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Novel technologies for mitigation of cone-beam artifacts in C-arm CT
imaging of the head

Zijia Guo, Günter Lauritsch, Andreas Maier, Frédéric Noo

Abstract—Cone-beam (CB) computed tomography (CT) using
a floor- or ceiling-mounted C-arm system or using a robotic
C-arm system has become a valuable tool in interventional
radiology. This technology is typically used with a circular short-
scan (SS) data acquisition geometry. As it is well-known, this
geometry does not provide complete data for exact reconstruc-
tion. Furthermore, the classical SS-FDK algorithm, which is often
employed, exacerbates CB artifacts by applying data redundancy
weights that are not exact. In this paper, we are interested in
mitigating CB artifacts in C-arm CT imaging of the head. We
suggest a rebinning algorithm that allows transforming data
from such systems into data acquired in an ideal geometry.
This rebinning algorithm enables utilization of advanced CB
reconstruction methods to mitigate CB artifacts. We extensively
evaluated the performance of the rebinning algorithm using the
FORBILD head phantom as well as a cylindrical phantom to
assess MTF and SSP. The results show strong performance of
the rebinning algorithm for geometry deviations encountered in
practice. Furthermore, we have applied the rebinning algorithm
to real data of an anthropomorphic phantom. This additional ex-
periment demonstrated clinical value of our rebinning algorithm,
particularly as a strong mitigation of CB artifacts can be seen in
comparison with the SS-FDK algorithm. Last, we showed that
data acquisition with the equivalent of a gantry tilt may provide,
in terms of CB artifacts, additional improvements within the
brain region.

I. INTRODUCTION

Cone-beam (CB) computed tomography (CT) using a floor-
or ceiling-mounted C-arm system or using a robotic C-arm
system has become a valuable tool in interventional radiology.
Often, this technology is referred to as C-arm CT imaging. Its
value primarily lies in its ability to provide the interventional
radiologist with immediate feedback during a procedure, so
that lengthy transfers to a CT scanner room can be avoided,
which reduces both risks to the patient and financial costs.
Over time, there has been a continuous clinical request for
improvements in C-arm CT image quality, to improve clinical
outcomes as well as to facilitate the development of novel
minimally-invasive procedures.

The circular short-scan (SS) data acquisition geometry is
typically used in C-arm CT. As it is well-known, this geometry
does not provide complete data for exact reconstruction. Fur-
thermore, the classical SS-FDK algorithm, which is often em-
ployed, exacerbates CB artifacts by applying data redundancy
weights that are not exact. In this paper, we are interested in
mitigating CB artifacts in C-arm CT imaging of the head. Due
to the complex structure of the human skull, CB artifacts can
sometimes be very pronounced. Unusual skull appearance, due
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to fractures or intentional temporary skull bone removal, can
make the problem worse.

There are analytical methods that produce better results than
the SS-FDK algorithm, by properly weighting the data. A first
such method was suggested in [1], where smooth weights were
employed in a filtered-backprojection framework. Later, [2]
suggested a variant of this method, called the ACE algorithm,
that uses discontinuous weigths. The ACE method offers the
advantage of a more efficient filtering step and better use
of photon statistics, but these advantage comes at the cost
of higher sensitivity to slight anatomical variations during
scanning, which could occur due to involuntary patient motion
or injection of a contrast agent. Other examples of analytical or
semi-analytical methods include [3], [4]. Analytical methods
are not straightforward to use in C-arm CT because they are
developed for ideal data acquisition geometries whereas the
CB projections in C-arm CT present non-negligible geometri-
cal deviations from this ideal setting. In this work, we suggest
a data rebinning algorithm that allows overcoming this issue.
The performance of this algorithm will be demonstrated using
both computer-simulated and real data.

An additional way to mitigate CB artifacts in C-arm CT
imaging of the head may be the application of a tilt to the
scanning geometry, similar to the gantry-tilt used in diagnostic
CT. The gantry tilt in CT is known to be highly preferred by
neuroradiologists because it results in images of higher quality.
To our knowledge, the idea of using a similar tilt in C-arm CT
imaging of the head has never been explored. We will report
as well early results in this direction, using real data of an
anthropomorphic head phantom.

