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Abstract—Deep Convolutional Neural Networks (CNN) have
shown great success in supervised classification tasks such as
character classification or dating. Deep learning methods typi-
cally need a lot of annotated training data, which is not available
in many scenarios. In these cases, traditional methods are often
better than or equivalent to deep learning methods. In this paper,
we propose a simple, yet effective, way to learn CNN activation
features in an unsupervised manner. Therefore, we train a
deep residual network using surrogate classes. The surrogate
classes are created by clustering the training dataset, where
each cluster index represents one surrogate class. The activations
from the penultimate CNN layer serve as features for subsequent
classification tasks. We evaluate the feature representations on
two publicly available datasets. The focus lies on the ICDAR17
competition dataset on historical document writer identification
(Historical-WI). We show that the activation features trained
without supervision are superior to descriptors of state-of-the-
art writer identification methods. Additionally, we achieve com-
parable results in the case of handwriting classification using the
ICFHR16 competition dataset on historical Latin script types
(CLaMM16).

Keywords-unsupervised feature learning; writer identification;
writer retrieval; deep learning; document analysis

I. INTRODUCTION

The analysis of historical data is typically a task for experts
in history or paleography. However, due to the digitization
process of archives and libraries, a manual analysis of a large
data corpus might not be feasible anymore. We believe that
automatic methods can support people working in the field
of humanities. In this paper, we focus on the task of writer
identification and writer retrieval. Writer identification refers to
the problem of assigning the correct writer for a query image
by comparing it with images of known scribal attribution.
For writer retrieval, the task consists of finding all relevant
documents of a specific writer. Additionally, we evaluate our
method in a classification task to classify historical script types.

We make use of deep Convolutional Neural Networks (CNN)
that are able to create powerful feature representations [1] and
are the state-of-the-art tool for image classification since the
AlexNet CNN of Krizhevsky et al. [2] won the ImageNet
competition. Deep-learning-based methods achieve also great
performance in the field of handwritten documents classifica-
tion, e. g., dating [3], word spotting [4], or handwritten text
recognition [5]. However, such methods typically require a
lot of labeled data for each class. We face another problem
in the case of writer identification, where the writers of the
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Fig. 1: Overview of the unsupervised feature learning. At SIFT
keypoint locations, SIFT descriptors and image patches are
extracted. The cluster indices of the clustered SIFT descriptors
represent the targets and the corresponding patches as input
for the CNN training.

training set are different from those of the test set in the typical
used benchmark datasets. On top of that, current datasets have
only one to five images per writer. While a form of writer
adaptation with exemplar Support Vector Machines (E-SVM)
is possible [6], CNN training for each query image would
be very cost-intensive. Thus, deep-learning-based methods are
solely used to create robust features [7]-[9]. In these cases,
the writers of the training set serve as surrogate classes. In
comparison to this supervised feature learning, we show that
deep activation features learned in an unsupervised manner
can i) serve as better surrogate classes, and ii) outperform
handcrafted features from current state-of-the-art methods.
In detail, our contributions are as follows:

e We present a simple method for feature learning using
deep neural networks without the need of labeled data.
Fig. 1 gives an overview of our method. First SIFT
descriptors [10] are computed on the training dataset,
which are subsequently clustered. A deep residual network
(ResNet) [11] is trained using patches extracted from each
SIFT location (keypoint) using the cluster membership
as target. The activations of the penultimate layer serve
as local feature descriptors that are subsequently encoded
and classified.

o We thoroughly evaluate all steps of our pipeline using a
publicly available dataset on historical document writer
identification.

o We show that our method outperforms state-of-the-art in
the case of writer identification and retrieval.



« Additionally, we evaluate our method for the classification
of medieval script types. On this task, we achieve equally
good results as the competition winner.

The rest of the paper is organized as follows. Sec. II gives
an overview over the related work in the field of unsupervised
feature learning, and writer identification. The unsupervised
feature learning and encoding step is presented in Sec. III
The evaluation protocol is given in Sec. IV, and the results in
Sec. V. Sec. VI gives a summary and an outlook.

