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ABSTRACT
The outputs of the higher layers of deep pre-trained convolutional
neural networks (CNNs) have consistently been shown to provide
a rich representation of an image for use in recognition tasks. This
study explores the suitability of such an approach for speech-based
emotion recognition tasks. First, we detail a new acoustic feature
representation, denoted as deep spectrum features, derived from
feeding spectrograms through a very deep image classification CNN
and forming a feature vector from the activations of the last fully
connected layer. We then compare the performance of our novel fea-
tures with standardised brute-force and bag-of-audio-words (BoAW)
acoustic feature representations for 2- and 5-class speech-based
emotion recognition in clean, noisy and denoised conditions. The
presented results show that image-based approaches are a promising
avenue of research for speech-based recognition tasks. Key results
indicate that deep-spectrum features are comparable in performance
with the other tested acoustic feature representations in matched for
noise type train-test conditions; however, the BoAW paradigm is
better suited to cross-noise-type train-test conditions.
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1 INTRODUCTION
Convolutional neural networks (CNNs) have become increasingly
popular in machine learning research. Due to their high accu-
racy, they are arguably the most dominant approach for large scale
image recognition tasks [17]. There currently exists a plethora
of pre-trained and open-source deep CNN architectures, such as
AlexNet [16] and VGG19 [30] which have been trained on over a
million images, for image classification. AlexNet, in particular, has
been revolutionary within computer vision. Consisting of 60 million
parameters, 500, 000 neurons and 5 conventional layers, it achieved
a never seen before level of performance in the 2012 ImageNet com-
petition [16, 17]. Most major technology companies now use CNNs
for image understanding and search tasks [14, 17].

These pre-trained CNNs are also gaining considerable research
interest as a feature extractor for a task of interest, e. g. object or
scene recognition [6, 29]. It is argued that CNNs, through their
layered combination of convolutional and pooling layers, capture a
robust mid-level representation of a given image, as opposed to low-
level features such as edges and corners [6, 17]. It has been shown
that deep representation features extracted from the activations of
top layers of AlexNet have sufficient representational power and
generalisability for image recognition tasks [6]. Indeed, state-of-
the-art results for a range of vision-based classification have been
achieved with such deep representation features [5, 29].

The success of CNNs has not been limited to the image domain.
In the audio domain, feeding spectrogram representations through
CNNs has been shown to produce suitable salient features for acous-
tic event detection [3], music onset detection [23], automatic speech
recognition [1, 22], and speech-based emotion recognition [12, 18].
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These papers however, trained their own CNN architectures, requir-
ing a substantial amounts of data, time and computational power.
As a result, research efforts have begun into leveraging pre-trained
image CNNs to learn suitable speech representations [2, 4, 9, 10].

In this regard, this paper explores the suitability of deep spectrum
features for speech-based emotion recognition. Deep spectrum fea-
tures are derived from forwarding spectrograms through AlexNet
and using the activations from the second fully connected layer
(fc7) [16] as a feature vector. This approach has shown to be suit-
able in other computational paralinguistic tasks such as snore sound
recognition [2, 9] and autism severity classification [4] but has yet
to be explored for emotion classification.

We compare the efficacy of the deep spectrum features with
two sort of standard acoustic feature representations: the small but
tailor made for emotion recognition extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) [7]; and the large brute-force
2013 Interspeech Computational Paralinguistics Challenge features
set (COMPARE) which can be considered an omnibus feature set
for paralinguistic tasks [8]. We also compare with a bag-of-audio-
word (BoAW) representation [25], which has produced state-of-
the-art results for continuous emotion prediction [24]. Finally, as
results presented in [12] indicate that (speech) CNN features are
potentially more robust to the effects of environmental noise than
more established speech features, we test all feature representations,
using three versions – clean, noisy and denoised – of the FAU-AIBO
Emotion Corpus [31], in both a 2- and a 5-class set-up.

