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Conclusions

● A-priori motion model operating directly on observed 
surrogate data w/ or w/o dimensionality reduction

Future Work
 Further evaluation on additional data sets
 Improvement of baseline registration
 Incorporation of live feedback into the model

Introduction

Respiratory motion affects external beam radiation therapy

 Dose distribution from treatment plan based on CT image
Motion: dislocation of target / survival of malignant cells

Motion estimation for gating / tracking
 Based on implanted fiducial and surface markers
Only sparse information

High-dimensional data
 Dense information, but computationally challenging

Results and Discussion

Results (Fig. 2)

● Reference mean magnitude: 3.57 ± 0.43 mm 

● Proposed methods: 2.73 ± 0.25 mm estimation error

Discussion

● No improvement for non-linear mappings

● Phase reconstruction difference

o KRR: weighted sum of observed training samples

o ASM: linear combination of eigenvectors

● Artifacts dramatically affect the estimation (Fig. 3)

● Major influence of the baseline registration 
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Figure 1: Workflow of the motion estimation pipeline and
evaluation. Both PCT and FCT provide internal deformation and
surface information for training and evaluation, respectively.

Figure 2: Mean error and standard deviation over all
patients based on surface surrogate with (ASM) and without
(KRR) generalization using an Active Shape Model.

Abstract

In radiotherapy, tumor tracking allows the beam to follow the
respiration-induced tumor motion. Motion models [1] have been
investigated to estimate dense internal displacement fields from
an external surrogate signal, such as range imaging [2][3]. With
increasing surrogate complexity, we propose a motion estimation
framework based on kernel ridge regression to cope with high-
dimensional domains. The approach was initially validated on five
patient datasets, each consisting of a planning and a follow-up 4-D
CT. Mean residual error was 2.73 ± 0.25 mm, but varied greatly.
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Materials and Methods

Data & Evaluation

● Retrospective evaluation on 5 patient data sets (Fig. 1)

● Planning (PCT) & follow-up (FCT) 4-D CTs (1 × 1 × 2 𝑚𝑚³)

Data Matrices

● Internal: B-spline non-rigid registration on 4-D CT and 
cropped to internal region of interest; 𝒕1, … , 𝒕𝑛 ∈ ℝ𝑑𝑡

● Surrogate: motion fields interpolated at reference surface 
extracted from end-exhale volume; 𝒔1, … , 𝒔𝑛 ∈ ℝ𝑑𝑠

Both stored column-wise in 𝑻 ∈ ℝ𝑑𝑡×𝑛 and 𝐒 ∈ ℝ𝑑𝑠×𝑛

Kernel Ridge Regression (KRR)

● Objective function: argmin
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● Prediction: 𝒕𝑝𝑟𝑒𝑑 = 𝑻 𝑲 + 𝛼 𝑰𝑛
−1𝜿(𝒔𝑛𝑒𝑤) (1)

o 𝑲𝑖𝑗 = 𝝓 𝒔𝑖
⊤𝝓(𝒔𝑗) Gram matrix of mapped samples

o 𝜿 𝒔𝑛𝑒𝑤 𝑖 = 𝝓 𝒔𝑖
⊤𝝓(𝒔𝑛𝑒𝑤) Kernel response for new surrogate

● Implicit mapping 𝝓 expressed only in terms of inner products

● Supports non-linear kernels, e.g. Gaussian & polynomial

Generalization using an Active Shape Model (ASM) [4]

● Omit redundant information by decomposing training sample 𝑻
into mutually orthogonal modes of variation using PCA

● Data point 𝒕 expressed in terms of new basis

𝒕 =  𝒕 + 𝑴𝑡𝒇𝑡 + 𝝐

o 𝑴𝑡 = 𝒗1, 𝒗2, … , 𝒗𝑝𝑡 ∈ ℝ𝑑𝑡×𝑝𝑡, the first 𝑝𝑡 eigenvectors

o  𝒕 data consensus, 𝒇𝑡 ∈ ℝ𝑝𝑡 feature vector, 𝝐 residual variance

● Instead of data matrices, Eqn. (1) can be computed using the 
set of features 𝑭𝑇 ∈ ℝ𝑝𝑡×𝑛and 𝑭𝑆 ∈ ℝ𝑝𝑠×𝑛

Figure 3: FCT coronary slice of Patient P2 at end-exhale. Severe
artifacts are visible near the diaphragm and the top of the lung,
prohibiting accurate estimation of internal deformation fields.


