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Although ski jumping is a widely investigated sport, competitions and training sessions are rarely supported by state-of-the-
art technology. Supporting technologies could focus on a continuous velocity determination and visualization for competitions
as well as on an analysis of the velocity development and the jump length for training sessions. In the literature, there are
several approaches for jump analysis. However, the majority of these approaches aim for a biomechanical analysis instead of
a support system for frequent use. �ey do not ful�ll the requirements of unobtrusiveness and usability that are necessary for
a long-term application in competitions and training. In this paper, we propose an algorithm for ski velocity calculation and
jump length determination based on the processing of unobtrusively obtained ski jumping data. Our algorithm is evaluated
with data from eleven athletes in two di�erent acquisitions. �e results show an error of the velocity measurement at take-o�
of -0.78 m

s ± 1.18 m
s (which equals -3.0 %± 4.7 % in reference to the estimated average take-o� velocity) compared to a light

barrier system. �e error of the jump length compared to a video-based system is 0.8m± 2.9m (which equals 0.9 %± 3.4 % of
the average jump length of the training jumps in this work). Although our proposed system does not outperform existing
camera-based methods of jump length measurements at competitions, it provides an a�ordable and unobtrusive support for
competitions and has the potential to simplify analyses in standard training.

CCS Concepts: •Information systems →Data analytics; •Human-centered computing →Ubiquitous and mobile
computing systems and tools;
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1 INTRODUCTION
Ski jumping has a long history and was part of the �rst Winter Olympic Games held in 1924. Since then, extensive
research has been published on ski jumping biomechanics [36, 37] and the improvement of jumping techniques
[24, 30, 38, 39]. In contrast, state-of-the-art technology is rarely used to directly support competitions and training
sessions. In competitions, the o�cial jump length is obtained with camera-based measurements [23]. However,
the availability of more jump parameters, such as a continuous ski velocity, would not only support judges in
their decisions but also provide spectators with a deeper insight into the sport. In addition, training sessions are
o�en analyzed based on simple video recordings which cover only parts of the jump, allowing only qualitative
jump analysis. Information about the continuous ski velocity as well as the jump length is not available during
standard training, although they could provide meaningful feedback for coaches and athletes. Hence, a system
which provides the continuous velocity and jump length without the necessity of a complex camera-setup would
lead to more interesting information at competitions and could improve the training of the athletes.

�e application of such a system in competitions and training must meet several requirements. First, it should
measure unobtrusively. �e athletes are highly focused and should not be distracted by the measurement setup.
Second, the system must work automatically, without the requirement of constant maintenance, which would
not be feasible during competitions or even training scenarios. �ird, the application in ski jumping training
requires an a�ordable system that does not contain any complex or time-consuming setup.
A system based on wearable inertial-magnetic measurement units (IMMUs) could meet these requirements.

IMMU devices are small, light-weight and can easily be a�ached to skis without any interaction from the athlete.
Furthermore, a continuous data stream of acceleration, angular velocity and magnetometer data in combination
with smart processing algorithms can lead to a maintenance-free automated system, which only requires human
interaction for preparation tasks such as charging, calibration and a�achment to the skis. Although such a system
would not require external sensor hardware aside from the IMMU, it could be enhanced by external input such
as light barriers, which are o�en already available at jumping hills. Acquired jump data can then be processed
to provide a visualization of relevant jump parameters. �ese parameters could contain the ski orientation,
continuous horizontal and vertical velocity, �ight path and altitude or a combination of these components.

In the literature, several publications addressed the application of wearables in ski jumping. Chardonnens and
colleagues intensively investigated the �eld of biomechanical analysis based on inertial sensors. In [12], they
a�ached sensors to both the body and skis and determined several jump phases (e.g., inrun, take-o�, �ight phases)
by fusing the information of all sensors. In [9], they determined body segment orientations and force parameters
of the stable �ight phase and compared them to literature values and jump performance. In a follow-up work,
they analyzed the entire jump and incorporated biomechanical constraints in order to improve their method [10].
Chardonnens and colleagues additionally investigated a partially functional calibration in order to correct the
in�uence of misaligned sensor a�achment. �ey also proposed a dynamical analysis of the take-o�. �is analysis
contained, amongst others, the athlete’s acceleration, velocity and applied forces during take-o� [11]. A similar
study was conducted by Bächlin and colleagues [2] who analyzed the applied forces during jumps and the �ight
time based on acceleration sensors. Furthermore, Logar and Munih [28] estimated the jump kinematics and
dynamics in order to calculate the ground reaction force during inrun and take-o�. Brock et al. [7] estimated the
orientation of several body segments and relative joint positions with nine inertial-magnetic sensors a�ached
to the athlete’s body. �ey furthermore stated in [8] that these kinematic parameters could be processed to
an automated jump scoring. In previous work from our group [20], we proposed a simpli�ed approach for an
orientation determination of the skis. Jump angles were calculated with a method similar to the one of [10]
but were additionally evaluated with a 2D-camera system. In the same publication, we described a functional
calibration method without any required action from the athlete.
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In summary, di�erent approaches were proposed for the calculation of jump parameters (e.g., forces, accelera-
tion, velocity, body orientation). However, most of these approaches aimed for a biomechanical analysis rather
than providing direct support to competitions and training. �ese approaches neither contained a continuous ski
velocity calculation for the �ight phase nor a jump length determination based on wearable sensors. Furthermore,
the majority of the proposed methods did not focus on unobtrusiveness but rather based their work on sensors
a�ached to the athletes’ bodies. While such an a�achment is required for extensive biomechanical analysis, it is
not feasible for competitions and hardly applicable to standard training sessions.
In this work, we propose a processing pipeline for the calculation of the continuous velocity as well as the

