free reference
volume (a), the motion corrupted (b), the marker-based corrected (c), and the proposed
method (d).

In Figure 3, axial and sagittal slices of the reconstruction results of the motion
free scan, the motion corrupted acquisition, the marker-based method, and the
proposed method (on noise free data) are shown. Severe streaking and blurring
artifacts are present if no correction is applied. Both, the marker-based method as
well as the new proposed method substantially reduce the corruption by artifacts.
In the marker-based result (Figure 3(c)) streaks from one direction are visible.
They appear due to marker overlap in these views resulting in an inaccurate
estimation. In contrast, images obtained using the proposed approach have more
but smaller streak artifacts, which appear especially at the bone outline.



7

Fig. 4. Ground truth motion parameters compared to the estimation of the marker-
based and the proposed method for the x (top), y (middle), and z (bottom) direction.

In Figure 4, the estimated motion parameters of the marker-based and propo-
sed method are compared with the ground truth motion: x is the object motion
parallel to the detector, y is the depth and z corresponds to the direction paral-
lel to the rotation axis. Considering the estimation results for x and y direction,
both methods were able to recover the motion well, especially the high frequen-
cies. Note, however, that due to the current optimization scheme of the proposed
method, all projections are aligned to the first frame resulting in a constant off-
set in the estimated signal. This offset will cause a shift of the reconstruction
in the volume. The views in which the markers overlap are visible in the mo-
tion estimation around projection number 40, where sudden jumps are visible
in the marker-based estimation. They correspond to the heavy streaks in the
reconstruction images. In contrast, the z direction is estimated poorly with the
proposed method. One reason for that might be that the cylindrical shape does
not contain enough information to nicely align the point clouds. Further, the
object is also truncated in the z direction, which might lead to these errors.

In Table 1 the SSIM between the shown reconstructions compared to the
motion free volume are shown. The quantitative values are in agreement with
the visual impression of the reconstructions: the marker-based and the proposed
method show comparably good results that are far superior to the uncompen-
sated reconstruction. The SSIM decreases with the level of noise applied to the



8

Table 1. Structural Similarity (SSIM) results of the reconstructed images.

Method SSIM

Uncorrected 0.887
Marker-based [7] 0.971
Proposed 0.975

Proposed with noise σ = 1 0.961
Proposed with noise σ = 2 0.952

Table 2. Correlation coefficients (CC) between the estimated and the ground truth
motion signals.

Method x-direction y-direction z-direction

Marker-based [7] 0.77 0.72 0.98
Proposed 0.98 0.98 0.59

point clouds. However, achieved results are superior towards the uncorrected
reconstruction.

In order to quantify the accuracy of the motion estimation, we calculated the
correlation coefficient between the estimated and the ground truth signal. The
results are shown in Table 2, and show that the proposed method outperforms
the marker-based method in the motion estimate of the x and y direction, but
achieved only poor results in the z direction with a correlation coefficient of 0.58
only.

4 Discussion and Conclusion

In this feasibility study, a novel method to estimate patient motion in acquisitions
under weight-bearing conditions using range imaging is investigated. Our method
registers point clouds to a reference frame to estimate motion, without the need
to place markers on the patient’s skin. We validated our approach on simulated
projection and point cloud data of a high quality supine reconstruction. The
method reduces the motion artifacts notably and suggests high potential of using
depth imaging for motion correction in CBCT reconstruction.

Surface and projection data are simulated with the same motion pattern for
a full acquisition. All point clouds are registered using a point-to-surface ICP
algorithm resulting in a motion estimate used to obtain the motion corrected
reconstruction. In the performed experiments, the proposed method showed an
improvement of the image quality comparable to the marker-based approach.

Future work will address the current limitations of the method. Compared
to the 6D rigid motion estimation of the marker-based method, we tested trans-
lational motion only in our experiments that does not accurately reflect real
knee motion. However, the method might have the potential to estimate more
complex non-rigid motion of the knee as the dense surface information could be
used to estimate more sophisticated displacements. Currently, motion along z
direction is estimated insufficiently. One possibility to address this issue would
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be to combine the presented approach with image-based consistency conditions,
which usually estimate this direction robustly. Further, a more comprehensive
study on the method’s robustness against sensor noise has to be conducted.
This is especially important when dealing with real depth data containing a
high amount of noise and physical artifacts. Finally, for practical applicability
in the dynamic clinical environment, the camera has to be placed such that the
field of view is not temporarily obstructed and in a distance, which allows to
acquire data in good quality. Synchronization and cross calibration of the depth
camera with the C-arm system have to be considered.

Despite the mentioned limitations, this work is yet another step towards
motion estimation in imaging under weight-bearing conditions without the need
of prior knowledge or the placement of fiducial markers.
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