

Penalized Least-Square CT Reconstruction with and without Statistical Weights: Effect on Lesion Detection Performance with Human Observers

Viktor Haase^{1,2}, April Griffith³, Zijia Guo^{1,3}, Mehmet B. Oktay³, Katharina Hahn², Harald Schoendube², Karl Stierstorfer², and Frederic Noo³

¹ Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany

² Siemens Healthcare GmbH, Forchheim, Germany

³ Department of Radiology and Imaging Sciences, University of Utah, USA

Fully3D – June 19, 2017

Introduction

Penalized Weighted Least-Square CT Reconstruction

Model-Based Iterative Reconstruction

- Model-based iterative reconstruction (MBIR) has been suggested as a robust way to reduce radiation dose while maintaining image quality
- Studies have demonstrated strong clinical potential of MBIR [1]-[3]
- Popular MBIR formulation: penalized least-square reconstruction with statistical weights (PWLS)

[1] Neroladaki et al. "Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations." (2013)
[2] Pickhardt et al. "Abdominal CT with model-based iterative reconstruction (MBIR): Initial results of a prospective trial comparing ultralow-dose with standard-dose imaging." (2012)
[3] Ichikawa et al. "CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction." (2013)

PWLS Problem Formulation

- Objective function: $\Phi(\underline{x}, \underline{b}) = \Phi_1(\underline{x}, \underline{b}) + \beta \Phi_2(\underline{x})$
- Desired solution: $\underline{x}^* = \arg \min_{x \ge 0} (\Phi(\underline{x}, \underline{b}))$
- Data fidelity: $\Phi_1(\underline{x}, \underline{b}) = \left\| \mathbf{W}^{-1/2} (\mathbf{A}\underline{x} \underline{b}) \right\|^2$

Data Fidelity

- \underline{x} image pixel values
- \underline{b} CT measurements
- A forward projection matrix
- W diagonal matrix of statistical weights

PWLS Problem Formulation (cont'd)

- Objective function: $\Phi(\underline{x}, \underline{b}) = \Phi_1(\underline{x}, \underline{b}) + \beta \Phi_2(x)$
- $\Phi_2(\underline{x}) = \frac{1}{2} \sum_i \sum_j \omega_{ij} \psi(x_i x_j)$ • Penalty term:

Regularization

• $\beta > 0$ regularization parameter

• $\omega_{ij} = \begin{cases} 1 & \text{for horizontal and vertical neighbor pixels} \\ 1/\sqrt{2} & \text{for diagonal neighbor pixels} \\ 0 & \text{otherwise} \end{cases}$

- i. $\psi(t) = t^2$ quadratic potential
- ii. $\psi(t) = \delta \cdot \left[\left| \frac{t}{\delta} \right| \log \left(1 + \left| \frac{t}{\delta} \right| \right) \right]$ edge-preserving Fair potential, $\delta > 0$

Statistical Weights

- Data fidelity term: $\Phi_1(\underline{x}, \underline{b}) = \left\| \mathbf{W}^{-1/2} (\mathbf{A}\underline{x} \underline{b}) \right\|^2$, with \mathbf{W} as diagonal matrix of statistical weights
- Statistical weights represent the variance of the measurements
- Enable accounting for different noise levels across measurements
- Drawback: wide dynamic range complicates the development of an efficient iterative reconstruction algorithm

What is the image quality improvement given by the statistical weights?

