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Abstract—C-arm cone-beam CT (CBCT) has been used re-
cently to acquire images of a patient’s knee under weight-
bearing conditions. The resulting reconstructions allow to assess
knee joint health under more realistic conditions than in supine
configuration. However, motion during the scan severely corrupts
image quality of the reconstructions. Recently, a method to
compensate for this motion has been proposed that, in contrast
to its predecessors, uses a depth camera in addition to the CBCT.
The method is based on the popular Iterative Closest Point
(ICP) algorithm, that requires the selection of a reference and,
therefore, induces bias.

In this work, we investigate a group-wise registration approach
to estimate motion, which is more robust to noise and outliers.
Further, the group-wise character can estimate the mean shape
more accurately. We compare our results to a state-of-the-art
marker-based method, as well as to the previously proposed ICP-
based method.

Image quality improves compared to the ICP-based method
with an improvement of the Structural Similarity (SSIM) from
0.96 to 0.98. Streaks in the images could be reduced slightly.

The preliminary results presented here are promising. Dense
surface information together with the stochastic formulation
of the proposed method allows for the incorporation of more
complex, e.g. compound motion, that better reflects true joint
motion. Further investigations in this direction are subject to
future work.

I. INTRODUCTION

MAGE acquisition under weight-bearing conditions has

been enabled lately due to advances in the flexibility of C-
arm cone-beam CT (CBCT) systems [1] or dedicated imaging
systems [2]. These systems acquire projection images from
different views of the standing patient [3]. Relatively long scan
times lead to inevitable patient motion that results in motion
artifacts in the reconstructed images. Diagnostic assessment of
these volumes requires motion estimation and compensation of
the data prior to reconstruction in order to achieve a clinically
useful image quality.

Currently, one state-of-the-art method relies on fiducial
markers placed on the patient’s skin that are then tracked
in projection images [1]. Marker placement, however, is
time consuming and tedious and only yields sparse surface
data. Range imaging, in contrast, yields dense 3D surface
information, does not require markers, and can be used to
compensate for motion when acquired simultaneously to the
X-ray sequence. Fotouhi et al. [4] mounted a range camera
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on the detector to acquire the patient’s surface. The surface
is reconstructed using a SLAM-based object reconstruction
and used as prior for iterative reconstruction to enhance
reconstruction quality. In contrast to [4], Bier et al. [5] assume
a static depth camera and estimate object motion directly using
an Iterative Closest Point (ICP) algorithm by registering all
frames to the first motion state. Unfortunately, this method
has several limitations: estimation in vertical direction proved
unreliable, and, more importantly, registration is carried out in
a pair-wise manner, suggesting the need for reference frame
selection that induces bias. Further, ICP-based techniques are
known to be highly sensitive to both the initialization and the
presence of outliers. An elegant solution is to cast the registra-
tion problem into a probabilistic framework; registration then
becomes probability density estimation.

In this study, a multi-resolution, group-wise, rigid regis-
tration approach (with 6 degrees of freedom in 3D, namely,
translation and rotation) based on Student’s t-mixture model
(TMM) [6], [7] is employed to further improve direct motion
estimation. Group-wise registration methods are in general
preferable to pair-wise approaches as they ensure unbiased
estimation of the desired spatial transformations and corre-
spondences, whereas the latter are biased towards the chosen
reference surface. Furthermore, the choice of TMM-based
registration confers a greater degree of automatic robustness to
outliers in the data, than conventional Gaussian mixture model
based methods. Consequently, such an approach is well suited
to clinical applications, where noise and other sources of arti-
facts are to be expected. We applied this method on simulated
data and estimate 3D as well as 6D motion. For evaluation, we
compare with the ground truth, the uncorrected, the marker-
based, and the ICP-based reconstructions, comparing image
quality using the Structural Similarity (SSIM) [8].

II. MATERIALS AND METHODS

Group-Wise Registration: Probabilistic group-wise registra-
tion approaches consider the group of shapes to be aligned, as
noisy transformed observations of a central mixture model.
This central model, which represents the mean shape of
the group, is fit to each sample shape in the group using
expectation-maximization (EM) [9]. EM alternates between
two steps: the E-step, where the expectations of the la-
tent variables (or posterior probabilities) are evaluated for
the initial/current estimate of the model and transformation
parameters; and the M-step, where the estimated posterior
probabilities are in turn employed to maximize the complete
data likelihood, with respect to the model and transformation
parameters. Consequently, the desired spatial transformation
that maps the mean shape to each sample in the group



is estimated as parameters of the model in the M-step of
the algorithm. Additionally, at each M-step the mean shape
itself (represented by the centroids of the mixture model) is
iteratively refined along with the spatial transformations [6],
[7]1. The multi-resolution variant of the TMM-registration
algorithm used in this study increases the density of the mean
model in an adaptive fashion at each successive resolution.
This approach reduces the influence of local minima during
the registration process, as discussed in [7].

