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Writer Identification vs. Writer Retrieval

...

Database

Writer Identification

Given:
• Query document

• Documents of known writers

Wanted:

• Writer-ID

Source: ICDAR17 dataset, QUWI15 dataset, freepik.com
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Writer Identification vs. Writer Retrieval

...

DB

· · ·

1k

Rank

2 3 Q

Writer Retrieval

Given:
• Query document

• Documents of unknown writers

Wanted:

• Most similar documents

Source: ICDAR13 dataset, QUWI15 dataset
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Contemporary Datasets

ICDAR13 benchmark dataset

• 4 documents per writer (2 English, 2 Greek)

• Train: 100 writers

• Test: 250 writers

Other datasets: CVL (English, German), KHATT (Arabic), IAM (English)
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Historical Dataset

ICDAR17 competition benchmark
dataset

• Collection from university library Basel

• Train: 394 writers x 3 images
→ 1182 images

• Test: 720 writers x 5 images
→ 3600 images

• Additionally provided:
• Manual text crops
• Binarization (estimation)

S. Fiel, F. Kleber, M. Diem, et al., “ICDAR 2017 Competition on Historical Document Writer Identification (Historical-WI)”, , in ICDAR, 2017
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Writer-Independent Datasets

Training set Test set

W1

W1

W2
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W7

W7 W8
W8

Training and test sets are independent
⇒ No training for a specific writer possible!
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Typical Methodology For Deep Learning Feature Extraction



CNN Activation Features

(Targets)
Surrogate classes:
writers of train set

· · ·

CNN activation features

Aggregation / Encoding
(VLAD, Fisher Vectors, ...)
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Results for ICDAR13

Publication Year TOP-1 [%] mAP [%]

Fiel & Sablatnig, CAIP 2015 88.5 –
Christlein et al., GCPR 2015 98.9 88.6
Tang & Wu, ICFHR 2016 99.0 –
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Results for ICDAR17

Train on official ICDAR17 training set

TOP-1 [%] mAP [%]

Zernike1 86.0 69.2

CNN-AF (ResNet-18) 67.4 46.1
CNN-AF (LeNet) 66.2 44.9

From the ICDAR17 competition results

Fribourg (ResNet-18) 47.8 30.7

1V. Christlein, D. Bernecker, and E. Angelopoulou, “Writer Identification Using VLAD Encoded Contour-Zernike Moments”, in ICDAR, 2015
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Unsupervised Feature Learning



Related Work

Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural
Networks”, PAMI, 2016

• Surrogate classes by random transformation

→ Each transformation = one class

But: Script!→ Already have plenty of samples (= patches)!
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Unsupervised Feature Learning for Writer Recognition

keypoints

SIFT features
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clusters

patches 32×32

ResNet
training

cluster index
= target

• New surrogate classes: cluster indices of SIFT descriptors

→ Map similar patches to each other (kinda: autoencoder w.o. reconstruction)

+ No writer labels needed!
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Performance

TOP-1 [%] mAP [%]

Zernike 86.0 69.2
Cluster-CNN-AF (ResNet) 87.3 72.4

Yeah!

How many clusters / surrogate classes?

2 10 100 1k 5k 10k
53.4

60

70

Number of clusters

m
A

P
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Improve Baseline

µ1, µ2: 1st, 2nd closest cluster centers

Distance ratio of descriptor x:

ρ =
‖x− µ1‖2

‖x− µ2‖2

If ρ > 0.9→ remove x from training set

TOP-1 [%] mAP [%]

Cluster-CNN-AF 87.3 72.4
Cluster-CNN-AF (ρ = 0.9) 88.3 74.1
Cluster-CNN-AF (ρ = 0.9, L = 44) 88.2 74.3
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SIFT Keypoints vs. Restricted SIFT Keypoints

R-SIFT=
only DoG maxima

TOP-1 mAP

Cluster-CNN-AF (Baseline: Binarized. / R-SIFT) 88.3 74.1
Cluster-CNN-AF (Binarized / SIFT) 88.6 74.8

Cluster-CNN-AF (Grayscale / R-SIFT) 87.1 71.6
Cluster-CNN-AF (Grayscale / SIFT) 87.7 72.3
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Writer Adaptation Using Exemplar SVMs

Training set Test set

E-SVM

W1

W1

W2

W2

W3
W3W4

W4

Neg

W5

W5

W6
W6

W7

W7W7 W8
W8

Po
s

Compute individual E-SVMs ⇒ individual similarity

V. Christlein, D. Bernecker, F. Hönig, et al., “Writer Identification Using GMM Supervectors and Exemplar-SVMs”, Pattern Recognition, vol. 63, 2017
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Comparison w. State of the Art

Christlein 2015 Fiel 2013 Historical-WI Competition

Proposed+E
Proposed

Zernike
SIFT

Tébessa II
Groningen

Tébessa I
Hamburg

Barcelona
Friborg

76.2 74.8 69.2
62.2

55.6 54.2 52.5 46.9 45.9
30.7m

A
P

[%
]

88.9 88.6 86.0 81.4 76.4 76.1 74.4
67.1 67.0

47.8To
p-

1
[%

]
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How does it generalize?



Classification of Latin Medieval Manuscripts (CLaMM’16)

Source: http://clamm.irht.cnrs.fr/script-classes

• 2000 images, 12 script types (Uncial, Praegothica, Cursiva, . . .)

F. Cloppet, V. Églin, V. C. Kieu, et al., “ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script”, in ICFHR, 2016, pp. 590–595
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Classification of Latin Medieval Manuscripts (CLaMM’16)

Method TOP-1

DeepScript 76.5
FRDC-OCR 79.8
NNML 83.8
FAU 83.9

Cluster-CNN-AF + SVM 84.1

Deeper CNN 86.3

Source: http://clamm.irht.cnrs.fr/script-classes

• 2000 images, 12 script types (Uncial, Praegothica, Cursiva, . . .)

F. Cloppet, V. Églin, V. C. Kieu, et al., “ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script”, in ICFHR, 2016, pp. 590–595
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Conclusion



Conclusion

keypoints

SIFT features
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clusters

patches 32×32

ResNet
training

cluster index
= target

Summary

• Proposed a new unsupervised feature learning
technique for document analaysis

• Improves state of the art in writer identification / retrieval

• Generalizes well

Outlook

• Try activations from other layers

• Incorporate text detection into the
pipeline

• Add attention mechanism
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https://github.com/vchristlein/icdar17code

Questions?

https://github.com/vchristlein/icdar17code
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