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Abstract. Speech intelligibility for voice rehabilitation has beencsessfully
evaluated by automatic prosodic analysis. In this paperirtfiuence of reading
errors and the selection of certain words for the computaifrosodic features
(nouns only, nouns and verbs, beginning of each sentengmriyegs of sen-
tences and subclauses) are examined. 73 hoarse patie/3s (4R 8 years) read
the German version of the text “The North Wind and the Sunifrimtelligibil-
ity was evaluated perceptually by 5 trained experts acngrth a 5-point scale.
Eight prosodic features showed human-machine corremtién> 0.4. The nor-
malized energy in a word-pause-word interval, computechfatl words ¢ =0.69
for the full speaker set), the mean of jitter in nouns and sérl> 0.67), and the
pause duration before a worel£ 0.66) were the most robust features. However,
reading errors can significantly influence these results.
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1 Introduction

In speech therapy and rehabilitation, a patient’s voicesisally evaluated by the ther-
apist. Automatically computed, objective measures capauhis task. However, es-
tablished methods for objective evaluation, that analydg sustained vowels, cannot
evaluate speech criteria, like intelligibility. For thisidy, the test persons read a given
standard text that underwent prosodic analysis afterwdddier studies showed the
suitability of this approach [3-5]. However, each prosddature was averaged over all
words in the text and then used for further computation. ldenontent and function
words, long and short words, and words at different positiarsentences, were all put
together with the risk of losing information. Additionalthe influence of errors made
during reading has not been analyzed in detail. When theratto system expects the
exact reproduction of a given text, then repetitions orafNocabulary words have to
be mapped to the pre-defined word sequence. As a conseqtleaceord identities
and boundaries assigned by the speech recognizer are vidsimg.them for the word-
based prosodic analysis leads to erroneous prosodic éealues. This problem could
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be solved by replacing the text reference by a transliemadif the respective speech
sample. However, this method is not applicable in clinicalgtice. It was shown that
the influence of reading errors is negligible for the avenagient [5], but for smaller

patient groups, the effects are unclear. Two main questiomaddressed in this paper:

— How does the position and type of words that are selected &rawad-out text
influence the reliability of the automatic analysis of ifiggbility?
— In what way is the automatic analysis influenced by the nuraberading errors?

This work is organized as follows: Section 2 introduces #st tata and the per-
ceptual evaluation reference. The computation of the plicdeatures is described in
Sect. 3. The results of the experiments (Sect. 4) will beudised in Sect. 5.

2 Test Data and Subjective Evaluation

73 German subjects with different severity of chronic heaess participated in this
study (Table 1). Patients suffering from cancer were exaduttach person read the text
“Der Nordwind und die Sonne” (“The North Wind and the Sun”])[& phonetically
rich standard text which is frequently used in clinical sgeevaluation in German-
speaking countries. It contains 108 words (71 distincth\it2 syllables. The data were
recorded with a sampling frequency of 16 kHz and 16 bit amgétresolution using
an AKG C 420 microphone (AKG Acoustics, Vienna, Austria).eJhwere recorded
in a quiet room at our university and digitally stored on aveelby a client/server-
based system [11, Chap. 4]. The study respected the prsoifithe World Medical
Association (WMA) Declaration of Helsinki on ethical priptes for medical research
involving human subjects and has been approved by the ethiomittee of our clinics.
Five voice professionals (one ear-nose-throat doctor,$paech therapists) evalu-
ated the intelligibility of each original recording perd¢eglly. The samples were played
to the experts once via loudspeakers in a quiet seminar ratimowt disturbing noise or
echoes. Rating was performed on a five-point Likert scalecBmputation of average
scores for each patient, the grades were converted to mtegiees (1 = ‘very high’,
2 = ‘rather high’, 3 = ‘medium’, 4 = ‘rather low’, 5 = ‘very low: For each patient, an
intelligibility mark, expressed as a floating point valu@sicalculated as the arithmetic
mean of the single scores. These marks served as groundhtihexperiments.

