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Abstract

Feature selection for regression problems can be
highly beneficial in terms of robustness and execution
speed. The Correlation-based Feature Selection (CFS)
algorithm, in the attempt to find the best feature subset,
evaluates different subsets and selects the one with the
highest “goodness”. Such goodness is based on the cor-
relation between the addition of all features in the sub-
set with the output variable. However, such a simple
addition assumes that all features have the same weight
in the output variable. This, in turn, assumes that
all features are uncorrelated with each other. By con-
sidering an optimal weighting instead, a more robust
measurement of the goodness can be obtained; however,
such weighting is computationally expensive. In this
paper, a feature selection algorithm named “R-fast”
which considers the β coefficients in the standardized
linear regression model as optimal weights is proposed.
We also present a technique to quickly estimate ap-
proximations to the β coefficients. Our algorithm was
evaluated using Multiple Regression Analysis (MRA)
over 8 synthetic and 10 real-world datasets. Results
show that, when selecting features with our proposed
algorithm, MRA’s performance is better than or equal
to those obtained when selecting features with others
well-known filter algorithms and when no selection is
performed.

1 Introduction

Data used to train regression algorithms is usually
not free of redundant and useless features. Perfor-
mance of these algorithms can be affected when pro-
cessing such features, not only in terms of time needed
to process redundant and useless information, but in
some cases, in terms of accuracy when predicting the
value of objects which regression algorithms were not
trained with. Feature selection attempts to remove
the highest amount of redundant and useless features
as possible, and thus, reducing dimensionality which
will allow regression algorithms a faster execution and
an easier interpretation of the resulting model.

The three main approaches to feature selection algo-
rithms are wrapper, filter, and embedded [4]. For each
subset to be evaluated, wrappers train a given target
algorithm and evaluate its performance. A goodness
associated with such performance is subsequently as-
signed to the subset. Using the target regression algo-
rithm to evaluate the goodness of feature subsets grants
wrapper approaches to obtain a better feature subset
than its filter and embedded counterparts. Nonethe-
less, a re-sampling technique is needed in order to
train and evaluate the performance of the target al-
gorithm. This situation leads to a repeated calling
of the target algorithm, making the use of wrapper
algorithms unsuitable for high-dimensional regression
problems, specially when the target algorithm has a

high number of parameters to be optimized. Regres-
sion algorithms that embed the feature selection do
not need re-training the algorithm, and they are com-
monly faster than wrappers. However, there are not
embedded feature selection techniques for all available
regression algorithms. Moreover, wrapper and embed-
ded algorithms need to be run again if it is decided
to change the target algorithm. In contrast, filters are
independent of the regression algorithm.

There are two different types of filter algorithms,
those which only evaluate the goodness of single-
features and those which evaluate the goodness of
multiple-features (feature subsets). The former se-
lects those features with a goodness higher than a
given threshold, thus, only removing useless but non-
redundant features. The latter selects the feature sub-
set with the highest goodness, considering the removal
of both useless and redundant features. Filter algo-
rithms which evaluate feature subsets, as well as wrap-
pers, commonly do not evaluate all-possible subsets.
This is due to the fact that there are 2m possible sub-
sets for a problem with m features, thus, performing an
entire space evaluation is only feasible when the num-
ber of features is small. Instead, searching strategies
are employed in order to generate feature subsets to
be evaluated. Such generation can be in a forward di-
rection, backwards direction, bi-directional, and/or in
a random manner [10]. These strategies have to set a
stopping criteria in order to avoid exploring the entire
search-space.

The CFS algorithm [6] is a well-known filter algo-
rithm where the goodness of a feature subset is equal
to the linear correlation of the addition of the features
with the output variable. This assumes that all fea-
tures contribute equally to the output variable, but in
most real-world regression problems, features interact
amongst each other and differentially contribute to the
output variable. Therefore, by differentially weighting
the features, a more reliable goodness measurement can
be achieved.