II. BACKGROUND

In this section, we review the ideal geometry and briefly
discuss deviations from this geometry that are observed in
real measurements.

A. Ideal geometry

Ideally, the source positions in C-arm CT imaging using
a short-scan acquisition would lie on a circular arc. Ideally,
the detector at each position would also be oriented so as to
be parallel to both the tangent to the source trajectory at the
local source position and the axis orthogonal to the plane of
the circular arc. Moreover, the orthogonal projection of the
source onto the detector plane would remain fixed during the
scan.

Mathematically, we describe the ideal geometry as follows.
Given a 3-D Cartesian system of coordinates, x, y and z, the
circular arc is centered on the origin, O, in the plane z = 0.
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The source position on this arc is then described by a polar
angle λ:

~a(λ) = (R cosλ,R sinλ, 0)T (1)

where R is the radius of the arc and λ ∈ [−γm, π+γm]. Angle
γm ∈ (0, π/2) defines the radius, R sin γm, of a cylindrical
region-of-interest (ROI) centered on the origin and parallel to
the z-axis. When the source position is at ~a(λ), the detector
plane is spanned by vectors

~eu(λ) = (− sinλ, cosλ, 0)T (2)

~ev(λ) = (0, 0, 1)T (3)

Thus, vector

~ew(λ) = ~eu(λ)× ~ev(λ) = (cosλ, sinλ, 0)T (4)

points towards the source. The distance between the source
and the detector plane is a fixed constant D in this direction.

Detector pixels are identified by Cartesian coordinates (u, v)
in the detector plane, with u and v measured along ~eu and
~ev , respectively. The origin (u, v) = (0, 0) corresponds to
the orthogonal projection of the source onto the detector.
The direction of an X-ray beam that starts at ~a(λ), that goes
through a point Q within the ROI, and that hits the detector
plane at (u, v) is given by a unit vector ~α that can be expressed
as:

~α(λ, u, v) =
u~eu + v~ev −D~ew√
u2 + v2 +D2

(5)

and

~α(Q,~a(λ)) =
~OQ− ~a(λ)

|| ~OQ− ~a(λ)||
(6)

B. Non-ideal geometry

Due to various mechanical forces, the CB projections ac-
quired in C-arm CT are known to only approximate the desired
ideal configuration. As illustrated in Figure 1, deviations are
observed in the source position, as well as in the position and
orientation of the detector. Fortunately, for many C-arms used
in interventional radiology, the deviations are reproducible.
Hence, geometrically-accurate reconstruction can be achieved
using an off-line calibration process that identifies the source-
detector position for each projection. Using homogeneous
coordinates, the outcome of the calibration process can be
summarized by 3× 4 projection matrices.

III. REBINNING PROCESS

In this section, we present the rebinning algorithm we
suggest to transform the real data into CB measurements in
an ideal geometry, using interpolation.

A. Trajectory Registration

The registration process is a rigid transformation from the
world coordinate system to the ideal geometry. We start with a
decomposition of each projection matrix into its components,
which provides us with a vectorial description of the source
and detector position in a world coordinate system attached
to the calibration phantom. See e.g. [5] for a description of

Fig. 1: Illustration of misalignment of the source and detector. The real and
ideal source positions are indicated by a small black disk and a small open
circle, respectively. The ideal detector placement is shown with solid lines,
whereas the real detector placement, involving rotations and translations is
shown with dashed lines. The line that connects the source position to its
orthogonal projection onto the detector is shown in each case, using the same
notation (solid/dashed line for ideal/real positions.)

this decomposition process. At this stage, the non-ideal source
positions are known and we look for a plane that best fit these
source positions. Let ~qi,j represent a vector pointing from one
real source position, ~bi, to another, ~bj . Thus,

~qi,j = ~bj −~bi (i, j = 1, 2, 3, ...; i 6= j) (7)

The normal to the sought plane, ~e3, is obtained by requiring
it to be as perpendicular as possible to all vectors ~qi,j . I.e.,

~e3 = argmin{~e3}

∑
i,j

(~qi,j · ~e3)2 − β (~e3 · ~e3 − 1)

 (8)

where β is a Lagrange multiplier used to enforce unit length
for ~e3. From here, we can obtain three unit orthogonal vectors,
~e1, ~e2 and ~e3, in the world coordinate system. We chose ~e1 =
~b1/||~b1|| and ~e2 = ~e3 × ~e1.