Table 1. The test speakers (entire set, group with few and group wéthymeading errors)

group persons age reading errors
all | men|womer)| 1 | o [min[max]| x| o | min]max
loverall || 73 | 24 [ 49 [48316.8 19 | 85 [[3.10350 0 | 17 |

low-error || 32 9 23 ||48.913.7 26 | 76 ||0.340.47 O 1
high-erron| 41 15 26 ||48.1§18.9 19 | 85 ||5.243.34 2 | 17

Due to reading errors, repetitions, and additional remauksh as “read now?”, the
recordings did not only contain words appearing in the tefénence but also additional
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Table 2. Number of reading errors (in parentheses: percental pakepe

all files low-error reading || high-error reading
orig. files|error-treat orig. fileqerror-treat orig. files|err0r-treat.
all 226 (3.10)149 (2.04) 11 (0.34) 9 (0.28)(215 (5.24)140 (3.41
substitutions 80 (1.09) 77 (1.05)] 8(0.25] 8(0.25)| 72 (1.76) 69 (1.68
deletions 7(0.09) 7(0.09)| 0(0.00) O0(0.00) 7(0.17) 7(0.17
inserted words 55(0.78) 3(0.04)| 2(0.06) 0(0.00)| 53(1.29) 3(0.07
fragments 64 (0.88) 62(0.84) 1(0.03] 1(0.03)| 63(1.54) 61 (1.49
inserted fragments 20 (0.27) 0 (0.00)| 0(0.00) 0 (0.00)| 20 (0.49) 0 (0.00

Table 3. Number of recordings with a certain number of reading errors

lerrors Il o 1] 2] 3] 4] 5] 6] 7] 8[11]15/17|
original files 21j11 8| 6| 6| 8| 3| 3| 3| 2| 1| 1
error-treated files29)13(11| 3| 7| 3| 2| 2| 1] 1| 0] 1

words and word fragments. The topic of this paper is not difiduistic analysis of the
reading errors, since the automatic analysis of intellilgypused here does not work
on the linguistic level of speech. In order to describe thiersy a manual word-based
counting of errors was adopted instead [5]. The three basic elasses are substitu-
tions, deletions, and insertions. We also distinguisheédden substitutions of a word
by another word or a word fragment, and between insertioaguf word or word frag-
ment, respectively (Table 1, 2). We consider this word-basethod sufficient since
most of the errors affect one word only: the rate of singledwerrors on newspaper
and magazine articles among healthy speakers has beetetmbe almost 70% [8].
The problem of reading errors has been addressed in two \Wwagsder to study
the effect of errors on the evaluation on subsets of reasesae, the overall data set
was divided into an age-matched ‘low-error’ group with atstnene reading error per
speaker and a ‘high-error’ group with 2 to 17 errors per speékable 1, 3). In order
to determine the influence of errors within one particulaadaibset, a second version
of the audio files was created by removing the speech partaioory additional words
and fragments. Deletions, however, cannot be repaireceatinect word was not spo-
ken in the sample. For substitutions, the situation is simifhe text flow was supposed
to be preserved, so misread single words without correstiegre not removed. For
instance, the repetition “einst stri— einst stritten” waduced to the correct “einst strit-
ten” while the word “Nordwand” instead of “Nordwind” with¢wcorrection was left
unchanged. The data set created in this way will further el as ‘error-treated’.

3 Prosodic Features

The speech recognition system used for the experimenssijglded on semi-continuous
Hidden Markov Models (HMM). For each 16 ms frame, a 24-diniemal feature vector
is computed. It contains short-time energy, 11 Mel-freqyearepstral coefficients, and
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the first-order derivatives of these 12 static features.r€egnition vocabulary of the
recognizer was changed to the 71 words of the standard tekt.80unigram language
model was used so that the results mainly depend on the azastels.

In order to find counterparts for intelligibility, a ‘prospdnodule’ was used to com-
pute features based upon frequency, duration, and speedydintensity) measures.
This is common in automatic speech analysis on normal vgikesl4]. The module
processes the output of the word recognition module andabech signal itself.

‘Local’ prosodic features are computed for each word position. Originally, there
were 95 of them. After several studies on voice and speeessis®ent, however, a rele-
vant core set of 33 features has been defined for further gsoag[6]. The components
of their abbreviated names are given in parentheses:

— Length of pausesause): length of silent pause beforel{efore) and after {after),
and filled pause befor&i(l-before) and after Fill-after) the respective word

— Energy featuresHn): regression coefficienRegCoeff) and the mean square error
(MseReg) of the energy curve with respect to the regression curvemgdean)
and maximum energWax) with its position on the time axisaxPos); absolute
(Abs) and normalizedNorm) energy values

— Duration features{ur): absolute Abs) and normalizedNorm) duration

— Fy featuresk0): regression coefficienRegCoeff) and mean square erroigeReg)
of the Fyy curve with respect to its regression curve; medean), maximum (ax),
minimum (Min), voice onset®n), and offset Off) values as well as the position of
Max (MaxPos), Min (MinPos), On (OnPos), and Off (OffPos) on the time axis; all
Iy values are normalized.