overall jump length. �is computation is performed with a model-based jump phase segmentation, a correction
for misalignment and an orientation determination of the skis at all times (see Fig. 1). Our complete pipeline is
designed to process data from an unobtrusive measurement method with wearable sensors only a�ached to the
skis, supported by data from a light barrier system at the take-o� platform.
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Fig. 1. Flowchart of complete processing pipeline from the IMMU and light barrier data to the ski velocity and jump length.

2 METHODS
2.1 Data acquisition
2.1.1 Hardware. �e data acquisition was based on the miPod sensor system [6]. �e sensor hardware

contained an inertial-magnetic measurement unit with a three-axes accelerometer, a three-axes gyroscope and a
three-axes magnetometer. �e IMMU was con�gured to an accelerometer range of ± 16 g, a gyroscope range of
± 2000 �/s, a magnetometer range of ± 1200 µT and a sampling rate of 200Hz with a 16-bit resolution per axis.
In addition to the sensor hardware, a camera system was built up in order to be used for later evaluation. It

consisted of four synchronized and simultaneously recording cameras. One camera covered the start area at the
top of the jumping hill, one the take-o� area and two cameras were used to record the landing. �e cameras were
set to a sampling rate of 100Hz with their maximum resolution of 640 x 480 pixels. For the synchronization of the
IMMU and the camera system, a method was developed based on the combination of a magnetic gate and a light
barrier pair (response time: ± 0.5ms) at the same position on the jumping hill, 6m before the end of the take-o�
platform (see Fig. 2). �e magnetic gate was created using four permanent magnets (two for the le� ski, two for
the right ski), which produced a magnetic �eld that was multiple times stronger than the earth magnetic �eld.
When an athlete passed this setup, the IMMU magnetometer measurement showed a clear peak in the signal
while the light barrier was triggered simultaneously. �e light barrier and the camera system were connected to
the same base station and therefore followed the same time. In addition, a second pair of light barriers was built
up at the end of the take-o� platform, that is, with a distance of 6m to the �rst pair. �e combination of both
pairs was used for the establishment of the ground truth take-o� velocity for evaluation purposes.

2.1.2 Study design. Inertial-magnetic sensor data were acquired during two ski jumping training sessions at
the HS 106 Fichtelbergschanze [22] in Oberwiesenthal, Germany. One training session was conducted in summer
season and one in winter season. In total, eleven experienced athletes (all male, average age [years]: 16± 1, jump
experience [years]: 10± 2, height [cm]: 176± 9, weight [kg]: 59± 6) of the Ski Association Saxony participated
in the study. All athletes were aware of jump-related risks and the ski association gave wri�en consent for the
collected data to be published.
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Fig. 2. Magnetic gate in combination with a light barrier system. IMMUs and global time were synchronized by evoking a
distinct peak in the magnetometer signal while at the same time triggering the light barrier.

At the beginning of each session, the IMMUs were calibrated by performing a speci�ed calibration procedure.
�e IMMU calibration was necessary to estimate current internal sensor parameters (e.g., measurement bias,
scaling factors and cross-sensitivity) [17] and to provide accurate data for later processing. Besides the variation
of these parameters over time, the change of the outside temperature in�uences the IMMU output [16, 33]. In
order to avoid inaccuracies due to temperature di�erences (especially in winter season), the sensor hardware was
acclimatized to the outside temperature before starting the calibration procedure. Subsequently, multiple sensors
were a�ached to a calibration cube which was moved following a pre-de�ned motion pa�ern. �is motion pa�ern
contained static positions on all six sides of the cube as well as multiple rotations about all axes. A rotary table
with adjustable stand was used to provide a stable calibration environment even on snow-covered ground. �e
whole calibration hardware is visualized in Fig. 3.