II. RELATED WORK

We focus our evaluation on the task of writer identification
and retrieval. Method-wise, writer identification/retrieval can
be divided into two groups: statistical methods (a. k. a. textural
methods [12]) and codebook-based methods. The differentiation
lies in the creation of the global descriptor which is going to
be compared, or classified, respectively. Global statistics of the
handwriting are computed in the former group, such as the
width of the ink trace, or the angles of stroke directions [13],
[14]. More recently, Nicolaou et al. [15] employed local binary
patterns that are evaluated densely at the image.

Conversely, codebook-based descriptors are based on the
well-known Bag-of-(Visual)-Words (BoW) principle, i.e., a
global descriptor is created by encoding local descriptors
using statistics obtained by a pre-trained dictionary. Fisher
vectors [16], VLAD [17] or self organizing maps [18] were
employed for writer identification and retrieval. Popular local
descriptors for writer identification are based on Scale Invariant
Feature Transform [10] (SIFT), see [6], [16], [19], [20].
However, also handcrafted descriptors are developed that
are specifically designed to work well on handwriting. One
example is the work by He et al. [18], who characterize script
by computing junctions of the handwriting. In contrast, the
hereinafter presented work learns the descriptors using a deep
CNN. In previous works the writers of the training datasets
have been used as targets for the CNN training [7]-[9]. While
the output neurons of the last layer were aggregated using
sum-pooling by Xing and Qiao [9], the activation features of
the penultimate layer were encoded using Fisher vectors [8]
and GMM supervectors [7]. In contrast, we do not rely on any
writer label information, but use cluster membership of image
patches as surrogate targets.

Clustering has also been used to create unsupervised
attributes for historical document dating in the work of
He et al. [21]. However, they use handcrafted features in
conjunction with SVMs. Instead, we learn the features in an
unsupervised manner using a deep CNN.

The most closely related work comes from Dosovit-
skiy et al. [22], where surrogate classes are created by a variety
of image transformations such as rotation or scale. Using these
classes to train a CNN, they generate features, which are
invariant to many transformations and are advantageous in com-
parison to handcrafted features. They also suggest to cluster the
images in advance to apply their transformations on each cluster
image, and then use the cluster indices as surrogate classes. A
similar procedure is applied by Huang et al. [23] to discover
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Fig. 2: Excerpt of an image of the Historical-WI dataset. Left:
Original SIFT keypoints, right: restricted SIFT keypoints.

shared attributes and visual representations. In comparison
to the datasets used in the evaluation of Dosovitskiy et al.
and Huang et al., we have much more training samples
available since we consider small handwriting patches. Thus, an
exhaustive augmentation of the dataset is not necessary; instead,
one cluster directly represents a surrogate class. Another
interesting approach for deep unsupervised feature learning is
the work of Paulin et al. [24], where Convolutional Kernel
Networks (CKN) are employed. CKNs are similar to CNNs but
are trained layer-wise to approximate a particular non-linear
kernel.

III. METHODOLOGY

Our goal is to learn robust local features in an unsupervised
manner. These features can then be used for subsequent
classification tasks such as writer identification or script type
classification. Therefore, a state-of-the-art CNN architecture is
employed to train a powerful patch representation using cluster
memberships as targets. A global image descriptor is created
by means of VLAD encoding.

A. Unsupervised Feature Learning

First, SIFT keypoints are extracted. At each keypoint location
a SIFT descriptor and a 32 x 32 patch is extracted. The SIFT
descriptors of the training set are clustered. While the patches
are the inputs for the CNN training, the cluster memberships
of the corresponding SIFT descriptors are used as targets. Cf.
also Fig. 1 for an overview of the feature learning process.