The rest of this paper is structured as follows: the deep spectrum
feature extraction procedure is outlined in Section 2; the experi-
mental settings, including a detailed database description, are given
in Section 3; the results and corresponding discussion are presented
in Section 4; finally, a brief conclusion and future work directions
are given in Section 5

2 DEEP SPECTRUM FEATURES
As already mentioned, deep spectrum features are derived from
forwarding spectrograms through AlexNet and using the activations
from the second fully connected layer (fc7) [16]; an overview of their
extraction is provided in Figure 1. It is worth noting that spectral and
cepstral features are widely used, not only in speech-based emotion
literature, but in speech processing in general [15, 20, 26, 28].

2.1 Spectrogram Creation
The first stage of the extraction procedure is to create spectrograms
in a suitable format for processing AlexNet. A spectrogram is a
2-dimensional visual representation of the time varying spectral
characteristics of an audio signal [20]. To create the plots, we use
the Python package matplotlib [13] with the following settings: the
Fast Fourier Transform (FFT) is computed using a window size of
256 samples with an overlap of 128 samples; we use a Hanning
window function and compute the power spectral density on the
dB power scale. The spectrograms are then plotted using a viridis
colour mapping which is a perceptually uniform sequential colour
map varying from blue (low range) to green (mid range) to yellow
(upper range). Results presented in [2] demonstrate the suitability
of this colour mapping for extracting deep spectrum features over
other candidates such as jet or greyscale. Finally the plots are scaled
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Figure 1: Overview of the deep spectrum feature extraction
procedure. Spectrograms are generated from whole audio files
and then fed through the pre-trained image classification CNN
AlexNet. The activations of AlexNet’s last fully connected layer,
fc7, are used to form the deep spectrum feature vectors. Ab-
breviations: conv denotes convolutional layers and ch denotes
channels.

and cropped to square images without axes and margins to comply
with the input needs of AlexNet. Our spectrograms have a scale of
227⇥227 pixels.

2.2 Deep Feature Extraction
Having created the spectrogram plots, the next step is to create
the feature representation. For this we use the publicly available
toolkit Caffe [14] to obtain the models and weights for AlexNet [16].
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Table 1: The 42 low-level descriptors (LLD) provided in the
eGeMAPS acoustic feature set.

1 energy related LLD Group

Sum of auditory spectrum (loudness) Prosodic

25 spectral LLD Group

a ratio (50–1 000 Hz / 1-5 k Hz)
Energy slope (0–500 Hz, 0.5–1.5 k Hz)
Hammarberg index
MFCC 1–4
Spectral Flux

Spectral
Spectral
Spectral
Cepstral
Spectral

6 voicing related LLD Group

F0 (Linear & semi-tone)
Formants 1, 2, (freq., bandwidth, ampl.)
Harmonic difference H1–H2, H1–A3
log. HNR, Jitter (local), Shimmer (local)

Prosodic
Voice Quality
Voice Quality
Voice Quality

AlexNet was the first large, deep CNN to be successfully applied
to the ImageNet task in 2012; in both classification and localisation
tasks, it secured first place with almost half the error rates of the best
conventional image analysis approach [17]. AlexNet consists of five
convolutional layers of varying kernel sizes, followed by three fully
connected layers, the last of which is used to perform the 1 000-way
classification required for the ImageNet tasks by applying a softmax
function.

For the deep spectrum feature extraction, the spectrogram plots
are forwarded through the pre-trained networks and the activations
from the neurons on the second fully connected layer fc7 are ex-
tracted as feature vectors (cf. Figure 1). The resulting feature set
has 4 096 attributes, one for every neuron in the AlexNet’s fully con-
nected layer. Results presented in [2] demonstrate that AlexNet is
better suited for deep spectrum feature generation than VGG19 [30].

3 EXPIREMENTAL SETTINGS
This section outlines the key experimental settings – feature represen-
tations (Section 3.1), the FAU-AIBO Emotion Corpus (Section 3.2),
the denoising solution (Section 3.3) and the classification set-up
(Section 3.4) – used to generate the presented results.

