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Abstract—Iterative CT reconstruction with the penalized least-
square model may offer significant gains in terms of image quality

at equal dose, and may thereby allow either dose reduction or
improved diagnostic. In this work, we are interested in evaluating
image quality improvements that result from using statistical
weights in this model. Image quality is assessed in terms of lesion
detection with unknown location, using the principles of LROC
analysis with human observers. Reconstruction without and with
statistical weights are compared for two penalties: a quadratic
penalty, and an edge-preserving penalty. Interestingly, our study
failed showing any major improvements due to the use of weights.
Furthermore, it was even observed that performance with weights
could be even worse, possibly due to the utilization of weights
leading to disturbing discretization errors. Because there are a lot
of degrees of freedom in our experimental set-up, it should not be
concluded that statistical weights are not useful. However, we can
state that improvements are not straightforward and may depend
on many aspects including the task and anatomical location. This
observation is valuable from a computational viewpoint since
using statistical weights generally leads to long reconstruction
times; if weights can be ignored in some settings, reconstruction
times can be largely improved for these settings.

I. INTRODUCTION

Iterative CT reconstruction using advanced statistical mod-

els is currently a hot topic of research. For diagnostic CT

imaging, the main advantage that is sought from such recon-

struction is improved image quality, which may either be used

to augment the role of CT in medicine and clinical research

or to reduce dose to the patient for conventional CT scans.

Encouraging clinical results have been published [1]–[5].

Among a number of options, the penalized least-square

model with statistical weights [6], [7] is highly popular. In

this model, the statistical weights represent the variance of

the measurements. These weights are applied in the data

fidelity term to enable accounting for different noise levels

across measurements. To regularize the reconstruction, the

data fidelity term is further balanced with a penalty term that

typically constrains differences between neighboring voxel

values.

Designing an efficient iterative algorithm to solve the pe-

nalized weighted least-square reconstruction problem turns

out to be highly difficult, particularly for convergence within

1 HU from the desired solution. The wide dynamic range of

statistical weights is largely responsible for this situation. In

this work, we are interested in evaluating the image quality

improvement brought by the statistical weights, in comparison
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with using the same model but without weights. The evaluation

is carried out in fanbeam geometry, and task-based assessment

of image quality is employed with human observers.

The paper is organized as follows. First, we present our

evaluation methodology. Next, we show our main results.

Afterwards, we offer a brief discussion and conclusions.

II. EVALUATION METHODOLOGY

A. Problem formulation

Let x be the vector of image pixel values to be reconstructed

and let b be the vector of CT measurements. The desired

reconstruction is defined as the minimizer of the following

objective function with positivity constraint on the entries of

x:

Φ(x, b) = Φ1(x, b) + β Φ2(x) (1)

where Φ1(x, b) is the data fidelity term, and Φ2(x) is the

penalty (regularization) term. The balance between these two

terms is controlled by parameter β > 0. The expression for

the data fidelity term is

Φ1(x, b) =
∥

∥

∥
W−1/2(Ax− b)

∥

∥

∥

2

(2)

where A is a forward projection matrix, and W is a diagonal

matrix with entries equal to the exact variance of the measure-

ments. When used, the statistical weights were normalized so

that the mean value for the central ray is equal to one, when

taking the mean value over the views. The expression for the

regularization term is

Φ2(x) =
1

2

∑

i

∑

j

ωijψ(xi − xj) (3)

with ωij = 1 for horizontal and vertical neighbor pixels,

ωij = 1/
√
2 for diagonal neighbor pixels, and ωij = 0

otherwise. Two choices are considered for ψ(t): (i) ψ(t) = t2,

which amounts to performing reconstruction with FBP-like

(quadratic) regularization, and (ii)

ψ(t) = δ · [|t/δ| − log (1 + |t/δ|)] (4)

which preserves edges through parameter δ.