SIFT keypoint localization is based on blob detection [10].
The keypoints rely on finding both minima and maxima in the
Difference-of-Gaussian (DoG) scale space, and in addition to
document coordinates also contain information about rotation
and “size”, i.e., their location in scale space. The keypoints
commonly occur between text lines, as can be seen in Fig. 2.
These gratuitous locations can be filtered out either afterwards
by analyzing the keypoint size or using the binarized image
as mask. Another possibility is to restrict the SIFT keypoint
algorithm on finding only minima in the scale space, thus,
obtaining only dark on bright blobs. We employ this technique
to mainly obtain patches containing text, further referred to
R-SIFT (restricted SIFT). Note that we also filter keypoints
positioned at the same location to always obtain distinct input
patches.



For an improved cluster association, we also normalize
the SIFT descriptors by applying the Hellinger kernel [25].
In practice, the Hellinger normalization of SIFT descriptors
consists of an element-wise application of the square root,
followed by an /; normalization. This normalization effectively
helps to reduce the occurrence of visual bursts, i. e., dominating
bins in the SIFT descriptor, and has been shown to improve
image recognition [25] and writer identification/retrieval [6].
The descriptors are dimensionality-reduced from 128 to 32
dimensions and whitened using principal component analysis
(PCA) to lower the computational cost of the clustering process.

For clustering we use a subset of 500k randomly chosen
R-SIFT descriptors of the training set. We use the mini-
batch version of k-means [26] for a fast clustering. After the
clustering process, we filter out descriptors (and corresponding
patches) that lie on the border between two clusters. Therefore,
the ratio p between the distances of the input descriptor x to
the closest cluster center @1 and to the second closest one pto
is computed, i.e.:

ol = mlls 0
|z — pall2
If this ratio is too large, the descriptor is removed. In practice,
we use a maximum allowed ratio of 0.9.

Given the 32 x 32 image patches and their cluster member-
ships, a deep CNN is trained. We employ a deep residual
network [11] (ResNet) with 20-layers. Residual networks
have shown great results in image classification and object
recognition. A ResNet consists of residual building blocks that
have two branches. One branch has two or more convolutional
layers and the other one just forwards the result of the previous
layer, thus bypassing the other branch. These building blocks
help to preserve the identity and allow training deeper models.
As the residual building block, we use the pre-resnet building
block of [27]. For training, we follow the architectural design
and procedure of He et al. [11] for the CIFARIO dataset.
Following previous works [7]-[9], we use the activations of the
penultimate layer as feature descriptors. Note that typically the
features of the penultimate layer are most distinctive [28], but
other layers are possible, too [24]. In our case, the penultimate
layer is a pooling layer that pools the filters from the previous
residual block. It consists of 64 hidden nodes resulting in a
feature descriptor dimensionality of 64.

B. Encoding

A global image descriptor is created by encoding the obtained
CNN activation features. We use VLAD encoding [29], which
can be seen as a non-probabilistic version of the Fisher Kernel.
It encodes first order statistics by aggregating the residuals of
local descriptors to their corresponding nearest cluster center.
VLAD is a standard encoding method, which has already been
used for writer identification [17]. It has also successfully been
used to encode CNN activation features for classification and
retrieval tasks [24], [30].

Formally, a VLAD is constructed as follows [29]. First,
a codebook D = {p1,..., i} is computed from random
descriptors of the training set using k-means with K clusters.

Every local image descriptor & of one image is assigned to its
nearest cluster center. Then, all residuals between the cluster
center and the assigned descriptors are accumulated for each

cluster:
)
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where NN(x;) refers to the nearest neighbor of x; in the
dictionary D. The final VLAD encoding is the concatenation
of all vy:
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We use power normalization [29] instead of the more recent
intra normalization [31]. The former one is preferable, since
we employ keypoints for the patch extraction instead of a dense
sampling [32]. In power-normalization, the normalized vector
© follows as:

¥; = sign(v;)|v;|” Vi={1,...,|v]},0<p<1, (4

where we set p to 0.5. Afterwards, the vector is [s-normalized.

