Motion Estimation in Rotational Angiography with α -Expansion Moves

Lina Felsner¹, André Aichert¹, Mathias Unberath^{1,2}, and Andreas Maier^{1,2}

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Germany ² Erlangen Graduate School in Advanced Optical Technologies,Germany

Introduction

- Movement of the heart (Fig.1) Insufficient quality of reconstruction [1]
- Background subtraction enables estimation of craniocaudal shifts between radiographic images [2] by C_2
- Optimizing epipolar consistency (EC) [3]
 - \longrightarrow Lines l_1 and l_2 should contain the same information
 - Metric computes differences of

Figure 1: Four different views of segmented vessels of the X-ray angiography acquisition of phantom I.

- line integrals between image I_1 and I_2
- Recurrent motion of similar structures
 - Multiple local minima in the objective function (Fig. 2)
- Optimization is complicated

Materials and Methods

- Estimate shifts of the projection images
 - Minimizing the inconsistency between images
- Discrete graph-based optimization
- Set of detector shifts, on for each of the n images $\mathcal{V} = \{v_1, ..., v_n\}$
- Energy:

 $E(\mathcal{V}) = E_{data}(\mathcal{V}) + \lambda \cdot E_{prior}(\mathcal{V})$

• Data term: agreement of estimates and observed data

$$E_{data}(\mathcal{V}) = \sum_{\substack{i=1 \ j=1 \ j\neq i}}^{n} \operatorname{EC}(I_i, I_j, v_i, v_j)$$

• Prior term: neighborhood constraint that prefers smooth motion over time

$$E_{prior}(\mathcal{V}) = \sum_{\{i,j\} \in \mathcal{N}} |v_i - v_j|$$

Figure 2: Highly nonconvex cost function of one view with respect to all other views with a vertical translation of \pm 150 pixels.

- Discrete shifts in a range of $\pm r \cdot s$ and a spacing of s, which form a set of labels $\mathcal{L} = \{v = i \cdot s \in \mathbb{R} \mid i \in \{-r, \dots, +r\}\}$
- Optimization problem: optimal labeling $\mathcal{V}^* = \operatorname{argmin}_{\mathcal{V}} E(\mathcal{V})$ *α*-Expansion Algorithm [4]:
- Solves a sequence of binary problems for all expanding labels $\alpha \in \mathcal{L}$
- For each label α , a minimum cut on the graph represents the optimal assignment of α to each projection versus its current estimate
- Iterate to convergence

Experiments:

Two realizations of heart and breathing motion, simulated with the XCAT phantom [5]. Motion estimation of vertical detector shifts in a range of ± 150 pixels at one pixel step size. Use grid-search as ground-truth.

Results and Discussion

- Results in Fig. 3 for grid-search and α-expansion moves for both datasets
- Both methods are in good agreement after two iterations
 Reduction of the inconsistency in Fig. 4
 More stable than grid-search with respect to the selection of the right parameters and sequence of optimization

Figure 3: Motion estimation of two phantom datasets. Estimated shifts are plotted by projection index for grid-search and α -expansion moves.

Consistency before (below the green line) and after motion estimation (above the green

Consistency after one optimization for grid-search (below the green line) and α -expansion moves (above the green line)

 α-expansion moves are resistant to jumps due to the smoothness regularizer and searching strategy

Conclusion and Outlook

- Proposed method: reliable, flexible, robust
- Able to use relative shifts: reduction in the number of labels
- Further acceleration with a coarse-to-fine approach
- Apply to real patient data

Contact

🖂 lina.felsner@fau.de

http://www5.cs.fau.de/~felsner

line) (above the green (above the gr

Figure 4: Consistency images for phantom II. The consistency metric EC is evaluated for each pair of projections.

References

 S. Cimen, A. Gooya, M. Grass, and A. F. Frangi, "Reconstruction of coronary arteries from x-ray angiography: A review," Medical Image Analysis, vol. 32, pp. 46–68, 2016.
 M. Unberath, A. Aichert, S. Achenbach, and A. Maier, "Consistency-based respiratory motion estimation in rotational angiography," Medical Physics, 2016.

- [3] A. Aichert, M. Berger, J. Wang, N. Maass, A. Doerfler, J. Hornegger, and A. Maier, "Epipolar Consistency in Transmission Imaging," IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1–15, 2015.
- [4] Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001..
- [5] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. Tsui, "Realistic CT simulation using the 4D XCAT phantom," Medical physics, vol. 35, no. 8, pp. 3800–3808, 2008.