3.1 Feature Representations
All results are presented on four different utterance level acous-
tic feature representations. In addition to the deep spectrum fea-
tures previously outlined (cf. Section 2), we also test the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [7], the
2013 Interspeech Computational Paralinguistics Challenge fea-
tures set (COMPARE) [8], and the bag-of-audio-words (BoAW)
paradigm [25]. All three conventional acoustic representations
tested have been shown to be suitable for emotion recognition
tasks [5, 8, 11, 19, 21, 24].

eGeMAPS is a small (low dimensional) knowledge-based acous-
tic feature sets purposely designed to have a high level of robustness
for capturing emotion from speech [7]. It consists of 2 functional
descriptors, arithmetic mean and the coefficient of variation, of a set

Table 2: The 65 low-level descriptors (LLD) provided in the
COMPARE acoustic feature set.

4 energy related LLD Group

Sum of auditory spectrum (loudness)
Sum of RASTA-filtered auditory spectrum
RMS Energy, Zero-Crossing Rate

prosodic
prosodic
prosodic

55 spectral LLD Group

RASTA-filt. aud. spect. bds. 1–26 (0-8 k Hz)
MFCC 1–14 cepstral
Spectral energy 250–650 Hz, 1 k–4 k Hz
Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9
Spectral Flux, Centroid, Entropy, Slope
Psychoacoustic Sharpness, Harmonicity
Spectral Variance, Skewness, Kurtosis

spectral
cepstral
spectral
spectral
spectral
spectral
spectral

6 voicing related LLD Group

F0 (SHS & Viterbi smoothing)
Prob. of voicing
log. HNR, Jitter (local & DDP), Shimmer (local)

prosodic
voice quality
voice quality

of 42 low-level-descriptors (LLDs) as described in Table 1. For full
details, the reader is referred to [7].

COMPARE is a large (high dimensional) brute-forced acoustic
feature set containing 6 373 static features (i. e. functionals) of
low-level descriptor (LLD) contours. An overview of the prosodic,
spectral, cepstral, and voice quality LLD’s is given in Table 2. The
functionals applied to the LLD contours include the mean, standard
deviation, percentiles and quartiles, linear regression functionals,
and local minima/maxima related functionals. For full details, the
reader is referred to [8].

BoAW is a sparse audio representation formed by the quantisa-
tion (bagging) of acoustic LLDs; each frame-level LLD vector is
assigned to an audio word from a codebook learnt from some train-
ing data. Counting the number of assignments for each audio word,
a fixed length histogram (bag) representation of an audio clip is
generated. The histogram represents the frequency of each identified
audio word in a given audio instance [25]. Due to the quantisation
step, BoAW representations can be considered more robust than
LLDs. The sparsity of the final feature representation can be con-
trolled by two parameters: the codebook size (Cs) which determines
the dimensionality of the final feature vectors, and the number of
assignments (Na) which determines the number of words assigned
to an audio instance. For further details on BoAW formation the
reader is referred to both [24, 25].

3.2 Emotional Speech Database
Despite being a well known challenge for speech-based emotion
recognition [28], there is still a comparative lack of studies which
address this task in realistic data conditions. In this regard, we test
all feature representations using three versions of the popular FAU-
AIBO Emotion Corpus (FAU-AIBO). This database is a corpus of
German children communicating with Sony’s AIBO pet robot [31].
The speech is spontaneous as the children were instructed to talk
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Table 3: The two different emotion categories – Idle (IDL) and
Negative (NEG) – and the number of training and test utter-
ances in each for the FAU-AIBO Emotion Corpus

Class Train Test Total
IDL 5 966 5 468 11 434
NEG 3 224 2 418 5 642
Total 9 190 7 886 17 076

to AIBO as they would a friend. The robot was controlled in a
wizard-of-oz scenario and the human operator would sometimes
make AIBO deliberately misbehave in order to provoke an emotional
reaction from the child participant. The data was recorded with both
a close talk (clean) and a room (noisy) microphone from a video
camera approximately at 3m distance from the participant. The noisy
recordings contain a range of reverberation and background noises;
we therefore also test all features on a de-noised (densd) version
of these recordings cleaned with a state-of-the-art recurrent neural
network speech enhancement system (cf. Section 3.3).