Similar to the work of Christlein et al. [17], multiple code-
books are computed from different random training descriptors.
For each of these codebooks a VLAD encoding is computed.
The encodings are subsequently decorrelated and optionally
dimensionality reduced by means of PCA whitening. This step
has been shown to be very beneficial for writer and image
retrieval [17], [33], [34]. We refer to this approach as multiple
codebook VLAD, or short m-VLAD.

C. Exemplar SVM

Additionally, we train linear support vector machines (SVM)
for each individual query sample. Such an Exemplar SVM (E-
SVM) is trained with only a single positive sample and multiple
negative samples. This method was originally proposed for
object detection [35], where an ensemble of E-SVMs is used
for each object class. Conversely, E-SVMs can also be used to
adapt to a specific face image [36] or writer [6]. In principle,
we follow the approach of Christlein et al. [6] and use E-SVMs
at query time. Since we know that the writers of the training
set are independent from those of the test set, an E-SVM is
trained using the query VLAD encoding as positive sample
and all the training encodings as negatives. This has the effect
of computing an individual similarity for the query descriptor.

The SVM large margin formulation with [ regularization
and squared hinge loss h(z) = max(0,1 — z)? is defined as:

argmin = [w]3 + cph(w @p) +cn S h(—w @), ()
w 2 :1:n€./\/

where x, is the single positive sample and x,, are the samples
of the negative training set N. ¢, and ¢, are regularization
parameters for balancing the positive and negative costs. We
chose to set them indirectly proportional to the number of
samples such that only one parameter C' needs to be cross-
validated in advance, cf. [36] for details.

Unlike the work of Christlein et al. [6], we do not rank the
other images according to the SVM score. Instead, we use the
linear SVM as feature encoder [37], [38], i.e., we directly use



the normalized weight vector as our new feature representation

for x:
w

T (6)
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The new representations are ranked according to their cosine
similarity.

IV. EVALUATION PROTOCOL

The focus of our evaluation lies on writer identification and
retrieval, where we thoroughly explore the effects of different
pipeline decisions. Additionally, the features are employed for
the classification of medieval handwriting. In the following
subsections the datasets, evaluation metrics and implementation
details are presented.

A. Datasets

The method proposed is evaluated on the dataset of the
“ICDAR 2017 Competition on Historical Document Writer
Identification” (Historical-WI) [39]. The test set consists of
3600 document images written by 720 different writers. Each
writer contributed 5 pages to the dataset, which have been
sampled equidistantly of all available documents to ensure
a high variability of the data. The documents have been
written between the 13" and 20" century and contain mostly
correspondences in German, Latin, and French. The training
set contains 1182 document images written by 394 writers.
Again, the number of pages per writer is equally distributed.

Additionally, the method is evaluated on a document classi-
fication task using the dataset for the ICFHR2016 competition
on the classification of medieval handwritings in Latin script
(CLaMM16) [40]. It consists of 3000 images of Latin scripts
scanned from handwritten books dated between 500 and
1600 CE. The dataset is split into 2000 training and 1000 test
images. The task is to automatically classify the test images
into one of twelve Latin script types.

B. Evaluation Metrics

To evaluate our method, we use a leave-one-image-out
procedure, where each image in the test set is used once as a
query and the system has to retrieve a ranked list of documents
from the remaining images. Ideally, the top entries of these
lists would be the relevant documents written by the same
scribe as the query image.

We use several common metrics to assess the quality of
these results. Soft Top N (Soft-N) examines the N items ranked
at the top of a retrieved list. A list is considered an “acceptable”
result if there is at least one relevant document in the top N
items. The final score for this metric is then the percentage of
acceptable results. Hard Top N (Hard-N), by comparison, is
much stricter and requires all of the top IV items to be relevant
for an acceptable result.

Precision at N (p@N) computes the percentage of relevant
documents in the top [V items of a result. The numbers reported
for p@N are the means over all queries.