The main contributions of this paper are:

1. A filter feature selection algorithm that, in order
to measure the goodness of a feature subset, cal-
culates the correlation of the output variable with
the addition of the differentially-weighted features
using β coefficients.

2. We propose to use accurate as well as approxi-
mated β coefficients for weighting features.

3. We also propose to use the Stochastic Gradient
Descent (SGD) as an option to approximate the
β coefficients with a reduced amount of epochs.

The rest of this paper is organized as follows. First
we present related work in Section 2, following the def-
inition of our proposed algorithm in Section 3. Evalu-
ations of our proposal are presented in Section 4 and
finally our conclusions are drawn in Section 5.



2 Related Work

It is important to highlight that related work re-
viewed in this section is focused in feature selection for
regression problems; interested readers in feature selec-
tion for general machine learning problems may wish
to refer to [7].

Feature selection algorithms based on the embedded
approach penalize the cost function of linear regression
algorithms by adding a term in function of the norm
of the feature coefficients. This penalty introduces
shrinkage in the coefficients towards zero, and those
features with an exact-zero coefficient can be removed
from the resulting model. The LASSO penalty [14]
uses the l1−norm and it is the base of several other
penalty functions [15].

There are many criteria under the wrapper approach
to measure the goodness of feature subsets, based on
the performance of the target regression algorithm,
that are widely used to evaluate the goodness of fea-
ture subsets, such as the mean absolute error, Mallow’s
Cp criterion, Akaike information criterion, Bayesian in-
formation criterion, and several criteria based on the
correlation coefficient [17]. This is not the case for the
filter approach since most of the criteria to evaluate the
goodness of features are addressed to select features in
domains where the output variable has nominal values
(classification problems). In this section, we will only
consider the two most common algorithms.

The RReliefF algorithm [13], evaluates the goodness
of single-features based on Bayes’ theorem and differ-
ences among object pairs in the training set. Each of
these pairs contains one of q randomly sampled objects
and one of its p nearest objects. Its main drawback is
that it has parameters to be fixed that strongly depend
on the training data. In addition, given that RReliefF
is a filter algorithm that evaluates single-features, it
only considers the removal of useless features.

The CFS algorithm [6] evaluates multiple-features
under the filter approach. This algorithm defines the
goodness GS of a feature subset S as in Eq. (1), where
r is the mean of Pearson’s correlations, k is the num-
ber of features in S, y is the output variable and xj is
the j-th feature. GS

CFS depends on the average corre-
lation between the output variable y and every feature
xj (ryxj ), and the average correlation of every pair of
different features xj (rxjxj′ ). Eq. (1) is derived by es-
timating the Pearson’s correlation between the output
variable and a composite variable which is the result of
adding all features given in standardized values in [3].

GS
CFS =

kryxj√
k + k(k − 1)rxjxj′

= ry(x1+x2+···+xk) (1)

CFS’ heuristic is biased to select those features
highly correlated with the output variable but uncor-
related with each other. Nonetheless, as pointed out
by Guyon et.al. in [4]: “A variable that is completely
useless by itself can provide a significant performance
improvement when taken with others”. Variables (fea-
tures) which meet the conditions from [4] are known as
suppressors. Due to the fact that suppressor features
are low correlated with the output, but correlated with
others, CFS’s heuristic tends to ignore them.

3 Correlation-based Feature subset evalua-
tion by the addition of weighted features

Central to our research is the idea that the more
correlated y and w1x1 + w2x2 + · · · + wkxk are, the

more suitable are the k features to use them to pre-
dict the values on y. By estimating those weights
(w1, w2, . . . , wk) considering the interactions of the fea-
tures with the output and the interactions among fea-
tures, a more reliable measure of the correlation be-
tween the features in a subset and the output can be
obtained. β coefficients in the Standardized Linear
Regression Model (SLRM) take into account such in-
teractions and are known to maximize the correlation
of the weighted addition of the features which is given
by the SLRM’s correlation coefficient RSLRM .