The corpus can be divided into speaker independent training and
test partitions of either 2- or 5- emotional classes (cf. Tables 3
and 4). Due to the presence of reverberation and background noises
rendering some of the noisy speech samples inaudible, there is a
greater amount of clean utterances. To ensure a matched number of
utterance in each conditions, we only used clean recordings where
there was a matched noise recording. The number of utterances
per emotion in the train and test partitions is given for the 2-class
problem in Table 3, and for the 5-class problem in Table 4. Note that
the 2009 Interspeech Computational Paralinguistics Challenge [27]
used the complete set of clean utterances (a total of 18 216 utter-
ances); therefore the results presented in this paper are not directly
comparable with those found using the 2009-challenge data.

3.3 Speech Enhancement
To test the effect of denoising on the different feature representations,
the noisy data is filtered based on a long short-term memory (LSTM)
deep recurrent neural network (DRNN) architecture proposed in [34,
35]. This network consists of 100 input neurons according to the
input feature dimensionality, which means 100 Mel spectra extracted
from the noisy speech data. This is then followed by three LSTM-
RNN layers of 256 neurons interspaced by feed-forward layers of
64 neurons and hyperbolic tangent activations. The output is a 100-
dimensional mask, which allocates which frequency band should
be suppressed and which should be enhanced. The network was
trained on several noisy and reverberated versions of the Audio-
Visual Interest Corpus; for full details the reader is referred to [34].

3.4 Classification Set-up
The eGeMAPS and COMPARE feature representations were ex-
tracted using the openSMILE toolkit [8]. We test the efficacy of
the BoAW set-up proposed in [24], which gained state-of-the-art
emotion detection results on the RECOLA database. The LLDs
are the Mel Frequency Cepstral Coefficients (MFCCs) 1–12 and
the logarithmic signal energy extracted using 25 ms long frames,
with a frame rate of 10 ms, and a preemphasis filter (k = 0.97)
using openSMILE [8]. The BoAW representations were formed

Table 4: The five different emotion categories and the number
of training and test utterances in each for the FAU-AIBO Emo-
tion Corpus

Emotion Train Test Total
Angry 839 600 1 439
Emphatic 2 013 1 481 3 494
Neutral 5 026 5 082 10 108
Postive 633 206 839
Rest 679 517 1 196
Total 9 190 7 886 17 076

using our open-source openXBOW toolkit [25]. An extensive it-
erative search was performed to identify the codebook size (Cs 2
{10,20,50,100,200,500,1k,2k,5k}) and number of assignments
(Na 2 {10,20,50,100,200,500}), with random assignments being
used to generate all codebooks. The deep spectrum features were
extracted as per Section 2.

All feature representations were fed into a linear support vector
machine (SVM) implemented using the scikit-learn toolbox1. The
SVMs were trained using stochastic gradient descent, with the gra-
dient of the loss being estimated per sample and the model being
sequentially updated. The regularisation term (a) was optimised
on a scale from {1,2,5} · 10�6 to {1,2,5} · 101 using a speaker-
independent 2-fold cross validation procedure on the training set2.

As in [27], all results reported are for the FAU-AIBO test set with
the corresponding models trained on the full training set (cf. Table 3
and Table 4). Results are given in terms of Unweighted Average
Recall (UAR); this is the standard measure of the Interspeech Com-
putational Paralinguistics Challenges and is suitable for use when
the distribution among classes is not balanced. We also investigate
the effect of upsampling the minority class(es) to overcome potential
effects of the class imbalances. All minority class(es) are randomly
upsampled to be 0.75 the size the majority class; this factor was
determined empirically in preliminary investigations.

4 RESULTS
When using the clean and unbalanced training data the eGeMAPS
features achieved (clean) test set UARs of 0.630 and 0.268 for the 2-
and 5-class set-ups, respectively (cf. Table 5). Interestingly in the
other matched-noise-type systems we observe a slight increase in the
(unbalanced) 2-class UARs; these conditions achieved the strongest
2-class UARs of 0.655 for this feature set. Random oversampling
appears to be more beneficial in the 5-class set-up than in the 2-class
set-up when using eGeMAPS features. Indeed, the strongest 5-class
result, 0.370, was achieved in matched train-test clean condition with
random oversampling. Furthermore, as was to be expected, there is
a drop in performance in all cross-noise-type train-test conditions.