The average precision (AP) measure considers the average
p@N over all positions N of relevant documents in a result.

TABLE I: Using writers from the Historical-WI training dataset
as targets for the feature computation. The evaluation is carried
out using the Historical-WI test set.

p@l1 p@2 p@3 p@4  mAP
Writers (LeNet) 66.22 57.10 4871 41.70 44.89
Writers (ResNet)  67.36 5838 49.81 42.85 46.11

Taking the mean AP over all queries finally yields the Mean
Average Precision score (mAP).

Since for N = 1 Hard-N, Soft-N, and p@N are equivalent,
we record these scores only once as TOP-1.

C. Implementation Details

If not stated otherwise, the standard pipeline consists of 5000
cluster indices as surrogate classes for 32 x 32 patches. The
patches were extracted from the binarized images in the case
of the Historical-WI dataset, and from the grayscale images in
the case of the CLaMM16 dataset. The patches are extracted
around the restricted SIFT keypoints (see Sec. III-A). We
extract RootSIFT descriptors and apply a PCA for whitening
and reducing the dimensionality to 32. These vectors are then
used for the clustering step. A deep residual network (number
of layers L = 20) is trained using stochastic gradient descent
with an adaptive learning rate (i.e., if the error increases,
the learning rate is divided by 10), a Nesterov momentum
of 0.9 and a weight decay of 0.0001. The training runs for
a maximum of 50 epochs, stopping early if the validation
error (20k random patches not part of the training procedure)
increases. Note that the maximum epoch number is sufficient
given the large number of handwriting patches (480k). The
activations of the penultimate layer are used as local descriptors.
They are encoded using m-VLAD with five vocabularies. The
final descriptors are PCA-whitened and compared using the
cosine distance.

For the comparison with the state of the art, we also employ
linear SVMs. The SVM margin parameter C' is cross-evaluated
in the range [10~°,10%] using an inner stratified 5-fold cross-
validation for script type classification. In the case of writer
identification /retrieval a 2-fold cross-validation is employed,
i.e., the training set is split into two writer-independent parts
to have more E-SVMs for the validation.

V. RESULTS

First, the use of writers as surrogate classes is evaluated,
similar to the work of Christlein et al. [7] and Fiel et al. [8].
Afterwards, our proposed method for feature learning, different
encoding strategies and the used parameters are evaluated and
eventually compared to the state-of-the-art methods.

A. Writers as Surrogate Classes

A natural choice for the training targets are the writers of the
training set. This has been successfully used by recent works
for smaller, non-historical benchmark datasets such as the
ICDAR 2013 competition dataset for writer identification [7],
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Fig. 3: Evaluation of the number of surrogate classes (clusters)
using the Historical-WI test data.

TABLE II: Comparison of different encoding methods evaluated
on the Historical-WI test test.

TOP-1 mAP
CI-S + Sum 63.9 42.6
CI-S + FV 76.9 57.6
CI-S + SV 83.4 63.7
CIl-S + VLAD 82.6 63.6
CI-S + m-VLAD 88.3 74.1
CI-S + m-VLADy400 87.6 732

[8]. Thus, we employ the same scheme also for Historical-
WI. On one hand, we employ the LeNet architecture used
by Christlein et al. [7], i.e., two subsequent blocks of a
convolutional layer, followed by a pooling layer, and a final
fully connected layer before the target layer with its 394 nodes.
On the other hand, we employ the same architecture we propose
for our method, i. e., a residual network (ResNet) with 20 layers.

Tab. I reveals that the use of writers as the surrogate class
does not work as intended. Independent of the architecture, we
achieve much worse results than a standard approach using
SIFT descriptors or Zernike moments, cf. Tab. V.