Fig. 3. Calibration cube for a stable calibration of multiple sensors. The cube was placed in six stable static positions on top
of a rotary table and was rotated about all axes. The miPod IMMUs were a�ached to the inside of the cube.
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A�er the calibration procedure was performed, one sensor was a�ached to each ski with VELCRO® adhesive
tape. �e sensor orientation was de�ned by the sensor’s x-axis representing the sagi�al, the y-axis the frontal
and the z-axis the longitudinal axis of the athlete (see Fig. 4). �e training sessions were executed by the athletes
without any speci�c consideration of the data acquisition being performed. No involvement of the athlete was
necessary. One training session usually consisted of two to six consecutive jumps, depending on the athlete
and training conditions. In total, data of 34 jumps were collected with two IMMUs per athlete. However, due to
isolated incidents of device failure, 34 jumps of the right sensor but only 24 jumps of the le� sensor could be stored
for later evaluation. �e missing data were the result of an early application of our recently developed sensor
hardware. Although the sensing process itself is robust and reliable, the data storage is error-prone regarding
power outages and unwary user interaction during the data download process. As a result, the data of two (le�)
sensors were deleted before or during downloading. In addition to the IMMU data, all jumps were recorded with
the camera system and detailed �eld records were kept for all acquisitions.

Fig. 4. Sensor a�achment to both skis in front of the binding with corresponding sensor-ski coordinate system

2.1.3 Sensor calibration. �e initial sensor calibration was based on the sensor measurements of six static
positions and rotations about all axes. With these data, the accelerometer and the gyroscope were calibrated
following an adapted version of the algorithm of Ferraris and colleagues [14]. �ey considered a gyroscope
calibration with rotations of 360�. In our adapted version, multiple rotations about each axis were performed in
order to minimize the in�uence of inaccurate rotation performance. �e magnetometer was only used for the
synchronization with the light barrier-triggered camera system. Hence, a calibration of the magnetometer was
not required.

2.1.4 Definition of coordinate systems. For the processing of the acquired data, two coordinate systems were
de�ned: the ski system s and the global system g as shown in Fig. 5. If not otherwise stated, all vectors and
matrices refer to the global coordinate system. Vectorsv that refer to the ski system are marked withvs . �e
rotation from the global to the ski system C

s
�,t equals the orientation of the ski in the global system Cski,t at

time t .

2.2 Phase segmentation
In order to prepare the obtained data for further processing, a segmentation of the jump was conducted. �e
whole jump scenario was separated in �ve phases: rest (non-motion state before the start), straight inrun, radius,
take-o� preparation and �ight. In addition, the following points of time were de�ned: start motion, take-o� and
landing. An overview of the de�ned states and times is provided in Fig. 5.
In the literature, several algorithms were proposed that could be applied for the segmentation of each jump

into the de�ned phase. Amongst them were template-based segmentations such as Subsequent Dynamic Time
Warping [5, 31] with examples in gait analysis [3, 4] and rowing [19] as well as model-based approaches such as
Hidden Markov Models (HMM) [34] with examples in gait segmentation [29], ECG signal segmentation [1] and
swimming [13]. Considering possible extensions and adaptations of our system with future data recordings, a
model-based approach would allow the possibility of learning more diverse data than a template-based approach.
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Fig. 5. Schematic representation of a jump scenario (not drawn to scale).

Hence, we decided to implement a Hidden Markov Model. Due to the hierarchical nature of our data, we
speci�cally chose a Hierarchical Hidden Markov Model (HHMM) [15] for the application in ski jumping.
�e top hierarchical level of our HHMM contained the �ve ski jump phases (see Fig. 5). Each of these

�ve ski jump phases consisted of a further HMM containing N hidden states. �e jump phases were trained
fully supervised with ten iterations. In contrast, the hidden states of the lower hierarchy HMMs were trained
unsupervised. All transitions were de�ned as forced le�-to-right transitions as in [32]; that is, the model could
not return to a state that it had previously le� and only had the ability to move to the next available state in the
sequence. Furthermore, they were implemented with forced alignment in order to ensure starting with the �rst
state of the rest phase and ending with the last state of the �ight phase. �e suitable number of hidden states for
the proposed pipeline N was analyzed in a previous study and de�ned to N = 3. We used a Gaussian Mixture
Model (GMM) to model the continuous data input. �is model was initialized with ten centers. �e calculated
features were the raw acceleration signals of x- and z-axes, the raw gyroscope signal of the y-axis, the cumulative
sum of the gyroscope y-axis over the complete jump and the variances of all aforementioned features.

