

Unsupervised Feature Learning for Writer Identification and Writer Retrieval

Vincent Christlein, Martin Gropp, Stefan Fiel, Andreas Maier Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nuremberg November 15th, 2017

Writer Identification vs. Writer Retrieval

Writer Identification vs. Writer Retrieval

Writer Identification

Given:

- Query document
- Documents of known writers

Wanted:

Writer-ID

Writer Identification vs. Writer Retrieval

Writer Retrieval

Given:

- Query document
- Documents of unknown writers

- Wanted:
 - Most similar documents

Contemporary Datasets

The willingness with which in any war no matter how to how they perceive vetera appreciated by our mation. Πεειφρουείτε το βιβρία εσείς που στη ματουότητα μαι στη φιροδο η μέσα στην ομυνηρία. Αποί σ ιρόμος σεν υμβερνιέται η αρο

ICDAR13 benchmark dataset

- 4 documents per writer (2 English, 2 Greek)
- Train: 100 writers
- Test: 250 writers

Other datasets: CVL (English, German), KHATT (Arabic), IAM (English)

Historical Dataset

ICDAR17 competition benchmark dataset

- Collection from university library Basel
- Train: 394 writers x 3 images
 → 1182 images
- Test: 720 writers x 5 images
 → 3600 images
- Additionally provided:
 - Manual text crops
 - Binarization (estimation)

Langehome an Specellentifrone 1, 100 -Fourindram Sawell" & titlered mohispiers and - banende men scohel makes to dillar h

Vincent Christlein | Unsupervised Feature Learning for Writer Identification and Writer Retrieval

S. Fiel, F. Kleber, M. Diem, et al., "ICDAR 2017 Competition on Historical Document Writer Identification (Historical-WI)", , in ICDAR, 2017

Writer-Independent Datasets

Training and test sets are independent

 \Rightarrow No training for a specific writer possible!

Typical Methodology For Deep Learning Feature Extraction

The willingness with which in any war no matter haw to how they perceive vetera appreciated by our mation.

Πεεμβρουείτε το βιβρία εσείς που στη ματοιιότητα μαι στη φηροδομ η μείσα στην ομυνιβία. Αποί σ ιμόσμως σεν υμβερνιείται η αρο

Publication	Year	TOP-1 [%]	mAP [%]
Fiel & Sablatnig, CAIP	2015	88.5	_
Christlein et al., GCPR	2015	98.9	88.6
Tang & Wu, ICFHR	2016	99.0	-

	TOP-1 [%]	mAP [%]
Zernike ¹	86.0	69.2

¹V. Christlein, D. Bernecker, and E. Angelopoulou, "Writer Identification Using VLAD Encoded Contour-Zernike Moments", in *ICDAR*, 2015

	TOP-1 [%]	mAP [%]
Zernike ¹	86.0	69.2
CNN-AF (ResNet-18)	67.4	46.1

¹V. Christlein, D. Bernecker, and E. Angelopoulou, "Writer Identification Using VLAD Encoded Contour-Zernike Moments", in *ICDAR*, 2015

	TOP-1 [%]	mAP [%]
Zernike ¹	86.0	69.2
CNN-AF (ResNet-18)	67.4	46.1
CNN-AF (LeNet)	66.2	44.9

- · Presumably: overfit on the training writers
- \rightarrow Features don't generalize
- → Tried: other networks, models from earlier epochs, other encoding methods, ...

¹V. Christlein, D. Bernecker, and E. Angelopoulou, "Writer Identification Using VLAD Encoded Contour-Zernike Moments", in *ICDAR*, 2015

Train on official ICDAR17 training set

	TOP-1 [%]	mAP [%]
Zernike ¹	86.0	69.2
CNN-AF (ResNet-18)	67.4	46.1
CNN-AF (LeNet)	66.2	44.9

From the ICDAR17 competition results

Fribourg (ResNet-18)	47.8	30.7
----------------------	------	------

- Presumably: overfit on the training writers
- \rightarrow Features don't generalize
- → Tried: other networks, models from earlier epochs, other encoding methods, ...

¹V. Christlein, D. Bernecker, and E. Angelopoulou, "Writer Identification Using VLAD Encoded Contour-Zernike Moments", in *ICDAR*, 2015

	TOP-1 [%]	mAP [%]	
Zernike ¹	86.0	69.2	
CNN-AF (ResNet-18)	67.4	46.1	
CNN-AF (LeNet)	66.2	44.9	
From the ICDAR17 competition results			

Fribourg (ResNet-18)	47.8	30.7
----------------------	------	------

- Presumably: overfit on the training writers
- \rightarrow Features don't generalize
- → Tried: other networks, models from earlier epochs, other encoding methods, ...
- \Rightarrow Not every surrogate task is useful

¹V. Christlein, D. Bernecker, and E. Angelopoulou, "Writer Identification Using VLAD Encoded Contour-Zernike Moments", in *ICDAR*, 2015

Unsupervised Feature Learning

Related Work

Dosovitskiy et al. "Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks", PAMI, 2016

- Surrogate classes by random transformation
- \rightarrow Each transformation = one class

Related Work

Dosovitskiy et al. "Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks", PAMI, 2016

- Surrogate classes by random transformation
- \rightarrow Each transformation = one class

But: Script! \rightarrow Already have plenty of samples (= patches)!

