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ABSTRACT

In radiation therapy, tumor tracking allows to adjust the beam
such that it follows the respiration-induced tumor motion.
However, most clinical approaches rely on implanted fiducial
markers to locate the tumor and, thus, only provide sparse
information. Motion models have been investigated to es-
timate dense internal displacement fields from an external
surrogate signal, such as range imaging. With increasing
surrogate complexity, we propose a respiratory motion esti-
mation framework based on kernel ridge regression to cope
with high-dimensional domains. This approach was validated
on five patient datasets, consisting of a planning 4DCT and a
follow-up 4DCT for each patient. Mean residual error was at
best 2.73± 0.25 mm, but varied greatly between patients.

Index Terms— Motion Models, Range Imaging, Radia-
tion Therapy, Kernel Trick, Active Shape Models

1. INTRODUCTION

In radiation therapy, malignant tumor cells are irradiated fol-
lowing an optimized fluence pattern that is the result of treat-
ment planning based on CT imaging. A clinical target volume
(CTV) and safety margins are defined to deliver the necessary
therapeutic dose to the tumor while at the same time spar-
ing healthy tissue. In this context, respiratory motion poses
a problem as it is responsible for a continuous movement of
the target volume that may result in clinically relevant over or
under dosages in the CTV [1]. One advanced method to deal
with free breathing during irradiation is tumor tracking.

Modern linear accelerators come equipped with imaging
modalities that support the localisation of the tumor during
treatment. Kilovoltage (kV) X-ray imaging [2] has been suc-
cessfully applied, often coupled with one or more implanted
radio-opaque fiducial markers to outline the tumor. In or-
der to reduce the amount of additional non-therapeutic dose,
correlation models [3] deduce internal information from an
external surrogate signal. Clinical systems use low-frequent

stereoscopic kV imaging as the ground truth to train and up-
date the correlation model. Then, intra-procedurally only the
external surrogate signal needs to be acquired. Unfortunately,
these marker-based methods fall short with regards to non-
rigid deformations. For real-time estimation of dense internal
deformation fields, patient-specific motion models have been
investigated [3, 4, 5]. The ground-truth deformation field is
obtained from 4D imaging by registration to a reference
phase. Recently, range imaging has emerged as a non-
intrusive, markerless, high-dimensional surrogate suitable
to drive said motion models [6]. However, with increasing
surrogate complexity, the challenge is to extract meaning-
ful information from high-dimensional domains. Wilms et
al. [7] investigated multi-variate regression approaches based
on range imaging among other surrogates, but only sparsely
sampled the surface. Others added a dimensionality reduction
step using active shape models [8] to describe physiological
variation of a patient’s breathing cycle [4, 9]. Alternatively,
Li and Xing [10] proposed kernel-based respiratory motion
estimation but only relied on a mono-dimensional surrogate.

In this work, we present a respiratory motion estimation
pipeline using kernel ridge regression to model the internal-
external correlation. Two approaches to reconstructing a
newly observed phase were investigated: A weighted sum of
samples (WSS) in the training and a linear combination of
principal components by employing an active shape model
(ASM). Evaluation was conducted in a study on five lung
cancer patients. Each patient had at least two 4DCT acqui-
sitions within eight weeks, allowing for strict separation of
training on the planning CT and testing on a follow-up CTs.
Thus, evaluation is closer to the actual application case than
in previous studies where only one 4DCT was available.

2. MATERIAL & METHODS

The pipeline of our respiratory motion estimation framework
is illustrated in Fig. 1. The planning CT (PCT) provides 4D
images as the source for training a patient-specific motion
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Fig. 1. Workflow of our motion estimation pipeline and evaluation. Both PCT and FCT provide internal deformation fields and
the surface surrogate. Information from the PCT is used to train the motion model. Subsequently, surrogate information of the
FCT is used to estimate a new deformation field which is then compared to the FCT internal ground truth.

model. Using surface deformation fields as the driving sur-
rogate, a kernel-based correlation model is trained between
the internal and external data. Using surrogate data extracted
from a phase of the follow-up CT (FCT), a new deformation
field is estimated for that particular phase and subsequently
compared to the FCT serving as the ground truth. The follow-
ing paragraphs will cover the individual parts more closely.