Evaluation Methodology

LROC Analysis with Human Observers: Examination of the Impact of Statistical Weights on Image Quality

LROC Analysis: Experimental Set-Up

- Data simulation:
 - Fan beam data, 3rd generation CT geometry
 - FORBILD head phantom
 - 360-degree circular scan, quarter-detector offset
 - 48 line integrals used to model each ray
 - Detector size: 0.75mm at FOV center
 - Poisson noise
 - No tube current modulation, realistic body-size bowtie filter
 - 40 keV monochromatic beam

> Choices made to accentuate the effect of statistical weights

LROC Analysis: Experimental Set-Up (cont'd)

- Image reconstruction:
 - Image pixel size: 0.375mm
 - Same regularization parameter value for all reconstructions
 - Statistical weights exactly known and normalized
 - Distance-driven forward projector
 - Iterative coordinate descent (ICD) method used for reconstruction, iterations stopped when maximum pixel increment falls below 0.1HU
- Image display:
 - Grayscale: [-30,130] HU
 - Grayscale chosen to avoid pixel clipping within gray matter [1]

[1] Noo et al. "Influence of the grayscale on phantom-based image quality assessment in x-ray computed tomography." (2015)

Examples of Reconstruction: With Statistical Weights

Computer-simulated fan beam data of FORBILD head phantom

[-30, 130] HU

Examples of Reconstruction: Without Statistical Weights

Computer-simulated fan beam data of FORBILD head phantom

Image Quality Assessment Methodology

- LROC analysis with
 - Human readers
 - Mathematical phantoms
- Task description:
 - Detection of a round lesion within the FORBILD head phantom
 - Fixed lesion size: 7mm diameter
 - Random contrast: [20,30] HU

Image Quality Assessment Methodology

- LROC analysis with
 - Human readers
 - Mathematical phantoms
- Task description:
 - Detection of a round lesion within the FORBILD head phantom
 - Fixed lesion size: 7mm diameter
 - Random contrast: [20,30] HU
 - Random location within brain tissue
 - No overlap with bones

Image Quality Assessment Methodology

- LROC analysis with
 - Human readers
 - Mathematical phantoms
- Task description:
 - Detection of a round lesion within the FORBILD head phantom
 - Fixed lesion size: 7mm diameter
 - Random contrast: [20,30] HU
 - Random location within brain tissue
 - No overlap with bones

LROC Analysis: Experimental Set-Up (cont'd)

- Generation of cases:
 - 2 test cases per reconstruction
 - Cases statistical independent thanks to gap
 - Population defined by two parameters: upper/lower portion, scan repetition

LROC Analysis: Experimental Set-Up (cont'd)

- Human observers:
 - Reconstruction with quad. potential: 2 readers, both CT scientist
 - With Fair potential: 3 readers, 2 CT scientists and 1 radiology resident
- Two sessions per reader, parameters for one session:
 - 40 training and 160 testing per imaging scenario
 - 80+320 images total per session; reading time: about 90 minutes
 - Random ordering: scenarios and images across sessions and readers
 - Pre-calibrated medical grade monitor, dim room
- Figure-of-merit: area under LROC curve (AUC) is "probability correct" estimated using AFC experiments
- Statistical analysis: fixed-reader effects; data pairing across scenarios, but not readers; correlated linear combinations of proportions [1], [IQmodelo on GitHub]

[1] Noo et al. "A nonparametric approach for statistical comparison of results from alternative forced choice experiments." (2013)

Alternative Forced-Choice Experiment

Results and Conclusions

Detectability Performance

Results

AUC value obtained for each observer (R) and each session (S)

SIEMENS HEALTH Healthineers HEALTH UNIVERSITY OF UTAH

Results (cont'd)

AUC value obtained for each observer (R) after averaged over sessions SIEMENS HEALTH Healthineers HEALTH UNIVERSITY OF UTAH

Results (cont'd)

Difference in reader-and-session-averaged AUC reconstruction without weights and reconstruction with weights

Conclusions

- Image quality improvement using statistical weights is not straightforward (impact on computational effort)
- Statistical weights can induce confusing aliasing errors
- Agreement with knowledge that human observers can pre-whiten images to a certain extent [1]
- Results likely dependent on task and image regularization
- Improvements may be possible using smooth weights with weightbased pixel-dependent regularization strength [2]

[1] Abbey et al. "Classification images for simple detection and discrimination tasks in correlated noise." (2007)

[2] Cho et al. "Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-d x-ray CT." (2015)

Thank you for your attention!

Any questions?