B. Iterative reconstruction technique

Given the chosen expressions for Φ1(x, b) and Φ2(x), the

desired reconstruction can be robustly computed using the

iterative coordinate descent (ICD) method [8]–[11]. We have

employed this method. More precisely, the objective function

was sequentially minimized by iterating over each pixel value,

one at a time, in a random order. The result obtained after

iterating over all pixels values is called one iteration. The last



focal spot size 0.12 cm × 0.09 cm
anode angle 7◦

source trajectory radius 57 cm
source to detector distance 104 cm
number of detector elements 672
angular detector width 0.001231 radians
detector row height 0.128 cm
number of projections per turn 1160
incoming number of photons per ray:

for quadratic penalty 180,000
for edge-preserving penalty 90,000

TABLE I
DATA SIMULATION PARAMETERS.

iteration was chosen as that for which all pixel values changed

by less than 0.0001/cm. All iterations were initiated with a

zero image to prevent any bias from an initial reconstruction.

C. Data simulation

Reconstructions were performed from computer-simulated

fanbeam data of the FORBILD head phantom. The geometry

of 3rd generation CT was used, with parameters given in

Table 1. In order to model shift-variant resolution effects,

the X-ray data simulation included a sub-sampling of the

X-ray tube focal spot, of each detector, and of each source

position. Each CT measurement was thus formed as an average

of 48 line integrals, with the average taken before applying

the logarithm, and with each line integral computed from

analytical expressions.

Several noisy data sets were created to simulate repeated

scans. The noise was based on Poisson statistic using a

realistic body-size Gaussian-shaped bowtie filter. The beam

was assumed to be monochromatic. A low energy of 40kV

was used to accentue variations in noise level across the CT

measurements, and thus the effect of statistical weights.

D. Image reconstruction

The image was viewed as a set of samples on a Cartesian

grid of 551 × 701 pixels with a uniform sampling distance

of 0.0375 cm in both directions. Matrix A was formed using

the distance-driven method [12], which accounts for the finite

width of the detector pixels.

Each reconstruction was split into two sub-images, one

corresponding to the upper half of the phantom, and the

other one to the lower half. The two sub-images are seen as

independent cases for the human observer study. Stastistical

independence was ensured by discarding a central strip of 15

pixels. Each sub-image either included no lesion or exactly

one lesion, which was included during data simulation. When

present, the lesion was always within the low-contrast brain-

tissue region of the phantom, with no overlap with the bones.

The lesion was a 7 mm diameter disk with random contrast

varying between 20 and 30 HU.

E. Task-based assessment of image quality

Image quality was assessed in terms of lesion detectability

with unknown location, using the principles of LROC analysis.

The area under the LROC curve, called AUC, was employed

as figure-of-merit. This AUC value was directly evaluated

using an alternative forced choice experiment that involved two

human observers (readers) for reconstructions with quadratic

penalty, and three human observers for reconstructions with

edge-preserving penalty.

Each observer participated in two sessions, within each of

which the observer evaluated images reconstructed without

and with statistical weights. Each session amounted to first

reading training and then testing cases for one reconstruction

method, and next, reading training and testing cases for the

second reconstruction method. The number of training cases

was always 40, and the number of testing cases was always

160, so that each session included 400 cases. Random numbers

were used to decide which reconstruction method each session

would start with. These numbers changed from observer to

observer, as well as from session to session. All observers

read the cases in the same dimmed room (10 lux), on a

medical-grate monitor that was calibrated according to the

ACR Technical Standard for Electronic Practice. To maximize

statistical power, the cases were statistically independent of

each other from one session to another, as well as from one

observer to another, and the same repeated scans were used

for both reconstruction methods. In other words, the cases

were paired across methods, and unpaired across sessions and

readers. Note also that, in our statistical analysis, we view

the readers as fixed effects; this setting is deemed satisfactory

given the high level of control associated with our studies

and is indirectly supported by the observation that all readers

perform fairly similarly.

III. RESULTS

A. Visual impression

Figures 1 and 2 show negative and positive cases for

reconstruction with quadratic penalty. The cases in figure 1

are obtained without statistical weights, whereas the cases in

figure 2 are obtained with statistical weights. The data sets

are the same for both figures. Some major differences can be

observed in terms of noise correlations. The reconstruction

without weight displays more noise streaks. However, the

reconstruction with weights exhibit more discretization errors

(around the right ear as well as around the air cavity).