2.1. Patient Data

The datasets used for this simulation study originate from five
patients with bronchial carcinoma or metastasis treated at the
University Hospital Erlangen. Each patient received a time-
resolved PCT consisting of eight equidistant phases. They
were used as the source to train our patient-specific 4D motion
model. Additionally, a FCT was acquired for each patient
in order to monitor tumor shrinkage over the course of the
treatment and adjust the CTV if needed. All CT volumes were
resampled to a spacing of 1× 1× 2 mm.

2.2. Internal & Surrogate Data

Internal deformation fields were acquired via non-rigid regis-
tration w.r.t. the end-exhale phase, resulting in n vector fields
{t1, . . . , tn}, ti ∈ Rdt stored as columns of the data matrix
T ∈ Rdt×n. Corresponding to that, S ∈ Rds×n carries the n
surrogate observations si ∈ Rds , i.e. the dense surface defor-
mation fields. For our simulation, the surface of the reference
phase was extracted from the CT volume, followed by an in-
terpolation of ti at the mesh vertices to form the surrogate.

2.3. Kernel-based Regression

Correlation between target and surrogate domain can be con-
sidered a multi-variate, multi-linear regression problem [4]

with the corresponding objective function

argmin
W

(
1

2
||W ∗S − T ||2F + α

1

2
||W ∗||2F

)
, (1)

where || · ||F denotes the Frobenius norm. A closed-form
solution exists in

W = TS>︸ ︷︷ ︸
dt×ds

(SS>︸ ︷︷ ︸
ds×ds

+αIds)
−1 ∈ Rdt×ds (2)

representing the Moore-Penrose pseudo-inverse with Tikhonov
regularization. This is also known as ridge regression. For
high-dimensional data T and S, computing W explicitly
is computationally very expensive. Following Albert [11],
Eqn. 2 is equivalent to

W = T︸︷︷︸
dt×n

(S>S︸ ︷︷ ︸
n×n

+αIn)−1 S>︸︷︷︸
n×ds

. (3)

Further, we can now apply the kernel trick. The obser-
vations si are implicitly mapped to high-dimensional Hilbert
space [12]: Φ =

[
φ(s1), . . . ,φ(sn)

]
. For the prediction of a

target tpred from a new observation snew, direct access to Φ is
never explicitly needed:

tpred = T
(
Φ>Φ + α In

)−1
Φ>φ(snew)

= T (K + α In)
−1
κ (snew) . (4)

Instead, the estimation is performed entirely in terms of in-
ner products in the higher-dimensional space, where Kij =

φ (si)
>
φ (sj) and κ (snew)i = φ (si)

>
φ (snew). Besides

enabling the framework to operate on high-dimensional data
matrices, the approach also supports non-linear mappings.
Common kernels used are the linear kernel κ(a, b) = a> b,



Gaussian kernel κσ(a, b) = e−
||a−b||22
σ2 , and polynomial ker-

nel κd,o(a, b) = (a>b + o)d, where σ, o, d are parameters
that require optimization via grid search.

2.4. Active Shape Model

With Eqn. 4, the estimated deformation field is the result of a
weighted sum of training samples T (WSS). To omit redun-
dant information, an additional generalisation step in the form
of an ASM can be introduced [8] . The training sample T
is decomposed into mutually orthogonal modes of variation.
More precisely, an eigendecomposition of the covariance ma-
trixC of the zero-mean data is performed. The first few com-
ponents are often sufficient to represent more than 90% of the
variance present in the dataset [13]. A data point t can be
described in terms of the model as a linear combination:

t = t̄+ Mt f t + ε, (5)

where M = [v1,v2, . . . ,vpt ]
> ∈ Rdt×pt is the new basis

formed by the first pt ≤ n eigenvectors vi of C, t̄ is the
consensus, f ∈ Rpt is the feature vector carrying the weights,
and ε is variance not explained by the model. Thus, instead
of the data matrices T and S, Eqn. 4 can also be computed
using the set of features F T ∈ Rpt×n and F S ∈ Rps×n.