�e ground truth labels for training the model and later evaluation were established by simultaneous analysis
of the video and sensor data. Due to the fact that the only available training data were also needed to test the rest
of the pipeline, a leave-one-subject-out training approach was used. �us, eleven di�erent hierarchical HMM
were trained. �is means that the model used to segment data for the rest of the pipeline was trained on the data
for all skiers excluding the current one.
In contrast to related literature [12, 37], the proposed phase de�nition did not distinguish between di�erent

�ight phases such as early �ight and stable �ight. However, this was not necessary for the calculation of
the required parameters for the proposed pipeline. Instead, in our approach, we considered a more detailed
segmentation of the inrun on the jumping hill (straight inrun, radius, take-o� preparation). �ese phases were
necessary for the misalignment correction which will be explained in detail in the following section.

2.3 Misalignment correction
For achieving the maximum accuracy of the calculated parameters, it was important that the sensor and the ski
frame were aligned correctly. Hence, a correction of any misalignment caused by the placement of the sensor
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on the ski was necessary. Due to the requirement of unobtrusiveness, the athlete’s active participation in the
measurement had to be avoided. �erefore, a functional calibration procedure was implemented following the
approach of [20]. For the rotation from the sensor to the ski frame, measurements of two known states were
incorporated: the rest phase before the start and the radius of the inrun.

�e basic idea of the misalignment correction was to measure the gravity components per sensor axis in the rest
phase asmeas,r est and the rotation angle per sensor axis during the radius phase � smeas,radius , which was calculated
by the integration of the gyroscope signal. In a perfectly aligned sensor-ski system, the measured gravity would
exactly re�ect the orientation of the ski in the rest phase and the rotation in the inrun radius would only be
measured in the y-axis of the gyroscope (frontal axis of the athlete). However, due to possible misalignment,
both vectors could vary from the expected vectors asexp,r est and � sexp,radius . Based on the two-stage approach
of [20], the misalignment was computed and corrected for all obtained data sets.

2.4 Ski orientation
�e initial ski orientation Cski,init was known based on the slope angle �slope at the starting position (in this
work: �slope = 37.0�) [22]. All further rotations of the ski were measured by the gyroscope. �e gyroscope
signal was integrated with the quaternion-based approach as described in [20]. �e resulting quaternion q

t1
t0

contained the rotation of the ski system from time t0 to time t1. Based on the initial ski orientationCski,init , the
ski orientationCski,t at all times t was calculated with a quaternion multiplication [27].

Cski,t = q
t
init ·Cski,init (1)

However, due to sensor noise during the inrun phase, it was more accurate to reset the integration of the gyroscope
at the additionally known state before the take-o� instant. �ere, the skis are still in the track and hence, the
ski orientation equals the orientation of the take-o� platform. �e orientation Cski,take can be obtained by
incorporating the take-o� platform pitch angle �take (in this work: �take = 10.5�). Hence, the ski orientation
Cski,t was calculated based on the initial ski orientation until the take-o� and based on the take-o� orientation
for the �ight phase.

Cski,t =
8>><>>:

q

t
init ·Cski,init

q

t
take ·Cski,take

for t 2 [tinit , ttake )

for t 2 [ttake , tland ]
(2)

2.5 Ski velocity
�e ski velocity calculation was performed by integrating the accelerometer measurements as proposed for
applications of strapdown inertial navigation in [35]. However, the in�uence of gravity had to be considered
and eliminated. �erefore, the gravity vector a�ra� = [0, 0,�]> was transformed into the ski coordinate system at
each time step t .

a

s
�ra�,t = Cski,t · a�ra� (3)

Subsequently, as�ra�,t was subtracted from all corresponding acceleration measurements. �e resulting accel-
eration vector asmotion,t was assumed to contain only the actual motion acceleration at each time step t . �e
corresponding velocityvs

motion,t could then be calculated by integration of asmotion,t over t considering a possible
prior velocityvs

0 . For discrete measurements, the integral can be approximated by

vs
motion,t = v

s
0 +
X

a

s
motion,t · �t . (4)

�e overall ski velocity �st was computed by the norm of the resulting velocity vector.

�

s
t =

������vs
motion,t

������2 (5)
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�e calculation was performed separately for the two time intervals [start to take-o�] and [take-o� to land-
ing]. �is was necessary for two reasons: the in�uence of vibrations during accelerating on the slope and an
improvement of accuracy by a velocity update based on the light barrier system at the take-o�.