B. Influence of the Encoding Method

For the following experiments, we now train our network
using the cluster indices as surrogate classes (denoted as CI-S).
Babenko et al. [28] states that sum-pooling CNN activation
features is superior to other encoding techniques such as VLAD
or Fisher Vectors. In Tab. II, we compare sum-pooling to three
other encoding methods: /) Fisher vectors [41] using first and
second order statistics, which have also been employed for
writer identification [16]. We normalize them in a manner
similar to the proposed VLAD normalization, i.e., power
normalization followed by an L, normalization. Il) GMM
supervectors [42], which were used for writer identification
by Christlein et al. [6], normalized by a Kullback-Leibler
normalization scheme. I7I) the proposed VLAD encoding [17].

Tab. II shows that sum pooling (CI-S + Sum) performs
significantly worse than other encoding schemes. While Fisher
vectors (CI-S + FV) trail the GMM supervectors (CI-S + SV)
and VLAD encoding (CI-S + VLAD / m-VLAD / m-VLAD 4q),
GMM supervectors perform slightly better than the average of
the non-whitened version of the five VLAD encodings (CI-S +
VLAD). However, when using the m-VLAD approach (CI-S +
m-VLAD), i.e., jointly decorrelating the five VLAD encodings
by PCA whitening, we achieve a much higher precision. Even

TABLE III: Comparison of different parameters used for the
unsupervised feature learning step evaluated on the Historical-
WI test set.

TOP-1 mAP
CI-S (Baseline: p = 0.9, L = 20) 88.3 74.1
CI-S (L = 44) 88.2 74.3
CI-S (p = 1.0) 87.3 72.4

TABLE IV: Evaluation of different sampling strategies evalu-
ated on the Historical-WI test set. Bin. refers to the binarized
images. SIFT and R-SIFT to the SIFT keypoint extraction
method and the restricted keypoint extraction, respectively, cf.
Sec. III-A.

TOP-1 mAP
CI-S (Baseline: Bin./R-SIFT) 88.3 74.1
CI-S (Bin./SIFT) 88.6 74.8
CI-S (Gray/R-SIFT) 87.1 71.6
CI-S (Gray/SIFT) 87.7 72.3

if we incorporate a dimensionality reduction to 400 components
(CI-S + m-VLAD,q) during the PCA whitening process, the
results are significantly better than other encoding schemes
with 6400 dimensions in case of the GMM supervectors, or
12800 in case of the Fisher vectors.

C. Parameter Evaluation

Fig. 3 plots the writer retrieval performance given different
numbers of surrogate classes that are used for clustering, and
the training targets, respectively. Interestingly, even a small
number of 2 clusters is sufficient to produce better results than
using the writers as surrogate classes. When using more than
1000 clusters, the results are very similar to each other with a
peak at 5000 clusters.

To evaluate the importance of the number of layers, we
employed a much deeper residual network consisting in total
of 44 layers (instead of 20). Since the results in Tab. III show
that the increase in depth (CI-S (L = 44)) produces only a
slight improvement in terms of mAP, and comes with greater
resource consumption, we stick to the smaller 20 layer deep
network for the following experiments.

Next, we evaluate the influence of the parameter p, which
is used to remove patches that do not clearly fall into one
Voronoi cell computed by k-means, cf. Sec. III-A. When using
a factor of 1.0 (instead of 0.9), and thus, not removing any
patches, the performance drops from 74.1% mAP to 72.4%
mAP.

D. Sampling Importance

Finally, we also evaluate the impact of the proposed restricted
SIFT keypoint computation (R-SIFT) in comparison to standard
SIFT, as well as the influence of binarization (bin.) in compar-
ison to grayscale patches (gray). We standardize the grayscale
patches to zero mean and unit standard deviation. Tab. IV shows
that binarization is in general beneficial for an improvement
in precision. This is even more astonishing considering that



TABLE V: Comparison with state-of-the-art evaluated on the Historical-WI test set.

