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aPattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058
Erlangen, Germany

Abstract

This paper describes a method for robust offline writer identification. We propose to use RootSIFT descriptors computed
densely at the script contours. GMM supervectors are used as encoding method to describe the characteristic handwriting
of an individual scribe. GMM supervectors are created by adapting a background model to the distribution of local
feature descriptors. Finally, we propose to use Exemplar-SVMs to train a document-specific similarity measure. We
evaluate the method on three publicly available datasets (ICDAR / CVL / KHATT) and show that our method sets new
performance standards on all three datasets. Additionally, we compare different feature sampling strategies as well as
other encoding methods.
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1. Introduction

Since handwritten text can be used as a biometric iden-
tifier like faces or speech, it plays an important role for
law enforcement agencies in proving someone’s authenticity.
However, in such scenarios the decision is typically made
by experts in forensic handwriting. In contrast, searching
for similar scribes1 in a large document database raises the
need for an automated handwriting system (method). This
topic has attracted significant attention recently, especially
in the field of historical document analysis [1, 2, 3]. In
this application an automatic identification for particular
writers can give new insights of life in the past.

The focus of this paper is writer identification. Given a
document, writer identification is the task of finding the
specific writer (author) of the text from a set of writers
which are known to the system. Depending on the data at
hand, one has to differentiate between offline and online
writer identification. In online writer identification the
data contains temporal information about the text forma-
tion. In contrast, offline writer identification deals only
with the handwritten text itself without any additional
information. Offline writer identification can be further
categorized into two groups [4]: textural methods and al-
lograph-based methods. In the former group, handwriting
is described by global statistics drawn from the style of
the handwritten text, e. g., measurements of the ink width
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1Note: “writer” and “scribe” are used interchangeably throughout
this paper

or the angles of stroke directions [1, 5, 6] Conversely, in
allograph-based methods, the writer is described by the
distribution of features extracted from small letter parts
(i. e., “allographs”) [7, 2, 8, 9, 10]. A vocabulary needs to
be trained in advance from feature descriptors of the train-
ing set. The hereinafter presented method belongs to the
allograph-based methods. Please note also that the best
contenders of the ICDAR 2013 writer identification compe-
tition stem from this group [11]. Both approaches can also
be combined to create a better descriptor [4, 12, 13, 14].

Given some handwritten text, we propose to character-
ize its scribe by means of the distribution of local feature
descriptors. Hereby, the distribution is modeled by a gen-
erative model, in particular a Gaussian Mixture model
(GMM). We adapt the so-called GMM-UBM method [15],
a well-known approach in the field of speech processing. It
has shown to yield good results, e. g., for speaker identifi-
cation [16], or age determination [17].

In speech analysis, a GMM models the distribution of
short-time spectral feature vectors of all speakers. Since
such a GMM reflects the domain’s speech style in general, it
is typically denoted as Universal Background Model (UBM).
Each speaker of a particular utterance is described by
means of a maximum-a-posteriori (MAP) adaptation of the
UBM to the feature descriptors of that utterance [15]. See
Figure 1 for a schematic illustration of such representation
for the case of a two-dimensional feature vector. Finally,
the global feature descriptor is formed by stacking the
parameters of the adapted GMM (i. e., means, covariances,
and weights) in a so-called supervector.

For the adaptation of this approach to the image domain,
we replace the short-time spectral feature descriptors with
RootSIFT descriptors [18], a normalized version of scale
invariant feature transform (SIFT) descriptors [19]. Op-
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Figure 1: The Universal Background Model (blue) is adapted to
samples from one document (red). Mixtures which are influenced
more by the new samples are adapted more strongly than others.

tionally, the dimensionality of the feature vectors could
be reduced by a principal component analysis (PCA). We
show that the resulting GMM supervector encoding yields
an excellent representation for individual handwriting. Ad-
ditionally, we employ support vector machines (SVM) to
build individual classifiers per query document. Such an
SVM is a linear classifier trained by only one single posi-
tive sample and multiple negative samples, it is denoted
as Exemplar-SVM [20]. Among others, Exemplar-SVMs
have been used successfully for object classification [20],
and scene classification [21]. For each class an ensemble of
such Exemplar-SVMs is trained. The highest response of
the individual Exemplar-SVMs is used to decide upon the
class of an unknown image. Unlike these works, we employ
a single Exemplar-SVM for each test document using all
training documents as negatives. In this way, we change
the similarity measure for each test document. We show
that this framework outperforms the current state of the
art on three publicly available datasets.

This paper is an extension of the work initially published
in WACV 2014 [22]. Novel contributions include:

• the integration of Exemplar-SVMs [20], which greatly
improve the recognition rate;

• a more thorough analysis of the RootSIFT descrip-
tors, showing that their evaluation at contour edges
improves the recognition rate;

• investigation of an additional encoding strategy,
termed Gaussian supervector [23] besides Fisher vec-
tors and vectors of locally aggregated descriptors
(VLAD).

• evaluation on the KHATT dataset [24] containing 4000
Arabic handwritten documents of 1000 scribes in ad-
dtion to ICDAR13 and CVL.

The rest of the paper is organized as follows. Section 2
gives an overview of related work. In Section 3 we provide
a detailed description of our framework. We evaluate our
method on three datasets and compare our method with

the current state of the art in Section 4. Section 5 gives a
brief summary and outlook.

2. Related Work

The advantage of textural methods is their interpretabil-
ity in comparison to allograph-based methods. Further-
more, textural methods are typically faster to compute
since no dictionary needs to be trained. A recent textural
approach was presented by He and Schomaker [6]. They
propose to use the ∆-n Hinge feature which is a gener-
alization of the Hinge feature [4]. The method achieves
state-of-the-art results on the ICDAR13 English and Greek
subsets.