The last part of the feature name denotes the context siz¢he interval of words
on which the features are computed (see Table 4). They camrbputed on the current
word (W) or in the interval that contains the second and first woraigethe current
word and the pause between thewiPW). A full description of the features used is
beyond the scope of this paper; details and further refeseace given in [1, 3].

Besides the 33 local features, ‘gobal’ features were computed for intervals of 15
words length each. They were derived from jitter, shimmed, tae number of detected
voiced and unvoiced sections in the speech signal [1]. Tleered the means and
standard deviations of jitter and shimmer, the number,tlerapd maximum length of
voiced and unvoiced sections, the ratio of the numbers aieband unvoiced sections,
the ratio of the length of the voiced sections to the lengtihefsignal, and the same for
unvoiced sections. The last feature was the standard deviatthe Fy.

The human listeners gave ratings for the entire text. In roral@eceive also one
single value for each feature that could be compared to theahuatings, the average
of each prosodic feature over all selected words servedalddiature value. Pearson’s
correlation coefficient was computed between the respeetiues of all speakers and
the according average human intelligibility ratings.

4 Experiments

Earlier experiments averaged each prosodic feature oeeerlire read-out text. For
this study, we examined whether the restriction to certabssts might be beneficial:
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Table 4. Local prosodic features; the context size denotes thevaitef words on which the
features are computetM; one word WPW: word-pause-word interval).

features context size
WPW| W

Pause: before, Fill-before, after, Fill-after
En: RegCoeff, MseReg, Abs, Norm, Mean °
En: Max, MaxPos

Dur: Abs, Norm

FO: RegCoeff, MseReg

FO: Mean, Max, MaxPos, Min, MinPos, Off, OffPos, On, OnPos

averaging oveall words (108 words; as in earlier studies, i.e. the reference)

nouns only (24 words)

nouns and verbs (44 words)

beginnings of sentences, i.e. the first 3 words of each of the 6 sentences (18 words)
— beginnings of sentences and subclauses, i.e. the first 3 words of each of the 6 sen-
tences and 10 subclauses (48 words)

Nouns and verbs were chosen because content words genghnally less pre-
dictability and hence intelligibility than function wordsuch as articles, prepositions,
and conjunctions [15]. The beginnings of sentences andauses, without the regard
of the word classes, were chosen with respect to the medigdication. Many voice
and speech patients show higher speaking effort and stpdrbeation time, so they will
have to pause more often and fragment the paragraph to bénteaghorter sections.
These breaks usually occur at syntactic boundaries.

5 Results

Table 5 shows the features that for at least one of the expatsmeached a human-
machine correlation of > 0.4.

The pause duration before a woreh(ise—before) is only a robust indicator when
it is measured before nouns. Although other scenarios p¢¥aethe beginning of sen-
tences, also show correlations upte0.70, the results for low-error reading are rather
poor. This is supported by the correlations on error-tckites, which drop slightly
when the additional utterances are removed.

The regression coefficient of the energy in a word-pausehivierval EnRegCo-
effwPW) works best when it is measured at the beginning of sentemwbsubunits. On
the average, its human-machine correlations#€.59, in low-error reading it decreases
tor =0.48; in high-error reading,= 0.62 was achieved. The difference to the values on
the error-treated files is not significant.

The normalized energy in a word-pause-word intergaNormWPW) has been re-
ported to be a good indicator for intelligibility [3, 5]. Thesults in this study confirm
this with » =0.59 on low-error reading,=0.70 on high-error reading, amd= 0.69 for
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Table 5. Human-machine correlation for single local and global prosodic features>0.4),
depending on the words used for computation: all, nouns aolyns and verbs (n+v), beginnings
of sentences (sef} or of sentences and subclauses (§+bold-face: best results of each line

