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Contemporary Datasets
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IcbAR13 benchmark dataset

e 4 documents per writer (2 English, 2 Greek)
e Train: 100 writers

e Test: 250 writers

Other datasets: CVL (English, German), KHATT (Arabic), IAM (English)
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ONIVERSITAT

Historical Dataset

IcDAR17 competition benchmark
dataset
e Collection from university library Basel
e Train: 394 writers x 3 images
— 1182 images
e Test: 720 writers x 5 images
— 3600 images
e Additionally provided:

e Manual text crops
e Binarization (estimation)

S. Fiel, F. Kleber, M. Diem, et al., “lCDAR 2017 Competition on Historical Document Writer Identification (Historical-Wl)”, . in ICDAR, 2017
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Writer-Independent Datasets

Training set Test set

Training and test sets are independent
=> No training for a specific writer possible!
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Typical Methodology For Deep Learning Feature Extraction
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CNN Activation Features
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CNN Activation Features
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CNN Activation Features
7

-
):4
alr] 40
4,
(e

-
1 4
7o -4

g2

i}

FRAE g Pef ofR] &

o [ e
"Lt

7]

AR R R s

w-,w“,h‘c n!
P

1-C4
%
ya
.27
{
Heps s
i
e
=
vid
134

A 77

(Targets)
Surrogate classes:
writers of train set

Vincent Christlein | Unsupervised Feature Learning for Writer Identification and Writer Retrieval

November 15th, 2017




CNN Activation Features
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CNN activation features

=

Aggregation / Encoding
(VLAD, Fisher Vectors, ...)
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Results for IcbAR13
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Publication Year TOP-1[%] mAP [%]
Fiel & Sablatnig, CAIP 2015 88.5 -
Christlein et al., GCPR 2015 98.9 88.6
Tang & Wu, ICFHR 2016 99.0 -
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Results for ICDAR17

Train on official ICDAR17 training set

TOP-1[%] mAP [%]

Zernike' 86.0 69.2

1V, Christlein, D. Bernecker, and E. Angelopoulou, “Writer Identification Using VLAD Encoded Contour-Zernike Moments”, in ICDAR, 2015
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Results for ICDAR17
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TOP-1[%] mAP [%]

Zernike' 86.0 69.2
CNN-AF (ResNet-18) 67.4 46.1

1V, Christlein, D. Bernecker, and E. Angelopoulou, “Writer Identification Using VLAD Encoded Contour-Zernike Moments”, in ICDAR, 2015
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Results for IcCDAR17

Train on official ICDAR17 training set

TOP-1[%] mAP [%]

Zernike' 86.0 69.2
CNN-AF (ResNet-18) 67.4 46.1
CNN-AF (LeNet) 66.2 44.9

e Presumably: overfit on the training writers
— Features don’t generalize

— Tried: other networks, models from earlier
epochs, other encoding methods, ...

V. Christlein, D. Bernecker, and E. Angelopoulou, “Writer Identification Using VLAD Encoded Contour-Zernike Moments”, in /CDAR, 2015
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Results for IcCDAR17

Train on official ICDAR17 training set

TOP-1[%] mAP [%]

Zernike' 86.0 69.2
CNN-AF (ResNet-18) 67.4 46.1
CNN-AF (LeNet) 66.2 44.9

From the ICDAR17 competition results

Fribourg (ResNet-18) 47.8 30.7

e Presumably: overfit on the training writers
— Features don’t generalize

— Tried: other networks, models from earlier
epochs, other encoding methods, ...

1V. Christlein, D. Bernecker, and E. Angelopoulou, “Writer Identification Using VLAD Encoded Contour-Zernike Moments”, in /CDAR, 2015
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Results for IcCDAR17

Train on official ICDAR17 training set

TOP-1[%] mAP [%]

Zernike' 86.0 69.2
CNN-AF (ResNet-18) 67.4 46.1
CNN-AF (LeNet) 66.2 44.9

From the ICDAR17 competition results

Fribourg (ResNet-18) 47.8 30.7

e Presumably: overfit on the training writers
— Features don’t generalize

— Tried: other networks, models from earlier
epochs, other encoding methods, ...

=> Not every surrogate task is useful

1V. Christlein, D. Bernecker, and E. Angelopoulou, “Writer Identification Using VLAD Encoded Contour-Zernike Moments”, in /CDAR, 2015
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Unsupervised Feature Learning




Related Work

Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural
Networks”, PAMI, 2016

e Surrogate classes by random transformation

— Each transformation = one class
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Related Work

Dosovitskiy et al. “Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural
Networks”, PAMI, 2016

e Surrogate classes by random transformation

— Each transformation = one class

But: Script! — Already have plenty of samples (= patches)!
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Unsupervised Feature Learning for Writer Recognition
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patches 32x32

e New surrogate classes: cluster indices of SIFT descriptors

= target

training
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Unsupervised Feature Learning for Writer Recognition

= target
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® New surrogate classes: cluster indices of SIFT descriptors
— Map similar patches to each other (kinda: autoencoder w.o. reconstruction)

-+ No writer labels needed!