A mixture of allograph and texture-based methods is pre-
sented by Newell and Griffin [12]. They exploit histograms
of oriented basic image features (oBIF) and employ the
delta encoding as feature descriptors, which encodes a mean
oBIF histogram for each individual scribe. Despite yield-
ing very good results on several benchmark datasets, the
ICFHR 2014 competition [25] revealed that our previous
work using only GMM supervectors [22] achieves higher
accuracy.

Allograph-based methods rely on a dictionary trained
from local descriptors. This dictionary is subsequently used
to collect statistics from the local descriptors of the query
document. These statistics are then aggregated to form
the global descriptor that is used to classify the document.
This procedure is denoted encoding.

Fiel and Sablatnig [7] employ Fisher vectors as encoding
method to encode local SIFT descriptors. A GMM serves
as the vocabulary, i. e., a GMM is computed from SIFT
descriptors of the training set. Using this vocabulary, the
data of each document is encoded using improved Fisher
vectors [26]. The similarity between handwritten docu-
ments is computed using the cosine distance between the
corresponding Fisher vectors. They show state-of-the-art
results on the ICDAR 2011 and CVL dataset. The current
best performing method evaluated on the ICDAR13 Greek
and English subsets and the CVL dataset is a combination
of several features and Fisher vectors [10]. In that work,
contour gradient descriptors are combined with K-adjacent
segments (KAS), and SURF. Unlike these works, we em-
ploy MAP-adapted GMMs, i. e., each document is adapted
to a global GMM. The statistics of the adapted GMM form
our GMM supervector. Note that one can also compute
completely individual codebooks per document or writer
using k-means [9] or GMMs [27, 28]. However, the use of a
universal background model is much more common in im-
age retrieval [26, 29]. It simplifies the correspondence and
distance computation, and typically outperforms solutions
using individual codebooks [15, 22]

SIFT, or SIFT-like descriptors are the most common
features in allograph-based methods [22, 7, 9, 14]. Wu et al.
additionally make use of the scales and orientations given
by the SIFT keypoints [14]. In contrast, we evaluate SIFT
descriptors densely at the contours while preserving their
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Figure 2: Overview of the entire pipeline. From the input document (left) features are extracted using RootSIFT features computed densely
at the script contour. These features are subsequently PCA-whitened and their dimensionality is reduced. These local descriptors are then
encoded by means of GMM supervectors. After a normalization step, they are used as input for an Exemplar-SVM. The scores of the
Exemplar-SVMs are used for ranking the document.

rotational dependency. Recently, a descriptor specifically
developed for script was proposed by He et al. [8], where
junctions of the handwriting are extracted and subsequently
encoded using self-organizing maps (SOM).

One interesting aspect of a texture-based method stems
from Bertolini et al. [30]. They employ a dissimilarity
framework, i. e., a single SVM is trained which classifies
whether two documents are similar to each other or not.
In their approach, each document is first binarized and
then compressed to form a texture. Local binary patterns
(LBP) and local phase quantization (LPQ) are then used to
describe the textures. Each such compressed texture image
is divided in 9 parts which are individually evaluated with
a trained SVM. Finally, the individual probabilities are
merged using different merging techniques. In our approach
the image does not need to be divided in parts. Since we
employ Exemplar-SVMs, an individual similarity measure
for each document is computed.

Closely related to our approach is the work by Schlap-
bach et al. [31] on online writer identification. First, they
build a UBM by estimating a GMM, and then adapt a
GMM for each recorded handwriting. The similarity be-
tween two recordings is measured by using the sum of
posterior probabilities of each mixture. Busch et al. [32]
use MAP-adaptation for script classification in conjunction
with texture features such as gray-level co-occurence ma-
trices, Gabor and Wavelet engery features. Unlike these
works, we employ RootSIFT descriptors and construct
GMM supervectors from the adapted GMMs, which are
further used for the classification.

Smith and Kornelson [33] compare different encoding
schemes in the context of classifying whether images con-
tain text or not. They employ SURF descriptors as their
local descriptors. They show that GMM supervectors out-
perform Fisher Vectors in most scenarios. However, they
tested the encoding methods only on an in-house dataset.
We employ contour-based RootSIFT descriptors which are
encoded by GMM supervectors. Additionally, we employ a
different normalization scheme and train Exemplar-SVMs

to encode the similarity of each test document to others.

3. Methodology

Figure 2 shows an overview of our entire encoding pro-
cess. For each document local feature descriptors are com-
puted, in particular RootSIFT descriptors evaluated at the
contours. In a training step a dictionary, i. e., the UBM,
is trained from the descriptors of an independent docu-
ment dataset. Each document in question is then encoded
using the dictionary and the local descriptors to form a
high-dimensional image descriptor, which is then used for
classification. The remainder of this section provides the
details of the feature extraction, the construction of the
UBM, the adaptation process, the normalization of the
supervector and its classification using Exemplar-SVMs.

3.1. Features

SIFT descriptors are based on histograms of oriented
gradients [19]. Typically they are evaluated at specific key-
point locations, which may contain information about the
orientation, scale or other characteristics like the gradient
norm. SIFT descriptors have proven to be strong features
for image retrieval [18, 34], as well as in the related field
of image forensics [35], and have already been successfully
used in the context of writer identification [7, 14].

More specifically we use the Hellinger-normalized version
of SIFT [18] also known as RootSIFT. In practice, each
SIFT descriptor is l1-normalized followed by an element-
wise application of the square-root. For other normalization
techniques the reader is referred to [36, 37].

We evaluate several different sampling strategies: a)
SIFT descriptors computed at keypoints determined by the
scale-space approach as proposed by Lowe [19]; b) SIFT
evaluated densely at four different scales, also known as
pyramid histogram of visual words (PHOW) [38]; c) SIFT
evaluated at the contour points of the script.