2.5.1 Ski velocity from start to take-o�. In the �rst time interval, the athletes accelerated on the slope. Due to
contact with the slope and an uneven surface, the acceleration measurement was in�uenced by vibrations of
the skis. In order to minimize this in�uence, prior knowledge of the motion direction was incorporated. During
the inrun, the only relevant motion acceleration was measured in the x-direction of the ski system. Hence,
measurements of the y- and z-axes were ignored for the ski velocity determination. In addition, the prior velocity
vs
0 was set to zero due to the rest state before the start of the motion. �e resulting continuous velocity before

the take-o� was then calculated by adapting (4) to (6).

vs
motion,t =

X *.
,
a

s
x,motion,t

0
0

+/
-
· �t for t 2 [tinit , ttake ) (6)

2.5.2 Ski velocity from take-o� to landing. During the �ight phase, there was no in�uence caused by vibrations
and, in addition, the skis’ acceleration was no longer restricted to the y-axis. �erefore, all components of the
motion acceleration vector asmotion,t were used for the velocity calculation. Instead of basing the �ight velocity
on the possibly erroneous acceleration integration of the �rst interval, the take-o� velocity was updated with the
light barrier system at the take-o� platform. Hence, the prior velocity vs

0 was set to the light barrier velocity
�lb . Based on the de�ned movement of the skis before the take-o�, the velocity measured by the light barrier
completely represented the ski’s velocity in x-direction. �e resulting continuous velocity for the �ight phase
was calculated by

vs
motion,t =

*.
,
�lb
0
0

+/
-
+
X

a

s
motion,t · �t for t 2 [ttake , tland ]. (7)

2.6 Jump length
�e jump length calculation was based on the previously established parameters of motion acceleration, ski
orientation and velocity as well as the instants of take-o� and landing. �e current position of the sensor xt in
the global system at time t could then be computed by applying the motion model of accelerated movements.

xt = xt�1 +Cski,t
�1 ·

f
vs
motion,t�1 · �t +

1
2
· asmotion,t · �t2

g
(8)

For the determination of the actual jump lengthw as it is de�ned by the Standards for the Construction of Jumping
Hills [21], a further ramp-speci�c transformation was necessary. Referring to [21], the jump length is de�ned
by the ground distance from the end of the take-o� platform to the landing position (see Fig. 5). In order to
transform the landing position xt=tland from the global system to the o�cial jump length, a mathematical model
of the jumping hill was established with the parameters of the Jumping Hill Certi�cate [22]. Based on this model,
the horizontal component of x was processed to the jumping hill-speci�c jump length w with the following
procedure.

�e landing slope of a jumping hill is de�ned for speci�c points P, K, and L. �e jump lengthsw (P ),w (K ) and
w (L) were known based on the hill certi�cate. Furthermore, the horizontal component x of x was known for
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these points based on the equations of [21]:

x (P ) = n � rL · (sin�P � sin� )
x (K ) = n

x (L) = n + rL · (sin� � sin�L ),
(9)

with the jumping hill speci�c parameters n, rL , � , �P , �L . �e corresponding jump length w for each jump of
this work was then computed based on a linear interpolation between the known horizontal distance and jump
length pairs.

2.7 Evaluation
2.7.1 Ground truth measurements and data sets. Two external systems were incorporated for the evaluation:

the light barriers for the velocity measurement at the take-o� platform as well as the camera system for the jump
phase segmentation and the jump length analysis. Based on the light barrier response time of ± 0.5ms and an
estimated average velocity at the take-o� of 25.0 m

s , the accuracy of the light barrier system was calculated to be
± 0.10 m

s . �e accuracy of the video camera system was relevant for the phase segmentation and jump length
evaluation. �e camera frames were analyzed manually with Kinovea video so�ware [25]. For the evaluation of
the jump length, the landing frame was overlaid by a measurement grid to simplify the ground truth determination
(see Fig. 6). Due to the frame rate of 100Hz and the estimated average velocity of 25.0 m

s , the accuracy of the
system was restricted to ± 0.25m. However, the accuracy was assumed to be worse than this value based on the
limited quality of the camera recording. Experimentally, the uncertainty of the annotation was found to be up to
three frames. �is equals a distance of up to ± 0.75m.

Fig. 6. Manual jump length analysis with the camera system and Kinovea video so�ware.

�e evaluation of the phase segmentation, the ski velocity and the jump length were based on all 58 available
data sets without di�erentiation between le� and right. Only the relative comparison of the velocity required a
combined analysis of both skis. Hence, the 24 complete data sets were used for that purpose. An overview of the
evaluation contents with corresponding data sets is provided in Table 1. Details of the evaluation procedure are
given in the following sections.
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Table 1. Overview of evaluation procedure, corresponding data sets and the error with respect to ground truth (absolute) /
di�erence between le� and right ski (relative).

