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Motion Estimation in Rotational Angiography
with α–Expansion Moves
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Abstract

Rotational coronary angiography allows for 3D reconstruction in interventional guidance of percutaneous coronary interven-
tions. While gated reconstruction is able to account for cardiac motion, residual breathing motion must be compensated for. Epipolar
consistency has been shown to accurately extract the craniocaudal displacement of the heart during contraction and breathing.
However, optimization of consistency over detector shifts proves complicated as recurrent motion of similar structures produces
multiple local minima in the objective function. This prevents the use of typical local non-linear optimization methods. Related
work, therefore, relies on grid-search, which is prohibitively expensive in high-dimensional parameter space. This, each projection
is optimized individually, making existing methods slow and prone to unnatural jumps in the estimated motion. Therefore, we
propose a new method for motion estimation using a graph-based approach. We reformulate the objective function in terms of
a labeling problem and use α–expansion moves to solve it. For each label, representing a specific shift, a minimum cut of a
graph represents the optimal assignment of that label to each projection versus its current estimate. Our approach is aware of
the local neighborhood, which makes it more efficient to optimize, as well as more robust and elegant. It is also preferable to
optimize all projections at once, in contrast to the order-dependent optimization with grid-search. The robustness and reliability
of the optimization is evaluated on two phantom datasets with different heart and breathing motion. Our method is more stable
with respect to the selection of parameter range and sequence of optimization. Using a graph based method we further gain some
flexibility in how we choose the neighborhood term.

I. INTRODUCTION

Rotational coronary angiography allows for 3D reconstruc-
tion and has, consequently, received considerable attention
in the context of interventional guidance of percutaneous
coronary interventions. However, movement of the heart due to
contraction and imperfect breath hold impede uncompensated
3D reconstructions of sufficient quality [1], implying the need
for motion management strategies. While cardiac motion is
high frequency and can be handled with gating, respiratory
motion is quasi non-recurrent in standard imaging protocols
and, consequently, requires compensation. In previous work,
we showed that sophisticated background subtraction enables
estimation of craniocaudal shifts between radiographic im-
ages [2] by optimizing for epipolar consistency (EC) [3]. The
method accurately extracts the craniocaudal displacement of
the heart during contraction and, more importantly, respiratory
motion from background subtracted rotational sequences.

However, the optimization proved complicated as recurrent
motion of similar structures produces multiple local minima in
the objective function. Fig. 1 shows the cost function for one
view with respect to all other views over a vertical translation
of ±150 px. The highly non-convex behavior is preventing
the use of typical local non-linear optimization methods.
Previous studies, therefore, relied on grid-search [2]. Due
to the high-dimensional search-space, however, grid-search is
prohibitively expensive and projections can only be optimized
sequentially, one at a time. In consequence, previous methods
are prone to inconsistent jumps in the extracted signals.

In this work, we investigate graph-based optimization,
specifically α–expansion moves [4], that promise improved
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Fig. 1. Cost function for one view with respect to all other views over a
vertical translation of ±150 px.

performance, while additionally allowing for the introduction
of a smoothness prior. Each expansion move is formulated as a
discrete partitioning problem on a graph, which is then solved
efficiently using a minimum cut for all projections at a time.
We quantitatively compare the proposed method to grid-search
on two numerical phantom data sets with unique cardiac and
respiratory motion.

II. MATERIAL AND METHODS

The dominant component of the respiratory motion of the
heart is craniocaudal translation [5], which is conveniently
aligned with the vertical detector axis and model motion
as a set of detector shifts, one for each of the n images
V = {v1, ..., vn}.

EC is based on the observation that pairs of epipolar
lines contain redundant information. After background sub-
traction [6], patient motion is the main source of inconsistency
in the scan. Therefore, we can estimate shifts of the projection
images by minimizing the inconsistency between images [7].
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(a) Phantom I
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(b) Phantom II

Fig. 2. Motion estimation of two phantom datasets. Estimated shifts are plotted by projection index for grid-search and α–expansion moves.