Jégou et al. [29] showed that it can be beneficial to reduce
the dimensionality of the local SIFT descriptors by means
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of a principal component analysis (PCA). By retaining only
the dimensions related to the largest eigenvalues, possible
noise contained in the lower components is removed. Fur-
thermore, transforming the data with a PCA decorrelates
the feature descriptors, so that they can be modeled more
accurately by a GMM with a diagonal covariance matrix.
Moreover, eigenvalue decomposition can be used to whiten
the descriptors, i. e., making the covariance equal to the
identity matrix. This has been shown to be beneficial for
the recognitioon accuracy [39].

3.2. GMM Supervector Encoding

Encoding refers to the process of building a single global
feature descriptor from many local descriptors. A widely
used encoding method is known as bag of (visual) words
(BoW).

Universal Background Model:. Similarly to k-means in the
classical BoW approach, a global dictionary is constructed,
which is denoted as universal background model (UBM). It
is modeled by a Gaussian mixture model (GMM), since any
continuous distribution can be modeled by a GMM with
arbitrary precision. Let λ = {wk, µk, Σk |k = 1, . . . ,K} be
the parameters of the GMM with K mixture components,
where wk, µk, Σk are the mixture weight, mean vector and
covariance matrix of component k, respectively.

Given a feature vector x ∈ RD, its likelihood function is
defined as

p(x |λ) =

K∑
k=1

wkgk(x) , (1)

where the Gaussian density gk is:

gk(x) = g(x ; µk,Σk) =
1√

(2π)D|Σk|
e−

1
2 (x−µk)

>Σ−1
k (x−µk) .

(2)

The mixture weights satisfy the constraint
∑K
k=1 wk = 1

and wk ∈ R+.
Finally, the posterior probability of a feature vector xj

to be generated by the Gaussian mixture k follows as:

γj(k) = p(k |xj) =
wkgk(xj)∑K
l=1 wlgl(xj)

. (3)

The GMM parameters are estimated using the
Expectation-Maximization (EM) algorithm to optimize a
Maximum Likelihood (ML) criterion [40]. The parameters
λ of the UBM are iteratively refined to increase the log-
likelihood log p(X |λ) =

∑M
m=1 log p(xm |λ) of the model

for the set of training samples X = {x1, . . . ,xM}. For
computational efficiency, the covariance matrix Σk is as-
sumed to be diagonal, and in the remainder of this paper,
the vector of the diagonal elements of Σk is denoted as
σk. Note that a GMM using full covariance matrices can
equally well be approximated by a GMM using diagonal
covariance matrices by using a larger number of Gaussian
mixtures [15].

GMM Adaptation and Mixing:. The final UBM is adapted
to each document individually, using all T local descriptors
computed for a document W , XW = {x1, . . . ,xT }. This
can be seen as a MAP adaptation of the UBM to the new
samples. New statistics are computed. Let

nk =

T∑
t=1

γk(xt) , (4)

then the zeroth, first and second order statistics are:

E0
k =

1

T
nk (5)

E1
k =

1

nk

T∑
t=1

γk(xt)xt (6)

E2
k =

1

nk

T∑
t=1

γk(xt)(xt � xt) (7)

where E0
k ∈ R, E1

k ∈ RD, and E2
k ∈ RD, and � denotes the

Hadamard product.
Finally, these statistics are mixed together with the

information contained in the UBM. Densities with high
posteriors are adapted more strongly (cf. Figure 1). This is
controlled by a fixed relevance factor rτ for the adaptation
coefficients

ατk =
nk

nk + rτ
(8)

for each parameter τ
(
τ ∈ {w, µ, Σ}

)
. We use the same r

for each τ as suggested by Reynolds et al. [15] (τ as a su-
perscript is therefore omitted subsequently). The resulting
mixture parameters follow as:

ŵk = δ
(
αkE

0
k + (1− αk)wk

)
(9)

µ̂k = αkE
1
k + (1− αk)µk (10)

σ̂k = αkE
2
k + (1− αk)

(
σk + µ2

k

)
− µ̂2

k (11)

where δ is a scaling factor ensuring that the weights of
all components sum up to one. Note: µ2 and µ̂2 is a
shorthand notation for µ� µ and µ̂� µ̂, respectively.

Finally, the supervector s is formed by concatenating all
parameters from the adapted GMM:

s =
(
ŵ1, . . . , ŵK , µ̂

>
1 , . . . , µ̂

>
K , σ̂

>
1 , . . . , σ̂

>
K

)>
. (12)

The vector s represents the global feature descriptor, and
consists of (1 + 2D)K elements. Note that often only
the adapted mean components are used, which reduces
the vector size to DK. The effects of this reduction are
evaluated in Section 4.4.

Normalization:. Sanchez et al. [26] propose a two step
normalization for the resulting vector after an encoding
with Fisher vectors. First, power-normalization is applied
to each element, i. e.,

si = sign(si)|si|ρ ,∀si ∈ s , 0 < ρ ≤ 1 . (13)
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Typically, ρ is set to 0.5, which then equals the Hellinger
normalization, cf. Section 3.1. Next, the vector is l2-
normalized, i. e., s = s/‖s‖2. Through these normalization
steps image-independent information, like the background
data, is discarded by reducing the influence of more frequent
descriptors [26]. Furthermore, Sánchez et al. [26] showed
that an l2-normalization is, in general, beneficial when used
in combination with linear classifiers.

Arandjelovic and Zisserman [34] propose to use intra-
normalization for VLAD encodings. Similar to GMM su-
pervectors, VLAD is composed of multiple components.
They suggest to apply a component-wise l2-normalization
which is followed by a global l2-normalization. This helps
to reduce the influence of dominant components.