The computation of the β coefficients involves the
computation of the pseudo-inverse of a matrix, which
is commonly solved by means of QR decomposition us-
ing the Householder reflector [1]. This process has a
theoretical complexity of OSLRM(M2 × N), where M
is the number of features and N the number of obser-
vations. However, fast but good approximations to the

β coefficients (β̂) can be achieved with the Stochastic
Gradient Descent (SGD) algorithm, where the objec-

tive is to reduce the sum of the squared error (ε(β̂))

while changing β̂j in function of the partial derivative

of ε(β̂) with respect to β̂j for j = 1 to M . SGD’s the-
oretical complexity is OSGD(N ×M × 3 × C), where
C is the number of epochs.

Note that for each feature subset to be evaluated,
the computation of its respective weights must be per-
formed. In order to perform this evaluation quickly,
the SGD can be used every time it is more time-
suitable than using the SLRM. Thus, as soon as
OSLRM > OSGD (or M > 3 × C after factorizing
M ×N), the feature subset evaluation should be per-
formed with the SGD method in order to speed up
the feature selection process. The goodness measure
GS

R-fast of a subset S with k features, is given by Eq. (2).

GS
R-fast =

{
RSGD, if k > 3× C
RSLRM, otherwise

(2)

From Eq. (2), it can be seen that the goodness of sub-
sets with 3×C or less features is given by RSLRM and
for subsets with more features is given by the SGD’s
correlation coefficient, RSGD. Thus, the β coefficients
are calculated for subsets with up to 3 × C features,
and only the approximations β̂ for subsets with more
than 3 × C features. Since smaller subsets are evalu-
ated with the accurate weights, we recommend to use
a forward direction to generate subsets on the strategy
search. However, it is important to highlight that R-
fast can be used to evaluate the goodness of generated
subsets given for search strategies following a forward
direction, backwards direction, bi-directionally or in a
random manner.

When the generation of subsets is given for search
strategies in a forward direction, small values of C
(epochs) can be set for the SGD algorithm. This is due
to that under this condition, when the search strategy
starts generating subsets with size 3 × C + 1, it has
already selected the subset with the 3 × C features
which maximizes the correlation with the output and
the weighted addition of the features on it.

4 Evaluation

In this section we will show that the performance
of a regression algorithm when selecting features with
our proposed technique does not decrease significantly.
We choose the Multiple Regression Analysis (MRA)
as regression method being the most standard regres-



sion method. We also selected CFS and RReliefF to
compare our proposed algorithm, due to that both are
well-known filter algorithms.

Experimental setup: We implemented our approach
in Java using Weka [5]. The experiments were carried
out on a 4th Gen Intel c© CoreTM i7-4720HQ processor
at 2.60GHz and 8.0GB PC3L-12800 DDR3L SDRAM
at 1600 MHz memory running Windows 10 Home ver-
sion 1607.

Let ”R-acc” be the feature selection algorithm which
only uses accurate β coefficients as weights. Our ex-
perimentation will be addressed to three cases in order
to show that: A) R-fast is a considerably faster option
than R-acc and makes the regression algorithm to have
a performance as good as that using R-acc, B) differ-
entially weighting the features leads to a more robust
goodness measure than using equally weighting, and
C) R-fast leads to a more robust feature selection than
others well-known filter algorithms.