For the estimation process, the pipeline is extended by two
steps. From the FCT, the observed surrogate snew needs to be
expressed in terms of the surface ASM:

fs = M>
s (snew − s̄). (6)

Second, after regression the estimated internal features are
used to reconstruct the internal deformation field up to an er-
ror ε according to Eqn. 5.

2.5. Evaluation

Assessment of the estimation accuracy was performed for
each patient individually. Linear, Gaussian and polynomial
kernels were tested, both with and without additional general-
isation by the ASM. The 4D motion model was trained on the
PCT and tested on each phase of the FCT. Estimation accu-
racy was assessed using the L2-norm of the residual vectors
between estimated field and FCT ground truth. A grid search
was conducted to determine the regularization parameter α,
the kernel parameters σ, o, d, and ASM dimensionality pt, ps
with regards to the mean estimation error over all patients.

Both ASM and WSS are subject to a limited model ac-
curacy, even if the internal weights were estimated perfectly.
For the ASM, the lower bound is given by its generalisation
ability. For WSS, we compared each FCT deformation field ti
with an optimal guess in a least-squares sense: ti,optim = Tai,
where ai = argminãi

(
||T ãi − ti||22

)
. The result is a lower

bound on the estimation error.

Fig. 2. Mean estimation error over all patients using ASM
and WSS with a linear, Gaussian, and polynomial kernel. The
mean breathing magnitude was 3.46± 0.50 mm.

Fig. 3. Estimation error of end-inhale phase T04 for three
FCTs. Black bars show the mean magnitude of the ground
truth deformation field, while the dashed black lines indicate
the lower bound achievable with the respective model.

3. RESULTS & DISCUSSION

Fig. 2 shows the overall estimation error for all patients and
phases. All results are below the reference mean breathing
magnitude of 3.40 ± 0.59 mm. The best result was achieved
for the polynomial kernel operating directly on the data ma-
trices with a mean residual error of 3.01± 0.65 mm.

Fig. 3 shows the end-inhale phase T04 for patients P1,
P2, and P5, including the breathing magnitude and the model
error. For patient P2, the follow-up CT was suffering from
severe image artifacts (see Fig. 4). Therefore, the ASM, and
to a minor degree the WSS, were unable to describe the cor-
rupted motion fields. In total, two patients failed in this man-
ner. Thus, we excluded them and repeated the experiment.
According to Fig. 5, the mean residual error dropped below
3 mm, even though the reference magnitude increased. With
the affected patients excluded, the best result was achieved
by linear WSS at 2.73±0.25 mm. However, a Student’s t-test
on the patient population showed statistical significance at a
5% significance level only for polynomial WSS compared to
the three ASM approaches. In conclusion, estimation accu-
racy highly depends on the image quality of the planning and
follow-up CTs. While all methods were within typical de-
formable image registration uncertainties [14], more data is
necessary for statistically meaningful evaluation.



Fig. 4. FCT coronal slice of patient P2 at end-inhale. Artifacts
are visible near the diaphragm and the top of the lung.

Fig. 5. Mean estimation error analogous to Fig. 2 with two
corrupted patients excluded. The mean breathing magnitude
was 3.57± 0.43 mm.

4. CONCLUSION

We proposed a respiratory motion estimation framework
using kernel ridge regression. The method supports high-
dimensional data domains as well as an additional generali-
sation step in the form of active shape models. Through the
use of kernels, non-linear mappings are introduced into the
regression problem. This approach was evaluated in a study
on five lung cancer patients, each with a planning 4DCT for
training and a follow-up 4DCT for testing. We obtained good
results for three out of five testcases. Of the other two at least
one CT was corrupted with severe image artifacts. For future
work, we will acquire additional data and further investigate
the failed cases as well as the inherent model error.
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