Both normalization strategies will be evaluated when
applied on the proposed GMM supervectors. Moreover, we
evaluate two different variants of the GMM supervectors
by applying a feature mapping. This can also be seen
as a form of normalization. Hereby, a feature mapping
inspired by the symmetrized Kullback-Leibler divergence is
applied [41]. We refer to this mapping as KL-normalization.
It is computed as:

µ̃k =
√
wkσ

− 1
2

k � µ̂k (14)

σ̃k =

√
wk
2
σ−1k � σ̂k . (15)

In the case of mean-adaptation only, the resulting super-
vector follows as:

s̃m =
(
µ̃>1 , . . . , µ̃

>
K

)>
, (16)

or as suggested by Xu et al. [41], one can build a 2DK
long supervector:

s̃mv =
(
µ̃>1 , . . . , µ̃

>
K , σ̃

>
1 , . . . , σ̃

>
K

)>
. (17)

In this way, properties of the UBM are incorporated im-
plicitly into the normalized global descriptor (s̃m and s̃mv)
that are normally not reflected in the supervector. Note
that the KL-Kernel has also been used in conjunction with
GMM supervectors and SVMs in the field of speaker verifi-
cation [16].

3.3. Other Encoding Methods

Apart from the different variants of the GMM super-
vectors (choice of features and normalization strategies),
several other encoding methods exist. The most popular
one is certainly vector quantization, however it has been
shown that it is inferior to other encoding methods [42, 39].
We will compare the proposed method with other encoding
methods concentrating on those which are derived from
a GMM. More specifically, we will evaluate (improved)
Fisher vectors (FV) [26] and vector of locally aggregated
vectors (VLAD) [29], in particular a probabilistic variant of
VLAD [29, 39, 33]. We will also evaluate another encoding
method derived from a GMM, namely the Gaussianized vec-
tor representation (GVR) [23]. In the following paragraphs
we will briefly present those three encoding methods.

Fisher Vectors:. This representation is in many ways simi-
lar to GMM supervectors [26]. The distribution of samples
is also described by a generative model (i. e., a GMM).
Each sample is then transformed to the gradient space of
the model parameters. The Fisher vectors are derived from
Fisher kernels, in particular the Fisher score of the samples
normalized by the square-root of the Fisher information
matrix [26].

Similar to the proposed MAP-adapted GMM supervec-
tors, Fisher vectors encode statistics up to the second order:

µ̂k =
1

T
√
wk

T∑
t=1

γt(xt)
(
(xt − µ)� σk

)
, (18)

σ̂k =
1

T
√

2wk

T∑
t=1

γt(xt)
((

(xt − µk)� (xt − µk)
)
� σ

)
,

(19)

where � and � denote the element-wise multiplication and
division, respectively. Finally, the concatenation of σ̂k for
k = 1, . . . ,K form the 2DK-dimensional Fisher vector.

Probabilistic VLAD:. The non-probabilistic version of the
VLAD representation [29] achieved state of the art results
on several benchmark datasets, especially when its repre-
sentation was improved with intra-normalization [34] or
residual normalization [43].

In contrast to the hard assignment of codewords by de-
termining the nearest cluster centers, we use a probabilistic
version of VLAD [29], which uses weighted distances to
nearby cluster centers. This allows for a better comparison
to the other GMM-based representations, since the same
posteriors can be used.

vk =

T∑
t=1

γk(xt)(xt − µk) . (20)

For the non-probabilistic version, the µk would be the clus-
ter centers obtained by k-means. γk(x) would be a Dirac
function returning 1 if µk is the nearest cluster center
to xt and 0 otherwise. Similarly to the other representa-
tions, each vk is stacked together to form a supervector
representation containing DK elements.

Gaussianized Vector Representation:. This representation
is another form of supervector encoding [23]. It can be seen
as an extension of the probabilistic VLAD and is defined
as:

zk = (nkσk)−
1
2vk , (21)

where vk is computed as in the soft VLAD representation,
Equation (20), and σk is the diagonal of the covariance
matrix of the UBM. Thus, more information about the
background writers is incorporated, similarly to the KL-
normalization. Again, all K components form the super-
vector representation.
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Figure 3: For each document of the test set an individual Exemplar-
SVM is trained. The GMM supervector of this document is used as
positive sample, while all the encodings of the training set are used
as negatives.

3.4. Exemplar-SVMs

Instead of using one SVM per object category, Mal-
isiewicz et al. [20] proposed to use an ensemble of Exemplar-
SVMs for object detection. This means, that for each
instance of all object classes in the training set an indi-
vidual (linear) SVM is trained. For training each of these
Exemplar-SVMs the current sample is used as the only
instance of the positive class and all other training sam-
ples as negatives. The large margin formulation follows
similarly to the standard SVM:

argmin
w,b

1

2
‖w‖2+cph(1−w>xp−b)+cn

∑
xn∈N

h(1+w>xn+b) ,

(22)
where h(x) = max(0, x) is the hinge loss function, xp is the
single target positive sample and xn are the descriptors
of the negative training set N , respectively. cp and cn
are regularization parameters for balancing the positive
and negative costs. This has the effect that a single SVM
does not have to be able to recognize different views of the
same object, but can concentrate on classifying a single
view. The authors of [20] showed that an ensemble of
such Exemplar-SVMs generalizes well, although each single
Exemplar-SVM has a very strict decision boundary. As
each classifier solves a simplified problem compared to a
full category classifier, a simple regularized linear SVM is
sufficient.

Note that Exemplar-SVMs can be reformulated to
Exemplar-One-Class SVMs [44]. This has the advantage
that no individual class weight has to be calibrated. Very
popular is also the approximation of Exemplar-SVMs by
Exemplar-LDA [45, 46, 44], where the training set is ap-
proximated by a Gaussian. Furthermore, Exemplar-SVMs
can also be used as feature encoders [47, 44], where the
normalized computed weight vector w is directly used as
new feature descriptor for the specific exemplar.