Next, we look for a point ~x0 = (x0, y0, z0)T that is meant
to be the center of the circular arc that best fits the source
positions in a plane orthogonal to ~e3. Coordinate z0 is obtained
as the mean of the following dot products: ~bi ·~e3. For x0 and
y0, we apply fitting to the equation (x−x0)2+(y−y0)2 = R̂2.
Using (xi, yi, zi) for the coordinates of ~bi along ~e1, ~e2 and ~e3,
the fitting can be done through solution of a linear system of
equations:

2x1 2y1 1
2x2 2y2 1

...
2xi 2yi 1

...


 x0

y0
R̂2 − x20 − y20

 =


x21 + y21
x22 + y22
...

x2i + y2i
...

 (9)

This system indirectly yields the center of the fitted circle,
(x0, y0, z0) as well as it radius, R̂.

At this stage, we can rigidly transform the data geometry
from the world coordinate system to the ideal geometry using
both rotation and translation. Letting Q = [~e1, ~e2, ~e3], we
evaluate

~di = QT(~bi − ~x0) , (10)
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which represents transformed source positions as aligned as
possible with the ideal geometry, except for a rotation angle φ
in the (x, y) plane. Angle φ is found as φ = −γm−φ1 where
φ1 is the polar angle for ~d1.

Let

Φ =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (11)

Then, the following equation expresses the real source posi-
tions in the coordinate system of the ideal geometry

~ci = ΦTQT(~bi − ~x0) (12)

Similar rotations are applied to find the vectors that orient the
detector.

B. Data rebinning

After registration, the measurements are unchanged, but
we have an expression for the source and detector positions
that are close to the ideal geometry. The data rebinning
process amounts to obtaining projection values at ideal source
positions, ~a(λ), from the projection data at source positions ~ci
using linear interpolation. The ideal-geometry data are created
at λ = −γm + k∆λ, k = 0, 1, 2, .... The increment ∆λ is
obtained as ∆λ = (π + 2γm)/(N − 1), where N is the
number of projections and π+2γm is the polar angle difference
between ~c1 and ~cN .

We now explain how the data is created at ~a(λk). The X-
ray beam that starts at ~a(λk) and hits the detector plane at
(u, v) with direction ~α(λk, u, v) is identified with a line L.
Let M be a point on L that is more or less centered within
the scanned ROI. Let ~cj and ~cj+1 be the two registered source
positions that are closest to ~a(λk), with ψj < λk < ψj+1

if ψj is the polar angle for ~cj . The X-ray beam that comes
from ~cj (resp. ~cj+1) and passes through M has direction
~α(M,~cj) (resp. ~α(M,~cj+1)). See the illustration in Figure 2.
The projection value at (u, v) for ~a(λk) is interpolated from
the projection data for ~cj at (u∗j , v

∗
j ) and the projection data for

~cj+1 at (u∗j+1, v
∗
j+1). The coordinates (u∗j , v

∗
j ) are found from

the detector positioning vectors to match the line of direction
~α(M,~cj) through ~cj . The same is done for (u∗j+1, v

∗
j+1).

Because the data rebinning step requires interpolation in
(u, v), as well as in the polar angle, some resolution loss may
be expected. To compensate for the anticipated resolution loss
in (u, v), we pre-filter the original data using a frequency-
boosting filter that amounts to a product of sinc2 functions in
the frequencies corresponding to u and v. The interpolation
in the direction of the polar angle is shift-variant and may
not be as easily compensated for. However, we anticipate that
no compensation should be needed because this interpolation
occurs in the direction of the backprojection.

IV. EVALUATIONS

In this section, we present evaluation results of our method
using both computer-simulated data of the FORBILD head
phantom and real data of an anthropomorphic head phantom.

