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Abstract. Thoracic and abdominal multi-organ segmentation has been
a challenging problem due to the inter-subject variance of human tho-
raxes and abdomens as well as the complex 3D intra-subject variance
among organs. In this paper, we present a preliminary method for au-
tomatically segmenting multiple organs using non-enhanced CT data.
The method is based on a simple framework using generic tools and re-
quires no organ-specific prior knowledge. Specifically, we constructed
a grayscale CT volume along with a probabilistic atlas consisting of six
thoracic and abdominal organs: lungs (left and right), liver, kidneys (left
and right) and spleen. A non-rigid mapping between the grayscale CT
volume and a new test volume provided the deformation information for
mapping the probabilistic atlas to the test CT volume. The evaluation
with the 20 VISCERAL non-enhanced CT dataset showed that the pro-
posed method yielded an average Dice coefficient of over 95% for the
lungs, over 90% for the liver, as well as around 80% and 70% for the
spleen and the kidneys respectively.

1 Introduction

Automatic thoracic and abdominal multi-organ segmentation on clinically ac-
quired computed tomography (CT) has been a challenging problem due to the
inter-subject variance of human thoraxes and abdomens as well as complex 3-D
relationship among organs. On CT images, the inter-subject variability (e.g.,
age, gender, stature, normal anatomical variants, and disease status) can be ob-
served in terms of the size, shape, and appearance of each organ. Soft anatomy
deformation (e.g., pose, respiratory cycle, edema, digestive status) complicates
the segmentation problem even more.

To solve this problem, Toro et al. [1] proposed a method using anatomical
hierarchy guided by spatial correlations. Kahl et al. [2] presented a method using
feature-based registration. He et al. [3] introduced a method using multi-boost
learning and statistical shape model. All of these methods use organ-specific
prior knowledge. Therefore, a complicated preprocessing is necessary to obtain
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organ-specific prior knowledge. Moreover, expanding the atlas becomes compu-
tationally expensive if more organs should be involved in the segmentation.

A probabilistic atlas-based approach [4] was proposed for the automatic seg-
mentation of abdominal organs and revealed the benefit of probabilistic atlas.
However, it only focused on the abdominal organs but didn’t involve the organs
in the thorax.

In this paper, we present a generic framework for automatic multi-organ
segmentation using a probabilistic atlas with extension to the thorax. The at-
las includes two lungs, liver, spleen, and two kidneys. The segmentation is
then performed based on an atlas registration approach. No organ-specific prior
knowledge is required in the proposed method.

2 Materials and methods

2.1 Overview of the proposed framework

Fig. 1 presents the flowchart of the proposed framework, which consists of two
steps: the atlas construction and the multi-organ segmentation.

In the step of the atlas construction, all grayscale CT volumes of a training
dataset are mapped onto one individual volume using affine transform at first.
Subsequently, the alignments are improved by using non-rigid B-spline trans-
form. After the alignments, an average CT volume is calculated. In order to
generate a probabilistic atlas in the space of the reference volume, the ground
truth segmentations of the training set are warped onto the reference space by
using the results of the B-spline transform computed from their CT volumes.
The presence of each voxel is then counted for each organ. The probability of a
voxel belonging to a certain organ is then calculated by dividing the counts by
the volume amount. The probabilities of all target organs build a vector-valued
probabilistic atlas finally.

In the step of the segmentation, the coarse alignment of the new CT volume
and the average volume is calculated by using affine transformation at first. The
alignment is further improved with B-spline transformation. The probabilistic
atlas is subsequently projected into the space of the test volume. In the vector-
valued probabilistic atlas, one voxel can be labeled as different organ, we decide
the organ type by taking the organ with the highest probability. The boundaries
are estimated by a simple probabilistic threshold with 0.30.