For our application we have to modify this approach,
since the training and testing subsets of a typical writer
identification dataset are disjoint, i. e., the writers of the
test set are not part of the training set. Therefore, the

Figure 4: Example lines of the three datasets, from top to bottom:
ICDAR13, CVL and KHATT.

normal recognition pipeline, i. e., learning a multi-class
classifier by using samples from the training set which then
predicts the class of the samples in the test set, can not
be applied. However, by using Exemplar-SVMs we can
circumvent this problem. We do not train Exemplar-SVMs
on the classes (=writers), of the training set at all. Instead,
we train an Exemplar-SVM during test time for each query
document by using the query document as positive sample,
and all training samples are used as negatives. This is illus-
trated in Figure 3. Each other document is scored against
the Exemplar-SVM of the query document and ranked
according to the scores. The author associated with the
document having the highest score is with high probability
also the author of the query document. Intuitively, this
can be seen as an adjustment of the similarity measure.
Instead of finding the nearest neighbor according to the
cosine distance, a document specific similarity is learned.

The global feature vectors are high-dimensional, in our
case 6400-dimensional. In such a space, all points tend to
lie at the periphery of the manifold. On one hand this is the
curse of dimensionality, on the other hand it is a blessing
since the exemplar needs to be separable enough from the
negative descriptors [46]. For the Exemplar-SVM computa-
tion, we employ LIBLINEAR [48] that relies on coordinate
descent. Another possibility would be to use stochastic
gradient descent (SGD) as suggested by Zepeda et al. [47].
However, we found LIBLINEAR to be fast and robust.
Computing the 1000 E-SVMs of the ICDAR13 benchmark
dataset takes about 2.3 minutes using a standard PC (Intel
Xeon E3-1276 3.60GHz), see Section 4.8.

4. Evaluation

In the following paragraphs we document which datasets
and evaluation metrics we use for evaluating our approach.
Subsequently, we show the impact of the feature sampling as
well as the GMM parameters, normalization, and Exemplar-
SVMs. Finally, we compare our method to other GMM-
based encoding methods and the state of the art method
for writer identification.

4.1. Benchmark Datasets

We use the publicly available CVL, ICDAR13, and
KHATT datasets for evaluation. From the example lines
in Figure 4, one can see the large variation in visual ap-
pearance between these datasets.
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ICDAR13 [11] was part of the ICDAR 2013 writer iden-
tification competition. It consists of two disjoint datasets,
an experimental dataset for training and a benchmark
dataset for testing. The experimental dataset stems from
the ICFHR 2012 writer identification contest [49] and con-
sists of 100 scribes. The benchmark set contains 250 scribes.
In both subsets each scribe contributed four documents.
Two documents were written in Greek, the other two in
English. The documents of the dataset are all binarized.

CVL [50] consists of 310 scribes. Twenty-seven of them
contributed seven documents each, which form the training
set. The other 283 scribes contributed five documents each,
which form the test set. For each scribe, one document
is written in German and the remaining ones are written
in English. Note that we binarized the documents for the
evaluation using Otsu’s method [51] to be more similar to
the ICDAR13 dataset.

KHATT [24] was part of the ICFHR 2014 Arabic writer
identification competition. KHATT consists of Arabic
handwritten documents from 1000 scribes, where each
scribe wrote four documents. The database is divided
into three disjoint sets for training (70%), validation (15%)
and testing (15%), respectively. The document images are
in grayscale.

4.2. Evaluation Metrics

For evaluation, each document is tested against all re-
maining ones. The results for writer identification are
expressed in terms of mean average precision (mAP) and
TOP-k rates for different ranks k.

Mean average precision is a measure used in the context
of information retrieval. Let us first specify average preci-
sion (aP). Consider a query that returns Q documents in a
ranked sequence. Out of the Q documents, R are relevant,
i. e., written by the queried author. aP is calculated by

aP =
1

R

Q∑
k=1

Pr(k) · rel(k) , (23)

where rel(k) is a binary function that is 1 when the docu-
ment at rank k is relevant, and 0 otherwise. Pr(k) is the
precision at rank k of the query (i. e., number of relevant
documents in the first k query items divided by k). The
mAP is computed as the average over all aP values of all
possible queries. In this way, if relevant documents are
found at a lower rank, higher values are assigned. Note
that the recently employed writer retrieval criterion [7, 50]
is closely related to the mAP.

The identification rate is given by the soft and hard
TOP-k rates. The soft TOP-k rates (abbreviated as S-
k) give the probability that at least one document of the
same writer is among the k highly ranked documents. In
contrast, the hard TOP-k rates (abbreviated as H-k) denote
the probability that among the k first documents exactly
k documents are from the same writer.

Descriptor mAP

R-SIFT [22] 69.2
Dense-R-SIFT 76.0
C-R-SIFT 80.6

C-R-SIFT + PCA-64 81.8
C-R-SIFT + PCA-64 + Wh. 84.0

Table 1: Comparison of SIFT using different modalities. From top
to bottom: R-SIFT computed at SIFT keypoints, R-SIFT evaluated
densely over the image (Dense-R-SIFT), R-SIFT computed at the
contour of the script (C-R-SIFT). C-R-SIFTs are evaluated with a
PCA-dimensionality reduced version retaining 64 components (second
last row) and additionally whitened (last row). The results are given
in terms of mAP evaluated on the ICDAR13 training set.