Graph Cuts are a powerful tool for energy minimization with
a multitude of applications in computer vision. The generic
energy function E comprises two parts: (i) a data term that
measures the agreement of estimates and observed data that
we chose as EC; (ii) a neighborhood constraint that prefers
smooth motion over time:

E(V) = Edata(V) + λ · Eprior(V), (1)

where λ is a regularization weight and

Edata(V) =
n∑

i=1

n∑
j=1

j 6=i

EC (Ii, Ij , vi, vj) , (2)

with the image data Ii and Ij shifted by vi and vj , respectively.
The neighborhood constraint is a penalty function

Eprior(V) =
∑
{i,j}∈N

| vi − vj |, (3)

for each pair of neighbors in the neighborhoodN . This reflects
the expected motion pattern characterized by the continuous,
smooth displacements of both the cardiac and respiratory
motion.

We define the optimization problem over discrete shifts in a
range of ±r · s and a spacing of s, which form a set of labels

Fig. 3. Consistency images for phantom II. The consistency metric EC
is evaluated for each pair of projections. Left: Consistency before (below
the green line) and after (above the green line) motion estimation. Right:
Consistency after one optimization for grid-search (below the green line) and
alpha-expansion moves (above the green line).

L = {v = i · s ∈ R | i ∈ {−r, . . . ,+r} ∈ Z}. The solution
is then an optimal labeling

V? = argmin
V

E (V) . (4)

The α–expansion algorithm solves a sequence of binary prob-
lems for all expanding labels α ∈ L. For each label α, a
minimum cut of a graph represents the optimal assignment
of α to each projection versus its current estimate. This
way, good approximations to high-quality solutions are found
in practice [8]. Since a specific expansion move uses the
most recent estimate, the method needs to be iterated to
convergence.

Experiments: We present two exemplary realizations of
heart and breathing motion, simulated with the XCAT phan-
tom [9]. Circular short scans of 200◦ in 5 s with 128 pro-
jections of 960 px × 960 px at 0.308 mm pixel spacing are
simulated at realistic noise levels. The source-detector and
source-isocenter distance were 1200mm and 800mm, respec-
tively. We applied virtual subtraction to all images [6] and
used a generous range of ±150 px at 1 px spacing for both
grid-search and α–expansion.

Since grid-search is applied to shifts of individual pro-
jections in sequence, the solution is not necessarily optimal
w.r.t. the discretization of all shifts. Several iterations over all
projections are therefore performed. The scaling parameter λ
of the energy function in Eq. 1 was set to unity.

III. RESULTS AND DISCUSSION

Results are presented in Fig. 2 for grid-search and
α–expansion moves for both datasets, respectively. Both meth-
ods are in good agreement after two iterations. In our exper-
iments, only minor changes were observed after the second
iteration. The reduction of the inconsistency after the motion
estimation is visualized in Fig. 3. The consistency value
EC is computed for all pairs of views before and after the
optimization, respectively (Fig. 3, left). Due to the symmetry
of the metric, only the pairs with i < j are evaluated,
producing the triangular appearance.

The computational time for the motion estimation with
α–expansion moves and grid-search is similar. For one
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α–expansion moves it took about 0.4 seconds on a low-end
mobile hardware.

While for phantom I, the motion estimation with grid-search
after one optimization has no irregularities, the dependency of
grid-search on the dataset and the pre-processing can clearly
be recognized for phantom II. The second optimization for
phantom II is crucial due to the jump in the first heart beat.
The influence of the incorrect motion estimation can also be
observed in the consistency image (Fig. 3, right).
α–expansion consistently underestimates the signal peaks

in the first iteration. The resulting plateaus are the reason
for the added stability of the algorithm. The second iteration
accurately reflects the heart motion.

We observed that our method is more stable than grid-search
with respect to the selection of the right parameters and
sequence of optimization. Grid-search tends to run into local
minima, which leads to jumps in the motion estimation.
α–expansion moves are resistant to jumps due to the smooth-
ness regularizer and searching strategy. In various experiments
we found the solution to be insensitive to the choice of λ up
to a value which is unfortunately dataset dependent.

IV. CONCLUSION

We propose a new method for motion estimation of ro-
tational angiography. We show the reliability of the method
and discussed the advantages compared to grid-search. Us-
ing a graph based method we also gain some flexibility in
how we choose a neighborhood term and how we solve the
problem. For example, α–expansion allows us to represent
relative shifts. This reduces the number of labels and makes it
considerably faster while retaining the reliability of the results.
Future work can further accelerate the framework by using
a coarse-to-fine approach. It may be possible to incorporate
gating information by defining local neighborhood in terms of
heart phase.
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