A Kernel-based Framework for Intra-fractional Respiratory Motion Estimation in Radiation Therapy

T. Geimer^{1,2,3}, M. Unberath^{1,2}, A. Birlutiu⁴, O. Taubmann^{1,2}, J. Wölfelschneider³, C. Bert^{2,3}, A. Maier^{1,2}

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg
 ² Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nuremberg
 ³ Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
 ⁴ Computer Science Department, "1 December 1918" University of Alba Iulia, Romania

Abstract

In radiotherapy, tumor tracking allows the beam to follow the respiration-induced tumor motion. Motion models [1] have been investigated to estimate dense internal displacement fields from an external surrogate signal, such as range imaging [2][3]. With increasing surrogate complexity, we propose a motion estimation framework based on kernel ridge regression to cope with high-dimensional domains. The approach was initially validated on five patient datasets, each consisting of a planning and a follow-up 4-D CT. Mean residual error was 2.73 ± 0.25 mm, but varied greatly.

Introduction

Respiratory motion affects external beam radiation therapy

Dose distribution from treatment plan based on CT image
 Motion: dislocation of target / survival of malignant cells

Motion estimation for gating / tracking

- Based on implanted fiducial and surface markers
- Only sparse information

High-dimensional data

> Dense information, but computationally challenging

Materials and Methods

Data & Evaluation

- Retrospective evaluation on 5 patient data sets (Fig. 1)
- Planning (PCT) & follow-up (FCT) 4-D CTs $(1 \times 1 \times 2 mm^3)$

Data Matrices

Figure 1: Workflow of the motion estimation pipeline and evaluation. Both PCT and FCT provide internal deformation and surface information for training and evaluation, respectively.

Mean Estimation Error

Figure 2: Mean error and standard deviation over all patients based on surface surrogate with (ASM) and without (KRR) generalization using an Active Shape Model.

- Internal: B-spline non-rigid registration on 4-D CT and cropped to internal region of interest; $\{t_1, ..., t_n\} \in \mathbb{R}^{d_t}$
- Surrogate: motion fields interpolated at reference surface extracted from end-exhale volume; {s₁,...,s_n} ∈ ℝ^{d_s}
 Both stored column-wise in T ∈ ℝ^{d_t×n} and S ∈ ℝ<sup>d_s×n</sub>
 </sup>

Kernel Ridge Regression (KRR)

- Objective function: $\arg \min_{W} \left(\frac{1}{2} \|WS T\|_{F}^{2} + \alpha \frac{1}{2} \|W\|_{F}^{2}\right)$
- Prediction: $t_{pred} = T (K + \alpha I_n)^{-1} \kappa(s_{new})$ (1)
 - $K_{ij} = \phi(s_i)^{\top} \phi(s_j)$ Gram matrix of mapped samples
 - $\kappa(s_{new})_i = \phi(s_i)^{\top} \phi(s_{new})$ Kernel response for new surrogate
- Implicit mapping ϕ expressed only in terms of inner products
- Supports non-linear kernels, e.g. Gaussian & polynomial

Generalization using an Active Shape Model (ASM) [4]

• Omit redundant information by decomposing training sample *T* into mutually orthogonal modes of variation using PCA

Figure 3: FCT coronary slice of Patient P2 at end-exhale. Severe artifacts are visible near the diaphragm and the top of the lung, prohibiting accurate estimation of internal deformation fields.

Results and Discussion

Results (Fig. 2)

- Reference mean magnitude: 3.57 ± 0.43 mm
- Proposed methods: 2.73 ± 0.25 mm estimation error

Discussion

- No improvement for non-linear mappings
- Phase reconstruction difference
 - KRR: weighted sum of observed training samples
 - ASM: linear combination of eigenvectors
- Artifacts dramatically affect the estimation (Fig. 3)
- Major influence of the baseline registration

• Data point *t* expressed in terms of new basis

 $\boldsymbol{t} = \boldsymbol{\bar{t}} + \boldsymbol{M}_t \boldsymbol{f}_t + \boldsymbol{\epsilon}$

• $M_t = [v_1, v_2, ..., v_{p_t}] \in \mathbb{R}^{d_t \times p_t}$, the first p_t eigenvectors

o \bar{t} data consensus, $f_t \in \mathbb{R}^{p_t}$ feature vector, ϵ residual variance

• Instead of data matrices, Eqn. (1) can be computed using the set of features $F_T \in \mathbb{R}^{p_t \times n}$ and $F_S \in \mathbb{R}^{p_s \times n}$

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

Conclusions

 A-priori motion model operating directly on observed surrogate data w/ or w/o dimensionality reduction

Future Work

- Further evaluation on additional data sets
- Improvement of baseline registration
- Incorporation of live feedback into the model

References

[1] McClelland, J. R. et al., Med Image Anal, 17(1):19-42, (2013)
[2] Wasza, j. et al., IEEE Trans Biomed Eng, 63(3):485-495, (2016)
[3] Taubmann, O. et al., Proc. 28th CARS, p.33-34, (2014)
[4] Cootes, T. F. et al., Comput Vis Image Underst, 61(1):38-59, (1995)