In the following sections we evaluate the influence of
different parts of the pipeline. We begin with the fea-
ture extraction, followed by the evaluation of different
encoding methods. Finally, we assess the influence of the
normalization step and compare the results of the complete
pipeline with other encoding methods and the state of
the art method. The UBM-GMM is learned from 150000
randomly selected descriptors of the associated training
set. Taking all descriptors would be computationally pro-
hibitive. Unless otherwise specified, we use the values of
our previous work [22]: 100 components for the GMM,
GMM supervectors as encoding method using a relevance
factor r = 28 and the supervectors are normalized using
power-normalization followed by an l2-normalization. The
cosine distance is used for comparing two global descrip-
tors as a fast similarity measure (only a dot product for l2
normalized feature descriptors) following previous work on
image retrieval [26, 34].

4.3. Influence of Feature Extraction Modalities

First, we evaluate the influence of the descriptor. More
specifically, we look at the influence of the sampling strat-
egy used in conjunction with SIFT. The baseline is given by
our previous results in which we used Hellinger-normalized
SIFT (R-SIFT) features evaluated at SIFT keypoints [22].
We compare this baseline against a densely sampled version
of RootSIFT (Dense-R-SIFT). We use the implementation
provided by the VLFeat Toolbox [52] using the standard
bin sizes (4,6,8,10), and a step size of 3. Another sam-
pling strategy was inspired by the contour-gradient descrip-
tor proposed by Jain and Doermann [9], who proposed
a SIFT-like descriptor evaluated only at the contour of
the script. Instead we directly use RootSIFT descriptors
with their standard size, i. e., a bin size of 4. However,
we omit rotational invariance, i. e., setting the descriptor
upright at each position. Fiel and Sablatnig [7] showed
that rotational-dependent SIFT descriptors are beneficial
for writer identification. The first three rows in Table 1
show that dense sampling is better than using SIFT key-
points. Computing SIFT at the contour of the handwriting
(C-R-SIFT) achieves the highest rates.
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Figure 5: Evaluation of the relevance factor using the ICDAR13
training set.

Encoding mAP

SVw 72.3
SVm 84.6
SVc 83.7
SVmc 84.7
SVwmc 84.7

(a) Component combina-
tions.

Encoding mAP

SVwmc 84.4
SVwmc + ssr 84.7
SVwmc + intra 84.2
SVm + KL-norm 85.1
SVmc + KL-norm 85.9

(b) Normalization comparison.

Table 2: Comparison of different GMM supervector component
combinations (a): only weights (SVw); means (SVm); covariances
(SVc); means and covariances (SVmc); weights and means and co-
variances (SVwmc). (b) shows different normalization techniques:
all components and no normalization (SVwmc); all components and
element-wise signed square root (SVssr); all components and intra-
normalization (SVwmc + intra); KL-normalized mean components
(SVm + KL-norm); KL-normalized mean and covariances (SVmc +
KL-norm). All rates are given in terms of mAP evaluated on the
ICDAR13 training set.

Since we seek to have a compact representation for the
subsequent steps of the pipeline, we evaluate the influence
of reducing the dimensionality of the RootSIFT descrip-
tors to 64 components as well as performing an additional
whitening step. Table 1 reveals that especially the whiten-
ing step is beneficial for the C-R-SIFT representation (ap-
plying a dimensionality reduction and whitening to the
original RootSIFT representation gives 66.2 mAP). Note
that the PCA-decorrelated versions are subsequently l2-
normalized. For the rest of the paper, we use this compact
representation (C-R-SIFT + PCA-64 + Wh.).

4.4. GMM Supervector parameters

GMM supervectors depend on: a) the relevance factor r,
b) the adapted components, and thus the supervector rep-
resentation, and c) the applied normalization. In general
also the number of Gaussians for the GMM training is im-
portant, however we have found that the accuracy is quite
stable for a number of Gaussians between 50 and 150 [22],
thus using 100 Gaussians for the following experiments.

Figure 5 shows the influence of different relevance factors.
In contrast to the relevance factor r = 28 of our previous
work [22], it seems that a higher relevance factor of 64 is
slightly better suited for C-R-SIFT descriptors. Although
the relevance factor depends on nk (see Equation (8)), and

thus is dataset dependent, we found the chosen relevance
factor to be working well for other datasets, too.

Next, we compare different supervector representations,
i. e., we experiment with only weights (SVw), means (SVm),
covariances (SVc) or combinations of these three SVmc

and SVwmc. Note that they were normalized using power
normalization (ssr). Table 2a shows that using mean super-
vectors as the sole representation is superior to supervector
consisting of the adapted covariances, or weights. Higher
dimensional combinations do not seem to improve the recog-
nition rate much to justify the increase in dimensionality.
Thus, we stick to the more compact representation resulting
in a 6400-dimensional supervector.

We also evaluated different normalization techniques. Ta-
ble 2b shows that power-normalization is superior to intra-
normalization or just applying l2-normalization. Rows four
and five of Table 2b show the results of using the normaliza-
tion derived from the KL-kernel. This representation seems
to further improve the recognition rate. Consequently, we
chose to use this normalization for the subsequent eval-
uations, where we use mean-adapted GMM supervectors
to save training time for the Exemplar-SVM denoted as
SVm,kl.

4.5. Comparison with Other Encoding Methods

We compare our proposed encoding method, i. e., GMM
supervectors, with other encoding techniques that use a
GMM as background model. We present the results of the
ICDAR13 test set so that they can be compared to the
results of the state of the art in Table 3. When comparing
the different encoding methods, the GMM supervector en-
coding performs best, while Fisher vectors perform second
best. Dimension-wise SVwmc has the largest feature dimen-
sion of 2KD + D, while Fisher vectors typically encode
first and second order statistics resulting in a dimension
of 2KD. The other encoding methods (PVLAD, GSV,
Proposed) encode only first order statistics, thus having
a lower dimension of KD (i. e., 6400-dimensional). This
speeds up the subsequent parts of the pipeline, especially
the use of the Exemplar-SVMs.