content procedure data sets error / di�erence
phase segmentation validation of HHMM-segmented 24 le�, 34 right see Tab. 2

jump phases against
video labeled data

ski velocity validation against ground truth 24 le�, 34 right -0.78 m
s ± 1.18 m

s
(absolute) data of light barrier system (-3.0 %± 4.7 %)

at take-o� platform
ski velocity comparison of le� and right 24 combined 0.40 m

s ± 0.96 m
s

(relative) ski sensor during �ight phase
jump length validation against ground truth 24 le�, 34 right 0.8m± 2.9m

data of camera system (0.9 %± 3.4 %)
at landing instant

2.7.2 Phase segmentation evaluation. �e HHMM-based segmentation accuracy was compared to the video
labeled ground truth. �e most crucial state transitions for the calculation of jump parameters were the start
of the motion, take-o� and landing. Although the other de�ned transitions were also part of the pipeline, their
accuracy was not as relevant as the aforementioned ones. In addition, there was no video labeled ground truth
data available for these transitions and the model was trained based on a manual signal analysis. �erefore, the
evaluation was limited to the three transitions: start of the motion, take-o� and landing. �e error was calculated
by the mean and standard deviation of (tphase,HHMM � tphase,�t ).

2.7.3 Ski velocity evaluation. �e velocity calculation of each ski was validated with reference to the ground
truth measurement at the take-o� platform. �us, �st was compared to the light barrier system measurement
�lb at the take-o� by (�st ��lb ) for t = ttake . For the evaluation, the mean and standard deviation of the velocity
error were calculated over all jumps. In addition, the error was calculated in percentage of the estimated average
take-o� velocity of 25.0 m

s .
Furthermore, a continuous velocity evaluation for the �ight phase was performed by a relative comparison of

le� and right ski. �e velocity development was analyzed over all jumps by the mean and standard deviation of
(�st,lef t ��st,r i�ht ).

2.7.4 Jump length evaluation. For the evaluation of the jump lengthw , the calculated value was compared to
the manually determined ground truth jump lengthw�t by (w �w�t ). �e mean and standard deviation of the
error to ground truth data were determined over all jumps. In addition, the error was calculated as a percentage
of the average jump length over all jumps (average jump length in our acquisition: 84.5m).

3 RESULTS
3.1 Phase segmentation results
�e deviation of the proposed phase segmentation to the ground truth data is provided in Tab. 2.

3.2 Ski velocity results
For the absolute ski velocity evaluation, the computed velocity was compared to the light barrier ground truth.
�e mean and standard deviation of the error were determined to be -0.78 m

s ± 1.18 m
s . �is equals a percentage
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Table 2. Results: Error of HHMM-based jump phase segmentation compared to the video labeled ground truth by
(tphase,HHMM � tphase,�t )

start of motion take-o� landing
mean [s] 0.01 -0.01 0.00
std. dev. [s] 0.83 0.08 0.05

of -3.0 %± 4.7 % in reference to the estimated average take-o� velocity. �e di�erence of the relative velocity
calculation for le� and right ski are provided in Fig. 7. Averaged over the complete �ight phase, the di�erence
was calculated to be 0.40 m

s ± 0.96 m
s .

Fig. 7. Results: Comparison of the velocity development of le� and right ski averaged over all evaluated jumps. The
visualization starts at the take-o� and ends with the landing instant of the jump with the shortest jump duration.

3.3 Jump length results
For the jump length evaluation, the mean and standard deviation of the error compared to the video-based ground
truth were determined to be 0.8m± 2.9m. �is error can be interpreted as 0.9 %± 3.4 % with reference to the
average jump length.

4 DISCUSSION
4.1 Interpretation of results
�e Hierarchical HMM-based segmentation showed su�ciently accurate results for the performance of the
complete processing pipeline. Although the mean values of the errors compared to the video-based system
are within the sampling accuracy of the hardware components (sensor: 200Hz, cameras: 100Hz), the standard
deviation of the results was considerable high for the start of the motion. One reason for this is based on the
physical di�erences of the initial motion sequence of each athlete. Whereas some athletes start with their skis
already resting in the track, others move their skis back and forth multiple times and then directly jump into the
track for initiating the movement. �ese motion di�erences could be considered by including data of more than
eleven athletes as in the case of this work. A large number of data sets of various athletes would lead to a be�er
incorporation of individual jump techniques in the training of the model and hence, would possibly lead to a
more robust segmentation performance.
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For the velocity calculation at the take-o�, the results show an error compared to the light barrier system
of -0.78 m

s ± 1.18 m
s and a relative di�erence between le� and right of 0.40 m

s ± 0.96 m
s . �is re�ects a consistent

processing of measurements on the inrun slope as well as in the �ight phase. Considering an average velocity of
25.0 m

s , the calculated error is in a range of under 5 %. Although such an error would probably not be acceptable
for quantitative judgments in competitions, it could be used as a visualization tool for spectators or for the analysis
during training sessions. In addition, the jump velocity could further be analyzed in horizontal and vertical
components and thus show the velocity and possibly also the forces applied at the landing impact. Analyzing the
continuous velocity development could furthermore provide interesting feedback for coaches and athletes who
could compare to their previous jumps and to those of others.