As in [11], the statistic paired t-test with a signif-
icance level of 0.05 is applied in both experiments,
in order to compare the MRA’s performance. When-
ever a statistically significant improvement or degra-
dation is present in the compared results, it is in-
dicated with symbols “∗” and “◦”, respectively. On
one hand, when performing feature selection with R-
fast and CFS, the generation of feature subsets is de-
termined in accordance to the best first search algo-
rithm [12], and with a forward direction and termi-
nation after 5 generations of feature subsets without
any improvement in the goodness value. On the other
hand, when performing feature selection with RReli-
efF, the ranking of the features is calculated consider-
ing 10 objects as neighbors and with 0.0 and 0.01 as
selection threshold. Either performing feature selec-
tion or not, MRA is built and evaluated by means of
a 10-folds cross-validation scheme. Synthetic and real-
world datasets were used in the experiments. Different
correlation settings were considered to generate 8 syn-
thetic datasets. Each dataset has three features and
1000 objects, the output variable and the features are
random vectors chosen from multivariate normal dis-
tributions with mean (0, 0, 0, 0) and different variances
given in accordance to the desired correlation among
vectors.

The real-world datasets were taken from different
sources [2, 8, 9, 16] with different amounts of objects
and features: ailerons 13750 and 40, cpu-act 8192 and
21, housing 506 and 13, hungarian 294 and 13, pbc 418
and 18, pl35 35 and 150, pol 15000 and 48, pyrim 74
and 27, triazines 186 and 60, wisconsin 194 and 32,
respectively.

4.1 Exact vs approximated β coefficients

MRA’s performance when employing R-acc is com-
pared with that obtained when using R-fast. Results
when using the real-world datasets are shown in Table
1, where it can be seen that in any dataset the MRA’s
correlation coefficient showed a significant degradation.
From the last row, it can be seen that there is an av-
erage increment in the MRA’s correlation coefficient.
We attribute this situation to the fact that by taking
a small number of epochs for the SGD algorithm, an
over fitting of the data is avoided.

The average selection time is reported in Table 2,
where R-fast requires a smaller amount of time to per-
form the selection, furthermore, in most cases the dif-
ference is statistically significant.

The amount of selected features between R-acc and
R-fast are presented in Table 3. As seen, R-fast tends
to select a statistically significant smaller amount of

R-fast
Dataset R-acc C = 1 C = 2 C = 3 C = 4 C = 5
ailerons 0.90 0.90 0.90 0.90 0.90 0.90
pyrim 0.46 0.71 0.63 0.65 0.67 0.60
pol 0.68 0.68 0.68 0.68 0.68 0.68
pbc 0.60 0.61 0.60 0.62 0.60 0.60
hungarian 0.71 0.71 0.71 0.71 0.71 0.71
housing 0.85 0.85 0.85 0.85 0.85 0.85
triazines 0.44 0.48 0.48 0.41 0.39 0.43
pl35 0.72 0.88 0.89 0.82 0.79 0.80
cpu-act 0.85 0.84 0.85 0.85 0.85 0.85
wisconsin 0.32 0.37 0.28 0.31 0.30 0.30
Average 0.65 0.70 0.69 0.68 0.67 0.67

Table 1: MRA’s average correlation coefficient when using
R-acc and R-fast with different number of epochs (C).

R-fast
Dataset R-acc C = 1 C = 2 C = 3 C = 4 C = 5
ailerons 28110.2 14343.0∗ 12762.8∗ 15719.3∗ 18275.6∗ 20511.9∗
pyrim 49.1 33.3∗ 30.5∗ 34.5∗ 39.6∗ 42.5∗
pol 50604.5 31094.3∗ 24897.7∗ 29288.5∗ 34336.2∗ 38892.2∗
pbc 73.6 62.0∗ 64.0∗ 66.6∗ 70.7 72.4
hungarian 28.3 21.3 22.6 23.9 27.9 23.7
housing 41.7 35.6 37.4 39.1 40.0 40.2
triazines 1202.1 691.9∗ 794.8∗ 644.0∗ 695.0∗ 681.4∗
pl35 3326.8 1504.2∗ 1228.3∗ 1548.2∗ 1852.2∗ 2168.9∗
cpu-act 2185.4 1330.9∗ 1585.0∗ 1846.0∗ 2031.7∗ 2097.5∗
wisconsin 172.2 126.9∗ 126.4∗ 111.5∗ 127.6∗ 140.7∗
Average 8579.4 4924.3 4155.0 4932.2 5749.6 6467.1