When using COMPARE features we observed an increase in both
the 2- and 5-class UARs for the matched clean conditions compared
to eGeMAPS (cf. Table 6). The strongest COMPARE 2- and 5-
class UARs found were 0.685 and 0.389, respectively, noting that
both were achieved with random oversampling. In general, the

1http://scikit-learn.org
2Fold 1: FAU-AIBO Training Set IDs between 1 and 16
Fold 2: FAU-AIBO Training Set IDs between 18 and 32
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Table 5: A comparison of UAR’s found using the eGeMAPS fea-
ture representation for different noise-types; clean, noisy and
denoised (densd) when performing 2- and 5-class emotion recog-
nition on the test set of the FAU-AIBO corpus. Results are given
when using either unbalanced (Un.) or randomly oversampled
(Ov.) training data.

Train 2-Class Un. Train 2-Class Ov.
Clean Noisy Densd Clean Noisy Densd

Te
st

. Clean .630 .619 .545 .654 .567 .554
Noisy .512 .665 .636 .596 .633 .609
Densd .509 .597 .665 .556 .641 .508

Train 5-Class Un. Train 5-Class Ov.
Clean Noisy Densd Clean Noisy Densd

Te
st

. Clean .268 .221 .229 .370 .237 .248
Noisy .205 .262 .261 .295 .220 .300
Densd .224 .264 .213 .273 .214 .252

Table 6: A comparison of UAR’s found using the COMPARE
feature representation for different noise-types; clean, noisy
and denoised (densd) when performing 2- and 5-class emotion
recognition on the test set of the FAU-AIBO corpus. Results are
given when using either unbalanced (Un.) or randomly over-
sampled (Ov.) training data.

Train 2-Class Un. Train 2-Class Ov.
Clean Noisy Densd Clean Noisy Densd

Te
st

. Clean .639 .619 .626 .685 .644 .646
Noisy .626 .647 .621 .513 .661 .611
Densd .583 .621 .635 .528 .611 .609

Train 5-Class Un. Train 5-Class Ov.
Clean Noisy Densd Clean Noisy Densd

Te
st

. Clean .328 .321 .265 .389 .342 .327
Noisy .262 .246 .284 .284 .307 .325
Densd .259 .250 .304 .242 .256 .310

COMPARE features perform weaker in the other matched-noise-
type than eGeMAPS, but outperformed it in the cross-noise-types
tests. However, the benefits of employing random oversampling,
especially for 5 classes, are more obvious. For the 5-class problem,
our denoising approach (cf. Section 3.3) appears advantageous,
particularly in the unbalanced tests where the matched noise UAR is
0.246 which increases to 0.304 after denoising.

The strongest BoAW UARs: 0.635 2-class – unbalanced matched
noisy conditions (cf. Table 7); and 0.362 5-class – oversampled
matched clean conditions (cf. Table 8), are below the strongest re-
sults observed for the other two acoustic feature sets. However, the
BoAW paradigm appears to be less affected in cross-noise-type test-
ing than the other feature representations. This could be due to the
quantisation step used when constructing the BoAW representations
(cf. Section 3.1); in the cross-noise-type BoAW tests the extracted
MFCCs are quantised with respect to the training noise-type’s code-
book before testing, as opposed to training and testing directly on
features extracted from different-noise-type utterances.

Table 7: A comparison of UAR’s found using BoAW feature rep-
resentations for different noise-types; clean, noisy and denoised
(densd) when performing 2- and 5-class emotion recognition on
the test set of the FAU-AIBO corpus. All results where found
when using the unbalanced training data. The optimal code-
book size (Cs), and number of assignments (Na) found for each
system are also given.