4.6. Exemplar-SVM Analysis

For each test document an individual E-SVM is created
using all the documents of the training set as negative
samples. We choose to use the same class weights as
proposed by Malisiewicz et al. [20], i. e., cp = 0.5 and
cn = 0.01, where cp is the class weight for the positive set
and cn for the negative set. We scale these parameters
by a complexity parameter C which is validated using the
validation sets (for the ICDAR13 set, we split the training
dataset in two subsets such that 75% is used to train the
SVMs and 25% for validation; for the CVL dataset we used
the same C as for the ICDAR13 dataset, since the training
set was too small for splitting).

First we evaluated the influence of the number of avail-
able negatives used to train the Exemplar-SVMs. Figure 6
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Method S-1 S-2 S-5 S-10 H-2 H-3 mAP

C-R-SIFT + PVLAD 97.3 97.8 98.4 98.8 67.8 45.1 79.0
C-R-SIFT + GSV 97.4 98.0 98.5 99.0 66.8 45.1 78.9
C-R-SIFT + FVmc,ssr 97.4 98.4 98.7 99.0 69.0 47.2 80.3
C-R-SIFT + SVwmc,ssr 98.0 98.4 98.9 99.1 71.1 47.1 80.9
C-R-SIFT + SVm,kl 98.2 98.6 98.7 98.9 71.2 47.7 81.4

Table 3: Comparison of different encoding methods evaluated on the ICDAR13 test set.
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Figure 6: Evaluation of the accuracy (left) and time (right) using different number of negatives for the Exemplar-SVM training, evaluated with
the ICDAR13 test set.

(left) shows that with a growing number of negative train-
ing samples the retrieval rate raises. Even a low number
of negatives has a positive influence on the mean average
precision. The better accuracy comes with the prize of a
higher runtime, see Figure 6 (right). However, this makes
just a small part of the overall runtime, cf. Section 4.8,

4.7. Evaluation of Our Entire Pipeline

We compare our baseline [22] with the proposed more
compact representation, i. e., C-R-SIFT descriptors with
mean-adapted GMM supervectors and KL-normalization
(Proposed) and our extended pipeline, i. e., the integration
of Exemplar-SVMs (Proposed + E-SVM). We show that
this additional step sets new standards on all evaluated
datasets.

4.7.1. Results for ICDAR13

Interestingly, Table 4 shows that all proposed encoding
methods (Table 3) perform better than the methods cur-
rently considered the state of the art [11, 22, 9]. The work
by Fiel et al. [7] (SIFT + FV) and our previous work [22]
(R-SIFT + SV) are based on sparsely sampled SIFT and
RootSIFT, respectively. In comparison with their contour-
based versions, we can conclude that the feature sampling
is indeed an important factor for a high mAP.

As can be seen in Table 4, using Exemplar-SVMs gives
a further boost in terms of accuracy. For example, on
the ICDAR13 dataset the hard TOP-2 and TOP-3 rates
improve by about 13 and 15 percentage points, respectively.
Thus, we are able to detect not even the document from
the same language, but find with a high probability the
documents of the same author even in a different script
style.

As Table 5 shows, if we evaluate the languages indepen-
dently, our approach without Exemplar-SVMs performs
worse than the feature combination approach of Jain and
Doermann [10]2. However, using our extended pipeline,
we even achieve a recognition rate of 100% for the Greek
documents, and a TOP-1 accuracy of 99% for the English
dataset.

4.7.2. Results for CVL

The CVL dataset is evaluated in two different ways:

A) Using solely the CVL training set for creating the
background model, PCA-transformation matrix, and
the computed GMM supervectors as negatives for the
Exemplar-SVM.

B) As training set we merged two additional datasets:
i) the complete IAM dataset [53] consisting of 1539
pages, and ii) the ICDAR 2011 benchmark dataset [54]
containing 209 documents. The UBM and the PCA-
transformation matrix were computed using the IC-
DAR13 training set.

Thus, A) gives a fair comparison to other methods, since
only information from the dataset itself is used. For B) we
show what is possible with additional training data, even
when this data comes from different datasets. Similarly,
Table 6 shows a large improvement using Exemplar-SVMs
in the case of scenario B) where we enriched the training
set. However, using solely the CVL training set for the
training of the Exemplar-SVMs worsens the results. This
is in contradiction to our Exemplar-SVM analysis, where

2The authors have not provided results for the complete ICDAR13
dataset
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Method S-1 S-2 S-5 S-10 H-2 H-3 mAP

SIFT + FVmc,ssr [7] 90.9 93.6 97.0 98.0 44.8 24.5 -
HIT-ICG 94.8 96.7 98.0 98.3 63.2 36.5 -
CS [9] 95.1 97.7 98.6 99.1 19.6 7.1 -
R-SIFT + SVwmc,ssr [22] 97.1 98.5 98.9 99.0 42.8 23.8 67.1

Proposed 98.2 98.6 98.7 98.9 71.2 47.7 81.4
Proposed + E-SVM 99.7 99.7 99.8 99.8 84.8 63.5 89.4

Table 4: Comparison of our method with the state of the art evaluated on the ICDAR13 test set. Values of HIT-ICG, [7], [9] are taken
from [11].