Method Top-1 Hard-2 Hard-3 Hard-4  Soft-5 Soft-10 p@2 p@3 p@4 mAP
SIFT + FV [16] 81.4 63.8 46.2 277 87.6 89.3 740 667 59.0 622
C-Zernike + m-VLAD [17]  86.0 71.4 56.8 37.7 90.3 91.7 799 736 664 692
CI-S 88.6 77.1 64.7 46.8 922 93.4 83.8 789 723 748
CI-S + E-SVM-FE 88.9 78.6 67.5 49.1 92.7 93.8 848 805 740 76.2

several images belong to the same handwritten letter. Thus, the
background information should actually improve the results. A
possible explanation could be that binary image patches are
easier to train with, thus resulting in a better representation.
When comparing SIFT with its restricted version (R-SIFT),
the former consistently outperforms the restricted version by
about 0.7% mAP. It seems that completely blank patches do
not harm the CNN classification. This might be related to the
clustering process, since all these patches typically end up
in one cluster. Furthermore, the training patches, which are
extracted, are more diverse. Also keypoints located right next
to the contour are preserved, cf. Fig. 2.

In summary, we can state that 1) m-VLAD encoding is the
best encoding candidate. 2) Our method is quite robust to
the number of clusters. Given enough surrogate classes, the
method outperforms other surrogate classes that need label
information. 3) The removal of descriptors (and corresponding
patches) using a simple ratio criterion seems to be beneficial.
4) Deeper networks do not seem to be necessary for the task
of writer identification. 5) Patches extracted at SIFT keypoint
locations computed on binarized images are preferable to other
modalities.

E. Comparison with the state of the art

We compare our method with the state-of-the-art methods of
Fiel et al. [16] (SIFT + FV) and Christlein et al. [17] (C-Zernike
+ m-VLAD). While the former one uses SIFT descriptors that
are encoded using Fisher vectors [41], the latter relies on
Zernike moments evaluated densely at the contour that are
subsequently encoded using the m-VLAD approach. Tab. V
shows that our proposed method achieves superior results in
comparison to these methods. Note that the encoding stage of
the Contour-Zernike-based method is similar to ours (CI-S).
It differs only in the way of post-processing, where we use
power normalization in preference to intra normalization [31].
However, the difference in accuracy is very small, see [17].
It follows that the improvement in performance just relies on
the better feature descriptors. The use of Exemplar SVMs for
feature encoding gives another improvement of nearly 1.5%
mAP.

Additionally, we evaluate the method on the classification
of medieval Latin script types. Tab. VI shows that our method
is slightly, but not significantly, better than state-of-the-art
methods [40] (Soft-5: 98.1%). Possible reasons are: a) the text
areas in the images are not segmented, i.e., the images contain
much more non-text elements such as decorations, which might
lower the actual feature learning process; b) the images are
not binarized, which proves beneficial, cf. Sec. V-D; c¢) one

TABLE VI: Comparison with state-of-the-art evaluated on the
CLaMM16 test set. The numbers for the first four rows are
taken from [40].

Method TOP-1
DeepScript 76.5
FRDC-OCR 79.8
NNML 83.8
FAU 83.9
Cl-S + SVM 84.1

can train here on average with 166 instances per class, while
only an exemplar classifier is trainable in the case of writer
identification.

VI. CONCLUSION

We have presented a simple method for deep feature learning
using cluster memberships as surrogate classes for local
extracted image patches. The main advantage is that no training
labels are necessary. All necessary training parameters have
been evaluated thoroughly. We show that this approach out-
performs supervised surrogate classes and traditional features
in the case of writer identification and writer retrieval. The
method achieves also comparable results to other methods on
the task of classification of script types.

As a secondary result, we found that binarized images are
preferable to grayscale versions for the training of our proposed
feature learning process. In the future, we want to investigate
this further, e. g., by evaluating only single handwritten lines
instead of full paragraphs to investigate the influence of inter-
linear spaces. Activations from other layers than the penultimate
one are also worth to be examined. Another idea relates to the
use of the last neural network layer, i.e., the predicted cluster
membership for each patch. Since VLAD encoding relies on
cluster memberships, this could be directly incorporated in the
pipeline.
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