Figures 3 and 4 show negative and positive cases for re-

construction with edge-preserving penalty. The cases in figure

3 are obtained without statistical weights, whereas the cases

in figure 4 are obtained with statistical weights. As before,

the data sets are the same for both figures. Compared to

reconstruction with quadratic penalty, we note that reconstruc-

tion without weights still displays more noise streaks, but

reconstruction with weights does not exhibit the disturbing

discretization errors that were previously observed.

B. Detectability performance

Figure 5 displays the main results obtained with the LROC

studies, for both reconstruction with quadratic penalty (left col-

umn) and reconstruction with edge-preserving penalty (right

column). In each column, the error bars for the top and mid-

dle plots correspond to individual 95% confidence intervals,

whereas the error bars for the bottom plot correspond to



Fig. 1. Examples of reconstructions with quadratic penalty without statistical weigths. (left column) Lesion-free cases. (right column) Cases with exactly
one lesion present. Grayscale: [−30, 130] HU.

Fig. 2. Examples of reconstructions with quadratic penalty and with statistical weigths. (left column) Lesion-free cases. (right column) Cases with exactly
one lesion present. Grayscale: [−30, 130] HU.



Fig. 3. Examples of reconstructions with edge-preserving penalty without statistical weigths. (left column) Lesion-free cases. (right column) Cases with
exactly one lesion present. Grayscale: [−30, 130] HU.

Fig. 4. Examples of reconstructions with edge-preserving penalty and with statistical weigths. (left column) Lesion-free cases. (right column) Cases with
exactly one lesion present. Grayscale: [−30, 130] HU.



joint 95% confidence intervals (based on Bonferoni inequal-

ity). For reconstruction with quadratic penalty, we observe

that the reader-and-session-averaged performance is slightly

worse for reconstruction with statistical weights than for

reconstruction without weights. For reconstruction with edge-

preserving penalty, we observe that the reader-and-session-

averaged performance is, with 95% confidence, essentially

the same for both reconstruction without and with statistical

weights. Note that the size of the error bars in the bottom plots

indicate that the statistical accuracy for these observations is

fairly strong. Note also that the observer performance variation

from one session to another is consistent with the size of the

error bars; this variation is associated with the effect that cases

in one session can easily be globally more challenging than

cases in another session.

IV. DISCUSSION AND CONCLUSION

In this work, we reported results of two LROC studies with

human observers. These studies aimed at evaluating improve-

ments resulting from the use of statistical weigths in penalized

least-square CT reconstruction. Interestingly, the study failed

showing any major improvements due to the use of weights.

Furthermore, it was even observed that performance with

weights could be even worse, possibly due to the utilization

of weights leading to disturbing discretization errors. Because

there are a lot of degrees of freedom in our experimental

set-up, it should not be concluded that statistical weights are

not useful. However, we can state that improvements are not

straightforward and may depend on many aspects including

the task and anatomical location. This observation is valuable

from a computational viewpoint since using statistical weights

generally leads to long reconstruction times; if weights can be

ignored in some settings, reconstruction times can be largely

improved for these settings.

Many important questions remain open, two of which are

as follows. First, it may be that statistical weights play a

larger role when lesion detectability has to be performed with

human anatomical variations. Second, it may be that statistical

weights play a larger role when parameter β in the objective

function is replaced by a voxel-dependent weight defined from

the statistical weigths, as suggested in [13]. We are interested

in investigating these two questions in the future.
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Fig. 5. Results from the LROC studies for reconstruction with quadratic penalty (left column) and with edge-preserving penalty (right column). In each
column: (top) AUC value obtained for each observer and each session, (middle) AUC value obtained for each observer after average over sessions, (bottom)
difference (mean, resp.) in reader-and-session-averaged AUC between (over, resp.) reconstruction without weights and reconstruction with weights.