Greek English
Method S-1 S-2 S-5 S-10 mAP S-1 S-2 S-5 S-10 mAP

SIFT + FV [7] 88.4 92.0 96.8 97.8 - 91.4 94.2 95.8 97.2 -
HIT-ICG 93.8 96.4 97.2 97.8 - 92.2 94.6 96.4 96.8 -
CS [9] 95.6 98.2 98.6 99.2 - 94.6 97.0 98.4 98.8 -
SV [22] 97.4 98.6 99.0 99.4 98.2 96.4 97.4 98.0 98.8 97.2
∆-n H. [6] 96.0 - - 98.4 - 93.4 - - 97.8 -
Comb. [10] 99.2 99.6 99.8 99.8 99.5 97.4 97.8 98.6 98.8 97.9

Proposed 98.2 98.6 99.2 99.4 98.6 95.8 96.6 97.0 97.6 96.5
Proposed + E-SVM 100 100 100 100 100 99.0 99.2 99.8 100 99.3

Table 5: Comparison with the state of the art on the ICDAR13 test set: Greek only (left) and English only (right). Values of HIT-ICG, [7], [9]
are taken from [11].

even 25 negatives for the Exemplar-SVM training bring a
small improvement for the ICDAR13 test set. We believe
that the small number of different scribes in the training
set prevents the creation of strong Exemplar-SVMs. Also
the lack of a suitable validation set makes a calibration of
the balancing factor C impossible. Note that our proposed
method without Exemplar-SVMs does not improve over our
baseline approach [22]. This might be related to the rather
homogeneous CVL dataset, where a more dense sampling
does not improve over a sparse sampling. However, the
proposed supervector is much smaller than our baseline
(KD vs. 2KD +K). Further note that the different UBM
and PCA-transformation result in slightly worse results of
“proposed” in B) compared to A).

4.7.3. Results for KHATT

The same holds true for the KHATT dataset, which we
additionally evaluated3. Our strong baseline [22] achieves
slightly better results compared to the proposed system us-
ing C-R-SIFT descriptors and mean-adapted GMM super-
vectors (Proposed). However, when we apply the complete
pipeline, i. e., using Exemplar-SVMs, we achieve recogni-
tion rates near 100%. This is related to the large training

3Note that the evaluation protocol of [5] is different from ours,
since the authors chose to use not the official dataset splitting: They
use two documents from each author to train a multi-class SVM
(resulting in 2000 documents). The system is then tested by using
one document as probe and the other as query, i. e., 1000 evaluations.
In contrast, we evaluate the algorithm on the official testing subset
in a leave-one-document-out manner.
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Figure 7: Runtime of the different pipeline steps, evaluated using the
ICDAR13 dataset.

and validation sets provided by this dataset. This also
indicates that larger training sets are needed for a further
improvement in recognition rates.

4.8. Runtime Evaluation

We measured the runtime of different steps of our pro-
posed pipeline, see Figure 7. GMM training takes the most
time followed by the feature processing. Feature processing
comprises the Hellinger normalization and PCA transfor-
mation. Interestingly, while the encoding step takes three
times as long as the feature extraction part, the Exemplar-
SVM part takes less time than the feature extraction using
LIBLINEAR. The training of the 1000 Exemplar-SVMs
of the ICDAR13 benchmark dataset takes only about 2.3
minutes. However note that the number of negatives is 400
(the ICDAR13 training dataset). With more negatives this
step could take more time. The processing time for the
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Method S-1 S-2 S-5 S-10 H-2 H-3 H-4 mAP

SIFT + FVmc,ssr [7] 97.8 98.6 99.1 99.6 95.6 89.4 75.8 -
R-SIFT + SVwmc,ssr [22] 99.2 99.2 99.5 99.6 98.1 95.8 88.7 97.1
Comb. [10] 99.4 99.5 99.6 99.7 98.3 94.8 82.9 96.9

A)
Proposed 98.8 99.0 99.2 99.2 97.8 95.3 88.8 96.4
Proposed + E-SVM 93.4 94.4 96.1 97.2 91.0 87.3 80.0 91.0

B)
Proposed 98.7 98.9 99.1 99.2 97.7 95.2 87.3 96.1
Proposed + E-SVM 99.2 99.5 99.6 99.7 98.4 97.1 93.6 98.0

Table 6: Comparison with the state of the art on the CVL test set. We experimented using different negative sets for the E-SVM training:
A) the CVL training set; B) the IAM datasets plus the ICDAR 2011 benchmark dataset.

Method S-1 S-2 S-5 S-10 H-2 H-3 mAP

Edge Hinge [5] 84.1 - 91.8 92.8 - - -
R-SIFT + SVwmc,ssr [22] 97.8 99.0 99.3 99.5 90.3 75.0 92.7

Proposed 96.0 97.8 98.5 98.7 87.0 67.8 88.0
Proposed + E-SVM 99.5 99.5 99.5 99.5 96.5 92.5 97.2

Table 7: Comparison with the state of the art on the KHATT test set.

ICDAR13 test set was about 27 minutes, i. e., each image
took about 1.6s to process. Please note that our imple-
mentation has not been optimized regarding the runtime,
and only some parts were parallelized. We see room for
improvement, especially with the feature processing and
encoding step.

5. Conclusion

In this work, we have presented a new framework for
offline writer identification setting new performance stan-
dards on three benchmark datasets. First, we proposed
the use of SIFT descriptors computed densely at the script
contour. We showed that this sampling strategy greatly
improves the recognition rates in comparison to other strate-
gies on the difficult bilingual ICDAR13 dataset. Similar to
our previous work, we evaluated the influence of different
encoding methods and showed that GMM supervectors
are superior to other GMM-based encoding methods. We
can further improve the recognition accuracy by using a
normalization derived from the KL-kernel and at the same
time reduce the dimensionality of the feature vector. Ad-
ditionally, we extended our previous work [22] by using
Exemplar-SVMs and showed that this step boosts the recog-
nition rate on all datasets. However, large datasets such
as KHATT benefit the most, due to the significant size of
the training set.

Since feature extraction was not the focus of this paper,
it would be interesting to analyze, how features, specifically
designed for script, e. g., the recently developed junclets [8],
would perform in conjunction with GMM supervectors and
Exemplar-SVMs. Recent improvements in the encoding
step such as higher order VLAD [55] or democratic aggre-
gation [56], could further improve the writer identification

rates. The current high identification rates also suggest
the need for larger datasets. This would also widen the
scope for techniques relying on more training data such as
convolutional neural networks.
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