Data: X-ray projection images and 3D point clouds are
simulated on a segmented knee extracted from a clinical high
resolution supine CBCT reconstruction. To simulate realistic
motion states, the high resolution scan is transformed accor-
ding to real patient motion acquired with a motion capture
system [5], [1]. X-ray projections are created using a short
scan trajectory (200°) with 248 projection images (1240x960
pixels, isotropic pixel spacing 0.308 mm). Reconstructions
have a size of 5123 and an isotropic voxel size of 0.5mm.
The depth camera is modeled to be similar to the Microsoft
Kinect One v2 that acquires points on a grid with a depth
resolution of 1 mm. The depth camera is statically located in
front of the knee observing the same scene for all time points.

Experiments: Two experiments are conducted: (a) 3D trans-
lational motion is simulated and then estimated. We compare
our proposed approach with the marker-based [1] and the ICP-
based method [5]. (b) real 6D affine motion is applied and the
results are compared to the marker-based result only. Note, that
the ICP-based method is currently restricted to 3D translational
motion, whereas the marker-based method and the proposed
approach are fit to estimate 6D rigid motion.

In order to compare the image quality of the respective
motion-compensated reconstructions, the SSIM is computed.
To this end, all reconstructions are registered to the motion
free reference reconstruction. The estimated motion for each
time point is incorporated into the projection matrices of the
imaging geometry prior to reconstruction.

III. RESULTS

Axial and sagittal slices of the reconstructions of experi-
ment (a) are shown in Figure 1. Compared to the ICP-based
method [5], streak artifacts are reduced, which is supported by
the improvement of the SSIM from 0.96 to 0.98, see Table I.

The results of the 6D rigid body motion (b) is shown in
Figure 2. We show the ground truth, the uncompensated, the
marker-based, and the proposed approach. Both the marker-
based and the proposed approach are able to substantially
reduce the motion artifacts, comparable SSIM values are
obtained with 0.98 and 0.97, respectively.

Figure 3 shows the estimated translations and the error of
the estimated rotations. Note, that a constant offset in the
estimation only corresponds to a shift of the reconstruction
in the volume. The rotation error is calculated and compared
to the Identity rotation using the Frobenius norm.

IV. D1SCUSSION AND CONCLUSION

In this work, we applied group-wise point cloud registration
to solve a motion estimation problem in CBCT acquisitions of

(a) ICP-based. (b) Group-wise. (c) ICP.  (d) Group-wise.

Fig. 1: Results (a): axial and sagittal slice of the knee joint.

(a) Ground truth.

(b) Corrupted. (c) Marker-based. (d) Group-wise.

Fig. 2: Results (b): shows axial slices.

knees under weight-bearing conditions, improving the previ-
ously presented pair-wise ICP-based approach. Point clouds
at different motion states are registered in a probabilistic
framework resulting in 3D or 6D motion estimates, that are
incorporated into the tomographic reconstruction.

Future work will evaluate the algorithm on a broader
database with different motion patterns. A noise study has
to be conducted to evaluate the robustness and accuracy of
the estimation under more realistic conditions [10]. However,
results are promising and encourage future work that could
leverage the availability of dense surface information to esti-
mate more realistic joint motion such as compound rigid or
non-rigid motion.
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TABLE I: SSIM of the reconstructed images.

Method 3D estimation 6D estimation
Uncorrected 0.90 0.91
Marker-based [1] 0.98 0.98
ICP-based [5] 0.96 -
Group-wise registration [6] 0.98 0.97



X-translation motion Y-translation motion

Ground truth
—— Estimated

() 50 100 150 200 250

(a) X estimate. (b) Y estimate.

Rotation Error (Extrinsic frobenium norm between

Ztranslation motion compensation ground truth and estimated rotations)

o 50 100 150 200 250 o 200 250

(c) Z estimate. (d) Rotation error.

Fig. 3: Translation estimates of the proposed method as well
as the calculated error of the rotation.
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