Vincent Christlein | Unsupervised Feature Learning for Writer Identification and Writer Retrieval November 15th, 2017



Performance

TOP-1[%] mAP [%]

Zernike 86.0 69.2
Cluster-CNN-AF (ResNet) 87.3 72.4

Yeah!
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Performance

TOP-1[%] mAP [%]

Zernike 86.0 69.2
Cluster-CNN-AF (ResNet) 87.3 72.4
Yeah!
How many clusters / surrogate classes?
70
A,
<
g 60
53.4
2 10 100 1k 5k 10k

Number of clusters
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Improve Baseline

Iy, Kot 1st, 2nd closest cluster centers

Distance ratio of descriptor x:

= gl
Ix = ool

If p > 0.9 — remove x from training set
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Improve Baseline

Iy, Mo 1st, 2nd closest cluster centers

Distance ratio of descriptor x:

= gl
Ix = ool

If p > 0.9 — remove x from training set

TOP-1[%] mAP [%]

Cluster-CNN-AF 87.3 72.4
Cluster-CNN-AF (p = 0.9) 88.3 741
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Improve Baseline

Iy, Mo 1st, 2nd closest cluster centers

Distance ratio of descriptor x:

= gl
Ix = ool

If p > 0.9 — remove x from training set

TOP-1[%] mAP [%]
Cluster-CNN-AF 87.3 72.4
Cluster-CNN-AF (p = 0.9) 88.3 741
Cluster-CNN-AF (p = 0.9, L = 44) 88.2 74.3
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SIFT Keypoints vs. Restricted SIFT Keypoints

R-SIFT=
only DoG maxima
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SIFT Keypoints vs. Restricted SIFT Keypoints

R-SIFT=
only DoG maxima

aii&ﬂ'd 9 e iat

TOP-1 mAP

Cluster-CNN-AF (Baseline: Binarized./R-SIFT)  88.3 741
Cluster-CNN-AF (Binarized/SIFT) 88.6 74.8
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SIFT Keypoints vs. Restricted SIFT Keypoints

R-SIFT=

only DoG maxima

e s a = 5
i&ﬂvx S0 2kt

TOP-1 mAP
Cluster-CNN-AF (Baseline: Binarized./R-SIFT)  88.3 741
Cluster-CNN-AF (Binarized/SIFT) 88.6 74.8
Cluster-CNN-AF (Grayscale/R-SIFT) 87.1 71.6
Cluster-CNN-AF (Grayscale /SIFT) 87.7 72.3
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Writer Adaptation Using Exemplar SVMs

Training set Test set

E-SVM

Compute individual E-SVMs => individual similarity

V. Christlein, D. Bernecker, F. Honig, et al., “Writer Identification Using GMM Supervectors and Exemplar-SVMs”, Pattern Recognition, vol. 63, 2017
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Comparison w. State of the Art

I Historical-WI Competition

I Christlein 2015  mmm Fiel 2013
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Comparison w. State of the Art

mAP [%]

Top-1 [%]

I Christlein 2015 I Fiel 2013
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How does it generalize?




NIVERSITAT

Classification of Latin Medieval Manuscripts (CLaMM’16)
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Source: http://clamm.irht.cnrs.fr/script-classes

e 2000 images, 12 script types (Uncial, Praegothica, Cursiva, . . .)

F. Cloppet, V. Eglin, V. C. Kieu, et al., ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script”, in /CFHR, 2016, pp. 590-595
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Classification of Latin Medieval Manuscripts (CLaMM’16)

Method TOP-1
DeepScript 76.5
FRDC-OCR 79.8
NNML 83.8
FAU 83.9
Cluster-CNN-AF + SVM  84.1
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Source: http://clamm.irht.cnrs.fr/script-classes

e 2000 images, 12 script types (Uncial, Praegothica, Cursiva, . . .)

F. Cloppet, V. Eglin, V. C. Kieu, et al., ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script”, in /CFHR, 2016, pp. 590-595
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Classification of Latin Medieval Manuscripts (CLaMM’16)

Method TOP-1
DeepScript 76.5
FRDC-OCR 79.8
NNML 83.8

FAU

83.9

Cluster-CNN-AF + SVM

84.1

Deeper CNN

86.3
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Source: http://clamm.irht.cnrs.fr/script-classes

e 2000 images, 12 script types (Uncial, Praegothica, Cursiva, . . .)

F. Cloppet, V. Eglin, V. C. Kieu, et al., ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script”, in /CFHR, 2016, pp. 590-595

Vincent Christlein | Unsupervised Feature Learning for Writer Identification and Writer Retrieval

November 15th, 2017 16



FRIEDRICH-ALEXANDER-
UNIVERSITAT |
ERLANGEN-NURNBERG

SCHOOL OF ENGINEERING

Conclusion




Conclusion
:“‘ \‘P:" :2:"' cluster index
;é* —_ Izttargedt
G — SIFT features clusters
< \-,_.d-
keypoints ~ I% /
training
patches 32x32
Summary Outlook
® Proposed a new unsupervised feature learning « Try activations from other layers

technique for document analaysis L
e Incorporate text detection into the

® Improves state of the art in writer identification / retrieval pipeline

* Generalizes well e Add attention mechanism
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https://github.com/vchristlein/icdari7code

Questions?



https://github.com/vchristlein/icdar17code
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