Table 2: Average selection time for R-acc and R-fast with
different number of epochs (C), expressed in milliseconds.

features. Since the correlation coefficient is maximized
when using the exact weights, the use of approximated
weights leads to smaller values in the correlation coef-
ficient. Thus, RSGD ≤ RSLRM ; therefore, when R-fast
changes from RSLRM to RSGD, the greater the num-
ber of epochs is, the harder it is for RSGD to reach
the last subset evaluation obtained with RSLRM . This
explains the situation presented in the corresponding
columns for R-fast with 2,3,4 and 5 epochs, where the
number of selected features is equal to the amount of
features evaluated using RSLRM (3×C) in most cases.

R-fast
Dataset R-acc C = 1 C = 2 C = 3 C = 4 C = 5
ailerons 32.3 8.6 ∗ 6.0 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
pyrim 25.6 9.0 ∗ 6.5 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
pol 23.9 11.2 ∗ 6.4 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
pbc 17.1 11.5 ∗ 10.6 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
hungarian 11.3 9.7 ∗ 8.6 ∗ 9.0 ∗ 11.3 11.3
housing 12.5 11.4 11.1 11.0 11.9 ∗ 12.5
triazines 42.9 18.1 ∗ 22.7 ∗ 15.5 ∗ 16.5 ∗ 15.0 ∗
pl35 25.0 8.4 ∗ 6.0 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
cpu-act 20.1 4.9 ∗ 6.0 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
wisconsin 31.2 15.6 ∗ 14.2 ∗ 9.0 ∗ 12.0 ∗ 15.0 ∗
Average 24.2 10.8 9.8 9.8 12.3 14.4

Table 3: Average number of selected features for R-acc and
R-fast with different number of epochs (C).

4.2 Differentially vs equally weighting

The synthetic datasets are employed to compare
MRA’s performance when using R-fast after one epoch,
against those obtained with CFS. Results in Table 4
show that the number of selected features by CFS
shows a significant improvement in 6 out of 8 datasets.
Nonetheless, MRA’s correlation coefficient gets signif-
icantly worse in 4 out of those 6 datasets. As seen
in Table 4, the correlation of the output y with x1
is 0 in the first 4 datasets. However, x1 does have a
correlation greater than 0 with x2 and x3 for 21-H,
21-M and 21-L, thus, in those 3 cases x1 can be con-
sidered as a potential suppressor variable. In those
datasets with a potential suppressor feature, MRA’s
performance showed a clear degradation when using
CFS. The last four cases consider a mid-correlation
with the output, but different feature-feature correla-
tions. Even though the dataset 03-H does not have a



potential suppressor variable, the MRA’s performance
also shows a degradation, this can be due to the high
interaction among the three features.

Dataset Correlation No. of selected
description coefficient features

ID rxjxj′ ryx1 ryx2 ryx3 R-fast CFS R-fast CFS
21-H 0.75 0.00 0.66 0.25 1.00 0.67 ◦ 3.00 1.00 ∗
21-M 0.50 0.00 0.75 0.25 0.87 0.74 ◦ 2.20 1.00 ∗
21-L 0.25 0.00 0.75 0.25 0.77 0.73 ◦ 3.00 1.00 ∗
21-N 0.00 0.00 0.75 0.25 0.61 0.59 ◦ 3.00 1.00 ∗
03-H 0.75 0.40 0.50 0.60 0.60 0.59 3.00 1.00 ∗
03-M 0.50 0.40 0.50 0.60 0.64 0.64 3.00 2.00 ∗
03-L 0.25 0.40 0.50 0.60 0.71 0.71 3.00 3.00
03-N 0.00 0.40 0.50 0.60 0.87 0.87 3.00 3.00

Table 4: Synthetic datasets description, MRA’s average cor-
relation coefficient, and average number of selected features
when performing feature selection using R-fast and CFS.