Train 2-Class Un.
Clean Noisy Densd

UAR Cs Na UAR Cs Na UAR Cs Na

Te
st

Clean .634 2 k 20 .600 5 k 20 .569 200 10
Noisy .632 100 20 .635 5 k 200 .556 2 k 500
Densd .607 100 10 .626 500 100 .617 5 k 100

Train 5-Class Un.
Clean Noisy Densd

UAR Cs Na UAR Cs Na UAR Cs Na

Te
st

Clean .311 5 k 10 .278 2 k 500 .266 5 k 500
Noisy .274 20 10 .288 500 100 .259 1 k 10
Densd .264 1 k 500 .331 500 20 .295 5 k 100

Table 8: A comparison of UAR’s found using BoAW feature rep-
resentations for different noise-types; clean, noisy and denoised
(densd) when performing 2- and 5-class emotion recognition on
the test set of the FAU-AIBO corpus. All results where found
when using randomly oversampled (Ov.) to artificially balance
the training data. The optimal codebook size (Cs), and number
of assignments (Na) found for each system are also given.

Train 2-Class Ov.
Clean Noisy Densd

UAR Cs Na UAR Cs Na UAR Cs Na

Te
st

Clean .605 1 k 1 .586 5 k 5 .593 500 5
Noisy .603 5 k 2 .599 5 k 20 .571 500 5
Densd .563 5 k 5 .569 2 k 5 .584 5 k 10

Train 5-Class Ov.
Clean Noisy Densd

UAR Cs Na UAR Cs Na UAR Cs Na

Te
st

Clean .362 1 k 20 .321 5,k 500 .343 2 k 500
Noisy .288 500 200 .312 5 k 200 .295 100 10
Densd .302 20 10 .315 50 20 .323 5 k 200

When comparing the BoAW codebook size and number of as-
signments between the different tests no discernible pattern emerges
(cf. Table 7 and Table 8), a similar observation was made in [24].
However, when comparing the effects of oversampling before SVM
training a clear distinction can be made between the 2- and 5-class
problems (cf. Table 7 and Table 8). In the 2-class problem there
appears to be no distinct advantage when using oversampling, whilst
for the 5-class problem there appears to be a more distinct advantage.
In general, this effect is seen in all features, however it is more
pronounced for BoAW.

The deep spectrum features appear to be suitable for speech-
based emotion recognition (cf. Table 9). The strongest 2-class UAR,
0.683 with oversampled clean conditions, matches performance
with the other feature representations. In the 5-class problem deep
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Table 9: A comparison of UAR’s found using the Deep Spec-
trum feature representation for different noise-types; clean,
noisy and denoised (densd) when performing 2- and 5-class
emotion recognition on the test set of the FAU-AIBO corpus.
Results are given when using either unbalanced (Un.) or ran-
domly oversampled (Ov.) training data.

Train 2-Class Un. Train 2-Class Ov.
Clean Noisy Densd Clean Noisy Densd

Te
st

. Clean .669 .547 .563 .683 .554 .575
Noisy .603 .660 .639 .599 .659 .643
Densd .608 .642 .659 .588 .638 .654

Train 5-Class Un. Train 5-Class Ov.
Clean Noisy Densd Clean Noisy Densd

Te
st

. Clean .368 .277 .268 .396 .267 .255
Noisy .284 .314 .305 .273 .355 .323
Densd .247 .279 .299 .247 .290 .333

spectrum features performed the strongest, obtaining a UAR of
0.396 with oversampled matched clean conditions. The same trend
is seen for the other matched conditions (cf. Figures 2 and 3), where
the deep spectrum features obtained the strongest 5-class matched
noisy and matched denoised UARs of 0.355 and 0.333, respectively.
Given these features are extracted from speech spectrogram using
an image-processing CNN, the performance of the deep-spectrum
features, especially when compared with the more conventional
speech features, is highly encouraging.

