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In radiotherapy, tumor tracking allows the beam to follow the
respiration-induced tumor motion. Motion models [1] have been
investigated to estimate dense internal displacement fields from

an external surrogate signal, such as range imaging [2][3]. With Kernel Ridge
_ Regression
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increasing surrogate complexity, we propose a motion estimation
framework based on kernel ridge regression to cope with high-
dimensional domains. The approach was initially validated on five
patient datasets, each consisting of a planning and a follow-up 4-D

CT. Mean residual error was 2.73 + 0.25 mm, but varied greatly.
Figure 1: Workflow of the motion estimation pipeline and
evaluation. Both PCT and FCT provide internal deformation and
surface information for training and evaluation, respectively.
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Introduction

Motion estimation for gating / tracking
» Based on implanted fiducial and surface markers KRH= , .
» Only sparse information
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» Dense information, but computationally challenging
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Figure 2: Mean error and standard deviation over all

- patients based on surface surrogate with (ASM) and without
Materials and Methods (KRR) generalization using an Active Shape Model.

Data & Evaluation
e Retrospective evaluation on 5 patient data sets (Fig. 1)
e Planning (PCT) & follow-up (FCT) 4-D CTs (1 x 1 x 2 mm?)

Data Matrices

e Internal: B-spline non-rigid registration on 4-D CT and
cropped to internal region of interest; {t,,...,t,} € R%

Figure 3: FCT coronary slice of Patient P2 at end-exhale. Severe

e Surrogate: motion fields interpolated at reference surface artifacts are visible near the diaphragm and the top of the lung,
extracted from end-exhale volume; {s4,...,s,} € R4s prohibiting accurate estimation of internal deformation fields.
Both stored column-wise in T € R%“*" and S € R%*" Results and Discussion

Kernel Ridge Regression (KRR) Results (Fig. 2)
e Objective function: argmui,n GHWS _TI2 + a%HWH%) e Reference mean magnitude: 3.57 + 0.43 mm
o e Proposed methods: 2.73 + 0.25 mm estimation error
e Prediction: tyrea =T (K + a I,) ' k(Spew) (1) _ _
Discussion
o Ki; = ¢(s;) " (s)) Gram matrix of mapped samples

e No improvement for non-linear mappings

= AT
o K(Spen); = P(s;) ' P(s,.n) Kernel response for new surrogate e Phase reconstruction difference

e Implicit mapping ¢ expressed only in terms of inner products o KRR: weighted sum of observed training samples

e Supports non-linear kernels, e.g. Gaussian & polynomial o ASM: linear combination of eigenvectors

Generalization using an Active Shape Model (ASM) [4] e Artifacts dramatically affect the estimation (Fig. 3)
e Omit redundant information by decomposing training sample T e Major influence of the baseline registration

into mutually orthogonal modes of variation using PCA
+ Data point ¢ expressed in terms of new basis . Conclusions
e A-priori motion model operating directly on observed
surrogate data w/ or w/o dimensionality reduction

i | | Future Work
o t data consensus, f; € RPt feature vector, e residual variance > Further evaluation on additional data sets

e Instead of data matrices, Eqn. (1) can be computed using the > Improvement of baseline registration
set of features F, € RPt*"and F, € RPs*" » Incorporation of live feedback into the model

t=t+M.f,+¢€

o M, = [vy,v,,...,v,,| € R**Pt, the first p, eigenvectors
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