Unsupervised Feature Learning for Writer Recognition

• New surrogate classes: cluster indices of SIFT descriptors

Unsupervised Feature Learning for Writer Recognition

- New surrogate classes: cluster indices of SIFT descriptors
- \rightarrow Map similar patches to each other (kinda: autoencoder w.o. reconstruction)
- + No writer labels needed!

Performance

	TOP-1 [%]	mAP [%]
Zernike	86.0	69.2
Cluster-CNN-AF (ResNet)	87.3	72.4

Yeah!

Performance

	TOP-1 [%]	mAP [%]
Zernike	86.0	69.2
Cluster-CNN-AF (ResNet)	87.3	72.4

Yeah!

How many clusters / surrogate classes?

Improve Baseline

 μ_1 , μ_2 : 1st, 2nd closest cluster centers Distance ratio of descriptor **x**:

$$p = rac{\|\mathbf{x} - \boldsymbol{\mu}_1\|_2}{\|\mathbf{x} - \boldsymbol{\mu}_2\|_2}$$

If ho > 0.9 ightarrow remove **x** from training set

Improve Baseline

 μ_1 , μ_2 : 1st, 2nd closest cluster centers Distance ratio of descriptor **x**:

$$o = rac{\|\mathbf{x} - \boldsymbol{\mu}_1\|_2}{\|\mathbf{x} - \boldsymbol{\mu}_2\|_2}$$

If ho > 0.9 ightarrow remove **x** from training set

	TOP-1 [%]	mAP [%]
Cluster-CNN-AF	87.3	72.4
Cluster-CNN-AF ($ ho=$ 0.9)	88.3	74.1

Improve Baseline

 μ_1 , μ_2 : 1st, 2nd closest cluster centers Distance ratio of descriptor **x**:

$$o = rac{\|\mathbf{x} - \boldsymbol{\mu}_1\|_2}{\|\mathbf{x} - \boldsymbol{\mu}_2\|_2}$$

If ho > 0.9 ightarrow remove **x** from training set

	TOP-1 [%]	mAP [%]
Cluster-CNN-AF	87.3	72.4
Cluster-CNN-AF ($ ho=$ 0.9)	88.3	74.1
Cluster-CNN-AF ($ ho=$ 0.9, $L=$ 44)	88.2	74.3

SIFT Keypoints vs. Restricted SIFT Keypoints

SIFT Keypoints vs. Restricted SIFT Keypoints

	TOP-1	mAP
Cluster-CNN-AF (Baseline: Binarized. / R-SIFT)	88.3	74.1
Cluster-CNN-AF (Binarized/SIFT)	88.6	74.8

SIFT Keypoints vs. Restricted SIFT Keypoints

	TOP-1	mAP
Cluster-CNN-AF (Baseline: Binarized./R-SIFT)	88.3	74.1
Cluster-CNN-AF (Binarized/SIFT)	88.6	74.8
Cluster-CNN-AF (Grayscale / R-SIFT)	87.1	71.6
Cluster-CNN-AF (Grayscale/SIFT)	87.7	72.3

Writer Adaptation Using Exemplar SVMs

V. Christlein, D. Bernecker, F. Hönig, et al., "Writer Identification Using GMM Supervectors and Exemplar-SVMs", Pattern Recognition, vol. 63, 2017

Comparison w. State of the Art

Comparison w. State of the Art

How does it generalize?

Classification of Latin Medieval Manuscripts (CLaMM'16)

• 2000 images, 12 script types (Uncial, Praegothica, Cursiva, ...)

F. Cloppet, V. Églin, V. C. Kieu, et al., "ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script", in ICFHR, 2016, pp. 590-595

Classification of Latin Medieval Manuscripts (CLaMM'16)

Method	TOP-1
DeepScript	76.5
FRDC-OCR	79.8
NNML	83.8
FAU	83.9
Cluster-CNN-AF + SVM	84.1

Source: http://clamm.irht.cnrs.fr/script-classes

2000 images, 12 script types (Uncial, Praegothica, Cursiva, ...) •

E Cloppet, V. Églin, V. C. Kieu, et al., "ICEHB2016 Competition on the Classification of Medieval Handwritings in Latin Script", in ICEHB 2016, pp. 590-595

Classification of Latin Medieval Manuscripts (CLaMM'16)

Method	TOP-1
DeepScript	76.5 79.8
NNML	79.8 83.8
FAU	83.9
Cluster-CNN-AF + SVM	84.1
Deeper CNN	86.3

Source: http://clamm.irht.cnrs.fr/script-classes

2000 images, 12 script types (Uncial, Praegothica, Cursiva, ...)

F. Cloppet, V. Églin, V. C. Kieu, et al., "ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script", in ICFHR, 2016, pp. 590-595

Conclusion

Conclusion

Summary

- Proposed a new **unsupervised** feature learning technique for document analaysis
- · Improves state of the art in writer identification / retrieval
- Generalizes well

Outlook

- Try activations from other layers
- Incorporate text detection into the pipeline
- Add attention mechanism

https://github.com/vchristlein/icdar17code

Questions?