For the jump length calculation, the error was calculated to be 0.8m± 2.9m, which is 0.9 %± 3.4 % of the average
jump length of this work. �ese numbers can be interpreted similarly to the velocity evaluation. Compared to a
standardized camera-based jump length measurement with an accuracy of ± 0.5m [23], the proposed system
cannot be used for judging in competitions. However, it could support competitions. While a camera-based
analysis only covers the landing position, a sensor-based method monitors the whole �ight phase. �us, not
only the jump length but also the �ight path could be provided. �is would lead to a new way of a�ractive
visualization for spectators, e.g., by showing the in�uence of gusts. However, the evaluation of the �ight path
was not in the scope of this work and remains to be established in future work. Still, due to the results of the
jump length, the �ight path can be assumed to be in a certain accuracy and the proposed system could already be
used in training sessions as an indicator of the performance and skills of an athlete. Possible applications for
training support could include a visualization of the �ying altitude in dependency of the covered distance or
an analysis of the altitude compared to the horizontal and vertical velocity. Based on this information, also the
�ight style can be analyzed in detail by distinguishing between rather �at but fast and rather high but slow �ight
performances. In addition, the in- and decrease of velocity could be monitored during inrun, take-o�, �ight phase
and landing preparation. �e la�er can be analyzed by incorporating the landing angle in combination with the
velocity components.

For scienti�c purposes, the required accuracy of the velocity estimation was established to be ± 0.1 km
h for the

inrun [26] and can be assumed to be about ± 0.5 km
h for the �ight phase. However, for practical application, the

accuracy requirements are more relaxed and the output provided by the proposed system can be assumed to be
helpful for coaches considering that currently there is no other inexpensive system for measuring the continuous
velocity development. Furthermore, the velocity development itself contains more relevant information than the
actual absolute velocity for most analyses. A similar situation can be found for �ight path analyses. For coaches,
the development between velocity and altitude is usually more interesting than an absolute value of the altitude.

4.2 Influencing aspects and improvements
For the discussion of possible accuracy improvements, two major aspects should be considered: the in�uence of
the processing steps before calculating the proposed parameters and the accuracy of the ground truth system.
�e processing chain leading to the velocity and jump length calculation includes the misalignment, the phase
segmentation and the orientation determination (see Fig. 1). Although the fundamentals of the applied methods
have been evaluated or published in previous work, they have not been completely validated for absolute
accuracy. �e misalignment was proposed in the complete processing pipeline of [20] but only the �nal results
were evaluated. �e previous work on Hierarchical HMM was modi�ed to a phase segmentation in ski jumping.
Although the most relevant state transitions were evaluated in this work, a complete analysis with more data
and ground truth for all transitions would possibly enhance the segmentation accuracy. �e ski orientation was
investigated in several publications [9, 10, 20], however only evaluated with a comparison to literature values or
with analysis of single angles rather than a complete 3D-orientation over the whole �ight phase. Hence, this
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work proposes a working processing pipeline with evaluated �nal results, but the overall accuracy could be
improved by including extended analyses of all individual components.
�e second aspect in�uencing the �nal results is the ground truth. Both the light barrier as well as the

camera-based jump length measurements could introduce inaccuracies to the evaluation. �e light barriers were
installed in a way that they were triggered by the bindings of the skis (see Fig. 2) and not by the body of the
athlete which would lead to deviations in the measurements due to a considerably varying body pose in the last
part of the inrun. However, this procedure was not analyzed for accuracy. In addition, the jump length evaluation
with the camera system covering the landing area could contain inaccuracies. �ese inaccuracies are a result
of the limited resolution, the camera perspective and possible uncertainties in the manual labeling process. As
stated before, an uncertainty of up to three frames should be considered. Further inaccuracies could be introduced
based on the established model for the transformation from the landing position in the global system to the jump
lengthw . Especially in winter, the in�uence of the snow layer on the slope should be measured and incorporated
accurately. An improvement of the ground truth measurements could be a validated velocity determination and a
camera system with higher resolution. In addition, a 3D-motion capture system with markers a�ached to both
ends of the ski could provide the required ground truth of velocity, jump length and even the continuous �ight
path.