~a(λk)

~cj

~cj+1

M

L

~α(λk, u, v)

~α(M,~cj)

~α(M,~cj+1)

1

Fig. 2: Illustration of data rebinning process. The curve represents the ideal
trajectory with source samples (white dots) on it. The registered real source
positions (solid black dots) are close to the ideal trajectory. X-ray beam L
corresponds to a desired line integral at ~a(λk) and M is a central point on
L. The two closest registered source positions that surround ~a(λk) are ~cj
and ~cj+1. The desired line integral is interpolated (in polar angle) from two
oblique line integrals through M , one of which starts at ~cj with direction
~α(M,~cj) and the other one at ~cj+1 with direction ~α(M,~cj+1).

A. Experiment set up

Both ideal and non-ideal geometries were used to generate
CB data of the FORBILD head phantom. The non-ideal
geometry was based on projection matrices that characterize
the non-ideal geometry of a real data acquisition on a research-
dedicated Siemens Artis C-arm system. The parameters for the
ideal geometry where obtained through the above-described
trajectory registration process. These parameters are given in
Table I. The physical pixel size on the flat panel detector is
0.154 mm; a 2-by-2 binning mode was considered. Also, the
detector was used in the landscape mode.

Distance from source to isocenter (R) 786 mm
Distance from source to detector (D) 1198 mm
Radius of the FOV (r) 125 mm
Scanning range 198o

Number of Projections 496
Detector pixel size 0.308 mm
Detector size 1240x960

TABLE I: Parameters for the ideal geometry

Real data of the anthropomorphic head phantom were
obtained on the same research-dedicated Siemens Artis C-
arm system. We considered data acquisition with normal head
positioning as well as data acquisition with the head tilted by
20 degrees, as shown in Figure 3. In clinical practice, the C-
arm rotation would be tilted not the phantom. For this early
evaluation, tilting the phantom was easier to implement.

All data sets were reconstructed using the ACE method [2].
This method was primarily preferred over the approach in [1]
to make the test more challenging, as the smooth weights
in [1] could have easily masked undesirable effects of the
interpolation. An isotropic voxel size of 0.49 mm was used.

B. Results with the FORBILD head phantom

Figure 4 shows the reconstruction in the plane of the
circular scan under three different settings: (i) ideal data, (ii)
rebinned data, and (iii) brute-force reconstruction of non-ideal
data without rebinning (wrongly assuming the data is in the
ideal geometry). The difference between (ii) and (i), and also
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Fig. 4: Reconstruction using the ACE method, shown in the (x, y)-plane. From left to right: reconstruction using projection from the ideal trajectory, using
rebinned projection data, and directly using the non-ideal projection data by wrongly assuming that they are in the ideal geometry. Grayscale: [−50, 150] HU.

between (iii) and (i) is shown in Figure 5. Figures 6 and 7
show the same arrangement of results for reconstruction in
the (y, z)-plane. These results show that the non-ideal data
differs too much from the ideal geometry to provide accurate
reconstructions without considering the geometry deviations.
The suggested rebinning algorithm allows accounting for these
deviations; the results show that it provides attractive results
with no apparent resolution loss.

To further assess the quality of the suggested rebinning algo-
rithm, we performed zoomed reconstruction on the resolution
pattern in the (x, y)-plane of the phantom. See Figures 8, 9,
and 10. Moreover, we also assessed the MTF in the (x, y)
plane and the slice sensitivity profile (SSP) along the z-axis,
from reconstructions of a cylindrical object centered on the
origin and parallel to the z-axis (diameter of 4 cm and height
of 8 cm). The MTF and the SSP are shown in Figures 11 and
12 respectively. These five figures show that there is no loss
of resolution in (x, y) and also no loss of resolution in z.
Importantly, note also that the MTF for the rebinned data
reaches its first zero at the same location as the MTF for the
ideal data. Thus, resolution can be adapted in the same way
for both ideal and rebinned data.