4.1 DISCUSSION
The presented deep spectrum features have been shown to either
match or outperform three different speech features representation
when performing matched-noise-type emotion recognition (cf. Fig-
ures 2 and 3). These results match with those presented in [2, 4, 9],
which also show deep-spectrum features can either match or outper-
form the COMPARE feature representation when performing either
snore sound recognition [2, 9] or autism severity classification [4].
The comparatively stronger performance of the deep spectrum fea-
tures provides support for the speculation made in [12] that CNN
features are more robust to the effects of environmental noise than
other features, although more rigorous investigations are needed
to verify this conjecture. Our denoising system did not work as
well as expected; potentially updating the network parameters using
FAU-AIBO data would have produced stronger performance.

While our results are not directly comparable with those presented
in the 2009 Interspeech Computational Paralinguistics Challenge
(cf. Section 3.2), we will now briefly discuss our matched-noise-
type results with respect to the challenge in order to give them
some context. The challenge’s 2-class baseline UAR was 0.677,
whilst results from the challenge entrants varied between 0.664
and 0.703 [26]. As can be seen in Figure 2 the deep spectrum
features, as well as COMPARE, achieve comparable results with
respect to the challenge. Similarly, the challenge’s 5-class baseline
UAR was 0.382, whilst results from the challenge entrants varied
between this baseline and 0.417 [26]. Again both deep spectrum and
COMPARE features achieve comparable results (cf. Figure 3). These
comparisons combined with the results presented in [2, 4, 9] indicate
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Figure 2: Comparison of the strongest 2-Class match-noise-
type UAR’s found on the FAU-AIBO test set for the eGeMAPS,
COMPARE, bag-of-audio-words (BoAW), and deep spectrum
feature representations. The asterisks indicate that deep spec-
trum features significantly outperformed the corresponding
acoustic feature space according to a 2-sided z-test (p < 0.001).
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Figure 3: Comparison of the strongest 5-Class match-noise-
type UAR’s found on the FAU-AIBO test set for the eGeMAPS,
COMPARE, bag-of-audio-words (BoAW), and deep spectrum
feature representations. The asterisks indicate that deep spec-
trum features significantly outperformed the corresponding
acoustic feature space according to a 2-sided z-test (p < 0.001).

the promise of image-based deep spectrum; further investigations are
warranted to establish their suitability over a range of speech-based
recognition tasks.

5 CONCLUSION
The use of pre-trained convolutional neural networks (CNNs) to
extract robust feature representations of images is well established
within the machine learning community. However, comparatively
little research attention has been given to their suitability to form
speech or acoustic features. Accordingly, this paper explored the
use of deep spectrum features for speech-based emotion recognition;
these features are formed by feeding spectrograms through AlexNet,
an open-source image recognition pre-trained deep CNN [16], and
using the activations of the last fully-connected hidden layer as
the feature vector. The presented results indicate the suitability
of this approach; deep spectrum features were shown to match
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or outperform conventional speech feature representations when
performing 2-class and 5-class emotion classification respectively
on the challenging FAU-AIBO Emotion Corpus.

Whilst the use of CNNs in audio processing is not new, e. g. [1,
3, 12, 18, 22, 23, 33], deep image CNNs make a compelling case
to be considered a legitimate audio feature extraction technique.
Image CNNs such as AlexNet offer the advantage of being stable,
open-source and known to produce salient features for a range of
recognition tasks; to train an equivalent ‘all-purpose’ speech net-
work, especially in an end-to-end setting, would take considerable
data, time, and computing resources beyond the reach of many
(non-commercial) research groups. Further, feature representation
learning from spectrogram arguably offers more interpretability than
from raw audio; phonetic information and supra-segmental acous-
tic features relating to articulation, loudness, pitch, and rhythm are
inherently more readable in spectrograms than raw audio [20].

A range of future work is planned to further realise the potential
of deep spectrum features. As well as establishing their suitability
in other speech and acoustic recognition tasks, we plan to explore
the benefits of forming our images from other spectral and cepstral
based features such as the Mel-spectrum or the linear predictive
spectral envelope. We will also explore the use of image-processing
techniques to denoise our spectral representation before deep spec-
trum feature extraction. Regarding the image CNNs we will also
explore the use of other pre-trained CNN’s such as GoogLeNet [32],
and retraining the final softmax layer to suit the speech task at hand.
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