Parametric LV Model Fitting to Coronary Arteries

Tobias Geimer^{1,2,3}, Johannes Höhn¹, Mathias Unberath^{1,2}, Andreas Maier^{1,2}

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ² Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ³ Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract

In the context of rotational coronary angiography, research focus is shifting towards 3D+t applications. Here, heart models allow for the extraction of functional parameters from the heart motion receive increasing attention. We present an approach to fit a parametric left ventricular heart model to centerlines of coronary arteries that accommodates the sparse point set conditional to the underlying angiography data. Using a coarse-to-fine optimization based on simulated annealing and ellipsoid pseudo-distances, we achieve a reprojection error of 0.794 mm compared to 0.422 mm of the

Introduction

Rotational X-ray Angiography

- 3D+t reconstruction of arteries [1]
- Structure and movement of myocardium [2]

Left Ventricular (LV) Parametric Heart Model

- Originally developed for tagged MRI [3]
- Ellipsoid shape described by parameter functions

Adaption to Coronary Artery Centerlines

No uniform distribution over the surface renders fitting complicated

Materials and Methods

Parameter Function Ellipsoid (PFE)

 $f_{t,a_x,a_y,a_z,e_x,e_y}(u,v)$ $0 \setminus (a_x(u) \cos u \, \cos v)$ $(\cos \tau(u) - \sin \tau(u))$ $e_x(u)$ $|a_y(u)\cos u\sin v| +$ 0 $e_{y}(u)$ $\cos \tau(u)$ $\sin \tau(u)$ = $a_z(u) \sin v$ 0 0 axis offset

Figure 2: 3D PFE for patient 1 (top) and patient 2 (bottom).

Table 1: Average fitting and reprojection error in mm for points on the LV model surface and the centerline reconstruction.

patient 1	patient 2

twisting

ellipsoid & scaling

with $u \in \left[-\frac{\pi}{2}, \frac{\pi}{4}\right]$ and $v \in \left[-\pi, \pi\right]$.

Equidistant piecewise linear functions (**Fig. 1**):

- $a_x(u), a_v(u)$: width of minor ellipsoid axes
- $e_x(u), e_y(u)$: offset from the principal axis
- : rotation around long axis (twist) • $\tau(u)$

Pseudo-closest Point

For a segmented 3D point $p \in P$ on the coronary tree:

$$\tilde{c}(\boldsymbol{p}) = \left(\operatorname{atan2} \left(p_{z}', a_{z} \sqrt{\left(\frac{p_{x}'}{a_{x}}\right)^{2} + \left(\frac{p_{y}'}{a_{y}}\right)^{2}} \right) \right)$$
$$\operatorname{atan2} \left(a_{x} p_{y}', a_{y} p_{x}' \right) \right)$$

with $p' = R^{-1}(p - c)$ in the ellipsoid's reference system

(a) Initial Post Estimation

• Semi-manual selection of LV base and apex in two views

3D fitting error	1.020	0.810
reconstruction reprojection error	0.532	0.422
model surface reprojection error	0.815	0.794

Results and Discussion

Data & Evaluation

- X-ray angiography, two patients, 133 projections
- 3D left artery tree reconstruction [5], at cardiac time t = 0.1

Results

- Qualitative fitting results in **Fig. 2**
- 3D fitting error, 2D reprojection error in **Table 1**

Discussion

- Initial 3D reconstruction: lower bound on the reprojection error
- Further compromised by erroneous segmentation
- Comparably small error increase for surface points

(supported by epipolar geometry)

- Triangulation yields center and orientation of cut-off ellipsoid
- Initial optimization of $a_x = a_v$ (further refined in **(b)**)

(b) Parameter Function Fitting

Coarse-to-fine optimization based on simulated annealing [4]:

$$\underset{a_x,a_y,e_x,e_y}{\operatorname{arg\,min}} \sum_{\boldsymbol{p} \in P} \left\| \boldsymbol{p} - f_{t,a_x,a_y,e_x,e_y}(\tilde{c}(\boldsymbol{p})) \right\|_2$$

Contact

 \bowtie tobias.geimer@fau.de

http://www5.cs-fau.de/~geimer

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

Conclusions

- Approach to fitting a parametric LV model to coronary artery centerlines
- Direct involvement of functional heart parameters

Future Work

- Extension to 3D+t
- Extraction of twist from the cardiac cycle

References

[1] Çimen, S. et al., Med Image Anal, 32:46-68, (2016) [2] Frangi, A. F. et al., IEEE Trans Med Imaging, 20(1):2-5, (2001) [3] Park, J. et al., IEEE Trans Med Imaging, 15(3):278-289, (1996) [4] Ledersma, S. et al., Simulated Annealing, 20:401-420, (2008) [5] Unberath, M. et al., Proc IEEE ISBI, 1143-1146, (2016)