



# Novel technologies for mitigation of cone-beam artifacts in C-arm CT imaging of the head

Zijia Guo<sup>1,2</sup>, Guenter Lauritsch<sup>3</sup>, Andreas Maier<sup>2</sup>, Frédéric Noo<sup>1</sup> <sup>1</sup>UCAIR, University of Utah, USA <sup>2</sup>LME, University of Erlangen-Nuremberg, Germany <sup>3</sup>Siemens Healthcare GmbH, Forchheim, Germany June 20, 2017



### Outline

- Motivation
- Background
- Rebinning process  $\rightarrow$

to transform the real data into CB measurements in an ideal geometry

- Trajectory registration
- Data rebinning
- Evaluations
  - Computer-simulation
  - Real-data experiment (without and with gantry-tilt equivalent)
- Conclusion and discussion



#### **Motivation**

- C-arm CT is a valuable tool in interventional radiology, with new applications continually demanding for higher image quality.
- Incomplete data acquisitions by circular short-scan (SS) cause cone-beam (CB) artifacts, and improper data redundancy weights of SS-FDK exacerbate the artifacts.
- Can we improve image quality by algorithms with proper data redundancy weights, like the ACE method?
- Can we improve image quality by applying a tilt scanning geometry, to emulate the gantry-tilt geometry used in diagnostic CT?



#### Background

- Analytical reconstruction methods with proper data weighting (e.g. the ACE method) require ideal data acquisition geometries
- CB projections in C-arm CT present non-negligible geometrical deviations due to various mechanical forces.
- For many clinical C-arm systems, deviations are reproducible, and hence geometrically-accurate reconstruction can be achieved using off-line calibration.







# **Rebinning process**



#### **Rebinning process**

We propose a novel rebinning algorithm to transform real data into CB measurements in an ideal geometry, using interpolation.





#### **Rebinning process—trajectory registration**

• Find the plane with normal vector  $\vec{e}$  that best fits the trajectory:

$$\vec{e} = argmin\{\vec{e}\}\left\{\sum_{i,j} (\vec{q}_{i,j} \cdot \vec{e})^2 - \beta(\vec{e} \cdot \vec{e} - 1)\right\} \quad (i, j = 1, 2, \dots, N \quad i \neq j)$$

( $\beta$ : Lagrange multiplier)





### **Rebinning process—trajectory registration**

• Find the plane with normal vector  $\vec{e}$  that best fits the trajectory:

$$\vec{e} = argmin\{\vec{e}\}\left\{\sum_{i,j} (\vec{q}_{i,j} \cdot \vec{e})^2 - \beta(\vec{e} \cdot \vec{e} - 1)\right\} \quad (i, j = 1, 2, ..., N \quad i \neq j)$$
  
(\beta: Lagrange multiplier)

• Find the center  $\vec{x}_c = (x_c, y_c, z_c)^{\mathsf{T}}$  and the radius  $\hat{R}$  of the circular arc that best fits the source positions in the plane orthogonal to  $\vec{e}$ :

$$(x_{i} - x_{c})^{2} + (y_{i} - y_{c})^{2} = \hat{R}^{2}$$

$$z_{c} = \frac{1}{N} \sum_{i} \vec{x}_{i} \cdot \vec{e}$$

$$\vec{x}_{c} \quad \vec{x}_{j} \quad \vec{x}_{i}$$



### **Rebinning process—data rebinning**





### **Rebinning process—data rebinning**



chosen to be centered within the ROI



# **Rebinning process—data rebinning**



chosen to be centered within the ROI

• Frequency-boosting filter (*sinc*<sup>2</sup> function) is applied to compensate resolution loss due to interpolation within the detector







# **Evaluations**





- Evaluations are performed by simulations on the FORBILD head phantom, as well as experiments on an anthropomorphic head phantom.
- Both the simulations and real-data experiments use the same trajectory parameters.
- For the computer simulation, we were using the ACE method for reconstruction; for the real data experiment, both SS-FDK and ACE were implemented.

| Distance from source to isocenter (R) | 786 mm   |
|---------------------------------------|----------|
| Distance from source to detector (D)  | 1198 mm  |
| Radius of the FOV (r)                 | 125 mm   |
| Scanning range                        | 198°     |
| Number of projections                 | 496      |
| Detector pixel size                   | 0.308 mm |
| Detector size                         | 1240×960 |



non-ideal geometry w/o rebinning

#### Evaluations—simulations ideal geometry

Results are from the ACE method. Scale window: [-50,150] HU



#### Evaluations—simulations ideal geometry

#### non-ideal geometry w/ rebinning



Results are from the ACE method. Scale window: [-50,150] HU



# **Evaluations—simulations (cont.)**

• Zoomed view on the resolution pattern

#### ideal geometry



non-ideal geometry w/ rebinning

Scale window: [-50,450] HU



#### **Evaluations—MTF and SSP**

• MTF in the (*x*, *y*) plane and SSP along the *z*-axis were generated from reconstruction of a cylindrical object centered on the origin and parallel to the *z*-axis (diameter: 4 *cm*; height: 8 *cm*)





#### **Evaluations-real data**

- Experiments with an anthropomorphic head phantom
- No tilt and 20° tilt of the scanning plane are applied







• SS-FDK

#### no tilt







• SS-FDK

#### no tilt







• ACE

#### no tilt







• ACE

#### no tilt







### **Conclusion and discussion**

- The proposed rebinning scheme can correct errors caused by trajectory deviations.
- The rebinning scheme enables the utilization of advanced reconstruction methods to mitigate CB artifact.
- The rebinning scheme shows good performance both from computer-simulated and real data. There is a strong hope that the observed improvements can be beneficial in clinical practice.
- Application of a tilt scanning plane may provide additional improvement of image quality in terms of artifacts.
- Future work will vary the amount of geometrical deviations probing the limits of the rebinning process.
- Further test on tilted scanning planes are also needed.





# Thank you!

Zijia Guo, Guenter Lauritsch, Andreas Maier, Frédéric Noo Contact: zijia.guo@utah.edu