4.3 Application in competitions and standard training
�e design of the proposed system was established in consideration of previously stated requirements. In order
to apply a jump analysis system to competitions and standard training, it must be unobtrusive, automated and
a�ordable. With the proposed system, these goals were achieved. �e sensor data were obtained from IMMUs
at the skis and the light barrier system at the take-o� platform. �e sensors can be a�ached before the athlete
prepares for the jump and the light barriers can easily be set up or are o�en already available at jumping hills.
Although our system requires manual assistance for charging, calibrating and a�aching the IMMU and light
barrier hardware, the sensing and calculation itself does not require any interaction during the competition. �e
athletes who participated in our study reported no impairment by the wearable sensors. Furthermore, our results
show that the collected data are su�cient for all required computations. With our algorithm, all processing steps
can be performed without the necessity of experienced personnel or complex equipment. In addition, wearable
sensors and light barriers are considerably cheaper than a camera-based system covering the landing area or
even the complete jump scenario. However, it should be discussed that the proposed system requires certain
adaptation according to the environment.

One aspect which should be considered in future studies is the in�uence of the temperature on themeasurements.
In our acquisitions, the sensors were calibrated at the beginning of each day and it was assumed that the
temperature would not change signi�cantly during the training session. In contrast, there are training sessions or
even competitions that include drastic temperature changes and the sensors have to compensate for that [16, 33].
One method to establish a more robust system would be a calibration procedure that is scalable according to
temperature. �e basic calibration parameters such as measurement bias, scaling factors and cross-sensitivity do
not change rapidly as long as there is a stable temperature. A temperature-compensating calibration could be
trained automatically in order to adapt to the relevant parameters according to the current temperature.
Another aspect is the jumping hill size. While our study was conducted on a jumping hill size HS 106,

competitions are usually performed on slightly larger jumping hills as e.g., HS 134 in [36]. �e major impact
would probably be seen in the HHMM-based segmentation which was trained on data of this study only. However,
due to the nature of an advanced pa�ern recognition method, it can be assumed that the proposed segmentation
can easily be adapted by adding training jumps of other jumping hills to the existing data sets. Due to varying
slope structures, it must be assumed that a training phase is always necessary for incorporating new venues.
Whereas some structural parameters may remain identical (e.g., landing platform inclination), there could be
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variations in the landing slope inclination (given by P, K and L) or even in the thickness of the snow layer covering
the slope. Aside from the segmentation part of our algorithm, the rest of the pipeline is based on physical motion
models which should not be in�uenced by varying hill size.

Although the proposed pipeline has the capacity for a real-time application and can provide relevant information
even for competitions, further extensions are required for an application in real-time. �e described system and
its evaluation were based on data that were stored on the sensor unit. For the application in real-time, a wireless
transmission over the full distance of the jump area is necessary. Furthermore, the acquisition should be triggered
automatically so that the processing starts when the athlete is in the start area and ends when the athlete �nishes
the landing. In addition, the measurement hardware has to be improved to avoid data loss which for instance
occurred during the data acquisition of this work. Finally, an analysis of the community perception, similar to the
one performed in [18], would assess the sports community’s acceptance towards a wearable real-time system.

5 CONCLUSION AND FUTURE WORK
�e goal of this work was the design of an unobtrusive, automated and a�ordable system that provides continuous
ski velocity and jump length. We proposed a processing pipeline which was based on inertial-magnetic sensor data
and light barrier measurements. �e processing pipeline contained an automated jump phase segmentation and
misalignment correction which ensured an automated computation without the requirement of any interaction
from the athlete. �e results showed that our system is capable of providing the ski velocity with an error of
-0.78 m

s ± 1.18 m
s and the jump length with an error of 0.8m± 2.9m.

Aiming towards an application of our algorithm in competitions and standard training, a real-time system
could be established. �erefore, further hardware developments are necessary. �e next steps towards a real-time
system are the establishment of a wide range data transmission and remotely controllable sensor hardware. While
these developments still have to be achieved, an o�ine training support by our system is already achievable. �e
relevant parameters for training support, such as the ski orientation, velocity and jump length, are calculated in
our pipeline. Hence, our system can be incorporated into the training process by storing obtained jump data and
corresponding parameters for later comparison and analysis.
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Schuldhaus, Jürgen Winkler, Jochen Klucken, and Bjoern M Esko�er. 2015. Stride segmentation during free walk movements using
multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 15, 3 (2015), 6419–6440.

[5] Donald J Berndt and James Cli�ord. 1994. Using dynamic time warping to �nd pa�erns in time series. In KDD workshop. 359–370.
[6] Peter Blank, Patrick Kugler, Heiko Schlarb, and Bjoern Esko�er. 2014. A Wearable sensor system for sports and �tness applications. In

19th Annu. Congr. of the European College of Sport Science.
[7] Heike Brock and Yuji Ohgi. 2016. Development of an inertial motion capture system for kinematic analysis of ski jumping. Proc IMechE

Part P: J Sports Engineering and Technology (2016), 1–12.
[8] Heike Brock, Yuji Ohgi, and Kazuya Seo. 2016. Development of an automated motion evaluation system from wearable sensor devices

for ski jumping. Procedia Engineering 147 (2016), 694–699.
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