2.2 Registration methods

As described previously, registration is an important part of the proposed frame-
work, it is used in both atlas construction and segmentation steps. We used a
Gaussian image pyramid approach in all registration steps to achieve better
results and more reasonable processing time. Four resolutions (8,4,2,1) are ap-
plied for the affine transformation while two resolutions (8,2) are applied for
the B-spline part. Similarity is measured by the Mattes’ mutual information
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method [5], which is obtained by double summing over the discrete PDF (prob-
ability density function) values. The PDF is estimated using Parzen histograms.
Furthermore, the B-spline transformation is constrained by using bending en-
ergy penalty term [6]. The cost function of the non-rigid B-spline registration in
the proposed framework is summarized as

argmin
T

(S(T) + αR(T)) (1)

where T is the transformation between the reference and the test image.
S(T) is the negative of mutual information between the reference image and

the transformed test image based on Parzen histograms [5]

S(T) = −
∑
l

∑
k

p(l, k | T) log
p(l, k | T)

pTest(l | T)pRef(k)
(2)

where p is the joint probability distribution of the pair of registered images.
pRef and pTest are the marginal probability distribution of the reference image
and the test image respectively. k and l indicate the histogram bins of the
reference image and the test image.

R(T) in Eq. 1 regularizes the transformation [6], is defined as

Fig. 1. Flowchart of the proposed method.
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where V denotes the number of voxels.
The α in Eq. 1 determines the weight of the regularization with respect to

the similarity measure.
To solve the optimization problem, CMA-ES [7] and ASGD (adaptive stochas-

tic gradient descent) [8] are employed for affine transformation and B-spline
transformation respectively. The registration is implemented using the open
source image registration toolbox Elastix [9].

3 Results

The proposed method is evaluated with the 20 unenhanced whole body CT data
from VISCERAL [10]. 0.30 was taken as the threshold for the boundary estima-
tion. The evaluation tool of VISCERAL was used to compare the segmentation
result and the ground truth.

The dataset included 12 male image volumes and 8 female image volumes,
so the test was divided into 2 gender groups at first. Leave-one-out cross val-
idation was performed for each gender group. Fig. 2 presents one slice of an
average volume and a probabilistic atlas. Fig. 3 plots the Dice coefficients of the
segmentation results of the cross validation.

Furthermore, the proposed method was compared with the state-of-the-art
methods. The lines 1-3 of Tab. 1 display the average Dice coefficients from
other state-of-the-art methods [1, 2, 3]. The line 4 of Tab. 1 list the average
Dice coefficients of our tests with a total of 23 cases including male, female and
unisex cases. Note that the training and test data setup of these three methods
are different from ours. The average Dice of our tests is above 95% for both
lungs, around 90% for liver, and between 70% and 80% for other three organs.

4 Discussion

We proposed a generic framework for an automatic segmentation of multiple
organs in abdomen and thorax using probabilistic atlas and registration. We
constructed probabilistic atlases and segmented the target organs successfully.
The cross validation showed the feasibility and the strong robustness of the
method. However, the male group had the higher accuracy for kidneys and spleen
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Table 1. Comparison of the Dice coefficients with other methods. ’*’ means that the
methods use other test data. ’-’ means that no segmentation was provided.

Line Right Lung Left Lung Right Kidney Left Kidney Liver Spleen

1 *Toro et al. [1] 97.5% 97.2% 79.0% 78.4% 86.6% 70.3%

2 *Kahl et al. [2] 97.5% 97.2% 91.5% 93.4% 92.1% 87.0%

3 *He et al. [3] 95.7% 95.2% - - 92.3% 87.4%

4 Proposed 96.0% 95.7% 79.4% 73.1% 90.0% 81.3%

than the female group. The reasons for this observations could be: 1. the male
group had more samples; 2. the non-rigid tissue variation of the female group
was higher. In addition, lungs and liver were more accurate in our registration
due to the metric mutual information.

(a) Average volume (b) Probabilistic atlas

Fig. 2. Example of an average volume (left) and a probabilistic atlas (right).

(a) Dice coefficients for male group (b) Dice coefficients for female group

Fig. 3. Results of the cross validation. Left and right figures plot the Dice coefficients
for each organ of the male group and the female group respectively.
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Compared to the existing methods, our method provided competitive re-
sults. The comparison showed that the proposed method is promising and po-
tential. These state-of-the-art methods used organ-specific prior knowledge such
as anatomical spatial correlation, organ specific features, boundary profiles and
shape variation information. Our method didn’t employ any organ-specific prior
knowledge. Our process is therefore compact and uncomplicated. Furthermore,
it is easy to expand our atlas to incorporate more structures and organs.

To reduce the bias due to the reference selection, better solution for reference
selection is required. In addition, using an automatic method [11] to detect the
volume-of-interest can also improve the accuracy. Moreover, the decision of the
organ type and the estimation of the boundary can be improved in the future
work.
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