C. Head Scan

Results obtained from the real data of the anthropomorphic
phantom are shown in Figures 13 and 14. The first fig-
ure compares reconstruction using SS-FDK to reconstruction

Fig. 3: Setup for real data acquisition of an anthropomorphic head phantom
that is tilted to simulate a data acquisition with a gantry tilt, as used in
diagnostic CT imaging. The oblique and horizontal red lines show the classical
and tilted trajectory planes selected for our experiment.

Fig. 5: Differences between reconstruction results in the (x, y)-plane. Left:
for ideal minus rebinned projection data. Right: for ideal minus non-ideal
projection data. Grayscale: [−20, 20] HU.

Fig. 6: Reconstruction using the ACE method, shown in the (y, z)-plane.
From left to right: reconstruction using projection from the ideal trajectory,
using rebinned projection data, and directly using the non-ideal projection
data by wrongly assuming that they are in the ideal geometry. Grayscale:
[−50, 150] HU.

using the ACE method, both from rebinned data. A fair
mitigation of CB artifacts can be observed, supporting clinical
value for advanced image reconstruction methods that handle
redundancies in the data set in a rigorous way (not like the
SS-FDK method). The suggested rebinning algorithm allows
utilizing such advanced methods directly, i.e., in their original
formulation for ideal trajectories. The second figure compares
data acquisition without and with a simulated geometry tilt.
It can be seen in this figure that there can be benefits in
terms of CB artifacts to using a geometry tilt as in diagnostic
CT. The benefits may however be dependent on positioning
of the region-of-interest: tilting the geometry does not avoid
CB artifacts; it displaces them to locations that may be more
advantageous for some clinical applications.
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Fig. 7: Differences between reconstruction results in the (y, z)-plane. Left:
for ideal minus rebinned projection data. Right: for ideal minus non-ideal
projection data. Grayscale: [−20, 20] HU.

Fig. 8: Reconstruction using the ACE method zoomed on the resolution
pattern in the (x, y)-plane. Top: ideal data. Bottom: rebinned data. Grayscale:
[−50, 450] HU.

V. CONCLUSION

We have suggested a rebinning algorithm that allows trans-
forming data from a floor or ceiling mounted C-arm system, or
from a robotic system, into data acquired in an ideal geometry.
This rebinning algorithm enables utilization of advanced CB
reconstruction methods to mitigate CB artifacts. We exten-
sively evaluated the performance of the algorithm using the
FORBILD head phantom as well as a cylindrical phantom to
assess MTF and SSP. The results show the performance of
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Fig. 9: Profile through the top row of ellipsoids in the resolution pattern (as
displayed in Figure 8). The solid line corresponds to the ideal data, and the
dashed line to the rebinned data.
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Fig. 10: Profile through the bottom row of ellipsoids in the resolution pattern
(as displayed in Figure 8). The solid line corresponds to the ideal data, and
the dashed line to the rebinned data.
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Fig. 11: Modulation transfer function in the (x, y)-plane. The solid line
represents the MTF of ideal trajectory, and the dashed line shows the MTF
of the rebinned trajectory.

the rebinning algorithm is very good. Furthermore, we have
applied the rebinning algorithm to real data of an anthropo-
morphic phantom. This additional experiment demonstrated
clinical value of our rebinning algorithm, particularly as a fair
mitigation of CB artifacts can be seen in comparison with
the SS-FDK algorithm. Last, we showed that data acquisition
with the equivalent of a gantry tilt can provide, in terms of
CB artifacts, additional improvements within some regions of
the brain.
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Fig. 12: Slice sensitivity profile (SSP) along the z-axis. The solid line
is the SSP for the ideal trajectory, and the dashed line is the SSP for
the rebinned data. The vertical axis is the recontructed linear attenuation
coefficient normalized to unity for water.

Fig. 13: Reconstruction from real data of an anthropomorphic head phantom.
Left: using SS-FDK. Right: using the ACE method. Grayscale: [0.2, 0.32]/cm.
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Fig. 14: Reconstruction from real data of an anthropomorphic head phantom
using the ACE method with our rebinning algorithm. Left: conventional
positioning of the head. Right: tilted positioning of the head, simulating a
CT-like gantry tilt with the C-arm system. Grayscale: [0.2, 0.32]/cm.
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