4.3 R-fast vs well-known filter algorithms

The real-world datasets are employed to compare
the performance of the MRA without feature selec-
tion (none) against using R-fast, after one epoch,
and by using CFS and RReliefF. As shown in Table
5, while MRA’s performance does not decrease sig-
nificantly when using R-fast, it does decrease signif-
icantly in four datasets when using CFS. Although
MRA shows a good performance when using RReli-
efF with 0.0 as threshold, a small increment (0.01) in
the selection threshold changes completely the MRA’s
performance, passing from one to six datasets with a
significant decrement, respectively.

Dataset none R-fast CFS
RReliefF

(0.0) (0.01)
ailerons 0.90 0.90 0.87 ◦ 0.90 0.77 ◦
pyrim 0.46 0.71 0.70 0.44 0.50
pol 0.68 0.68 0.48 ◦ 0.61 ◦ 0.00 ◦
pbc 0.60 0.61 0.54 ◦ 0.57 0.47 ◦
hungarian 0.71 0.71 0.72 0.67 0.64
housing 0.85 0.85 0.82 ◦ 0.84 0.79 ◦
triazines 0.44 0.48 0.42 0.46 0.45
pl35 0.83 0.88 0.77 0.86 0.82
cpu-act 0.85 0.84 0.84 0.85 0.68 ◦
wisconsin 0.32 0.37 0.37 0.36 0.00 ◦
Average 0.66 0.70 0.65 0.66 0.51

Table 5: MRA’s average correlation coefficient without fea-
ture selection (none), R-fast, CFS and RReliefF (threshold
0.0 and 0.01) over real-world datasets.

Results in Table 6 show that the amount of selected
features clearly differs from one algorithm to another in
most cases. Regardless the good MRA’s performance
when using RReliefF with 0.0 as threshold, the reduc-
tion in the amount of features dropped notably in com-
parison with R-fast and CFS.

Dataset none R-fast CFS
RReliefF

(0.0) (0.01)
ailerons 40.0 8.6 ∗ 20.0 ∗ 39.5 2.0 ∗
pyrim 27.0 9.0 ∗ 6.5 ∗ 18.3 ∗ 16.0 ∗
pol 48.0 11.2 ∗ 4.0 ∗ 10.5 ∗ 0.0 ∗
pbc 18.0 11.5 ∗ 5.2 ∗ 15.8 ∗ 11.1 ∗
hungarian 13.0 9.7 ∗ 8.0 ∗ 8.1 ∗ 3.2 ∗
housing 13.0 11.4 ∗ 4.0 ∗ 9.6 ∗ 3.3 ∗
triazines 60.0 18.1 ∗ 7.5 ∗ 27.0 ∗ 13.7 ∗
pl35 150.0 8.4 ∗ 25.9 ∗ 99.2 ∗ 79.0 ∗
cpu-act 21.0 4.9 ∗ 10.6 ∗ 21.0 2.0 ∗
wisconsin 32.0 15.6 ∗ 15.2 ∗ 10.0 ∗ 0.0 ∗
Average 42.2 10.8 10.7 25.9 13.0

Table 6: MRA’s average number of features without feature
selection (none), R-fast, CFS and RReliefF (threshold 0.0
and 0.01) over real-world datasets.

5 Conclusions

In this paper was empirically shown that when the
correlation of the weighted addition of the features

with the output variable is used as goodness measure,
using the β coefficients as weights is more reliable than
using equal weights. Furthermore, if the approxima-
tions of the β coefficients are obtained with the SGD
algorithm, when it is more time feasible than using the
accurate ones, the selection time significantly improves
and the number of selected features tends to decrease.

By selecting features with R-fast, the regression
algorithm does not significantly decrease its perfor-
mance. In addition, it was shown that, different to
the CFS algorithm, R-fast is capable of selecting those
features that by themselves are useless but, when taken
with others can provide a significant performance im-
provement on the regression algorithm.
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