type [feature name | all [noung n+v [senti[s+si]| all [noung n+v [senti|s+si]
| | I all original files I all error-treated files |
local |Pause—before 0.64| 0.65|0.66|0.35( 0.51|| 0.62| 0.64| 0.65|0.32| 0.4
local |EnRegCoeffWPW || 0.51| 0.37|0.52| 0.45| 0.59| 0.48| 0.31| 0.49| 0.46|0.58
local |[EnNormWPW 0.69( 0.64| 0.59| 0.59| 0.66|| 0.68| 0.62| 0.59| 0.59|0.65
local |DurNormwWPW 0.65( 0.66| 0.63]| 0.43| 0.56|| 0.64| 0.65| 0.62| 0.43|0.55
globalMeanJitter 0.63| 0.65|0.67|0.61| 0.63| 0.61| 0.64 | 0.66| 0.54|0.60
global StandDevJitter 0.55( 0.58| 0.60| 0.48| 0.53|| 0.52| 0.57| 0.59| 0.43|0.49
globalDur-Voiced 0.31( 0.18]0.21]| 0.36| 0.41|| 0.34| 0.20| 0.21]| 0.34|0.44
globalDurMax—Voiced 0.36( 0.21] 0.24| 0.32| 0.42|| 0.38| 0.21| 0.23| 0.30|0.46
| | | original low-error files || error-treated low-error files]
local |Pause—before 0.36( 0.62] 0.36| 0.16| 0.20|| 0.35| 0.61| 0.33| 0.14|0.19
local |EnRegCoeffWPW || 0.38| 0.44| 0.44| 0.36| 0.48|| 0.36| 0.38| 0.40| 0.36|0.48
local [EnNormWPW 0.59| 0.43|0.48|0.48| 0.52}| 0.57| 0.44| 0.47| 0.46|0.50
local |DurNormwWPW 0.39| 0.38|0.43|0.30| 0.32{ 0.37| 0.39|0.43| 0.28|0.31
globalMeanJitter 0.60( 0.61]0.73|0.57| 0.57|| 0.60| 0.61| 0.73| 0.57|0.57
globalStandDevJitter 0.50| 0.53|0.64| 0.46| 0.46| 0.50( 0.53|0.63| 0.44|0.46
globalDur—Voiced 0.41| 0.42|0.39|0.31|0.38{ 0.41| 0.43|0.39| 0.26|0.37
globalDurMax—Voiced 0.41(0.43]|0.38|0.31| 0.37|| 0.42| 0.44] 0.38]| 0.27|0.36
| | | original high-error files || error-treated high-error fileg
local |Pause—before 0.69| 0.66|0.70| 0.44| 0.60(| 0.69| 0.65|0.71| 0.46|0.57
local |EnRegCoeffWPW || 0.51| 0.30|0.51|0.46| 0.62|| 0.48| 0.24| 0.49| 0.46|0.61
local |[EnNormWPW 0.70( 0.70]| 0.63]| 0.60| 0.68|| 0.70| 0.67| 0.63| 0.61|0.67
local {DurNormWPW 0.70( 0.71|0.66| 0.50| 0.62{| 0.70| 0.70| 0.65| 0.52|0.62
globalMeanJitter 0.62| 0.62|0.63| 0.62| 0.63| 0.60| 0.62| 0.60| 0.51|0.59
global StandDevJitter 0.58( 0.58| 0.57| 0.50| 0.55]| 0.54| 0.56| 0.55]| 0.42|0.50
globalDur-Voiced 0.30({ 0.09]|0.14| 0.41| 0.47|| 0.35( 0.12]| 0.17| 0.39|0.53
global DurMax—Voiced 0.36| 0.13|0.21|0.36( 0.47|| 0.40| 0.14|0.21| 0.34|0.55

the entire database, computed on the full text (Fig. 1, [Epecially for low-error read-
ing, a selection of words from the text lowers the correlatmthe perceptual scores.

The normalized duration of a word-pause-word interzalrlormWPW) has also
been a good indicator for intelligibility in earlier stugi@nd could on the average
mostly replace the energshNormWPW [5]. Here, it shows about the same results as
the energy, but the drop for the low-error reading is muchawemarkable. Only for
the nouns+verbs scenario, the correlation exceed8.40. BothDurNormwPW and
Pause-before reveal the overall speaking rate.

MeanJitter shows the highest correlation of all in this study, nameh0.73 for low-
error reading and computation on nouns and verbs (Fig.it)rihe other computation
scenarios in this case are by = 0.15 lower; for high-error reading, the correlation is
stable at- =~ 0.63. In the error-treated files, only one single signifiatnaip of correla-
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Fig. 1. Human-machine agreement: left side: for the normalizedggne a word-pause-word
interval, computed on all words; right side: for the meatejjitcomputed on nouns and verbs

tion appears when the prosodic features are computed orethieriings of sentences.
StandDevJitter shows the same trend BieanJitter, but with lower correlations.

The durations of the unvoiced sections in the recording<Voiced) and the longest
unvoiced sectionfurMax-Voiced), that contain information about the voice quality, ex-
ceedr=0.40 in a few cases, but, in general, they are too unreliatite recommended
for the evaluation of intelligibility. There is a large vation among the computation
scenarios: for nouns in high-error reading, onky0.09 was reached f@ur—Voiced.

We are aware of the problem arising when standard texts & fos measuring
intelligibility. However, our listeners were well-traidespeech therapists who were in-
structed to evaluate intelligibility and not voice qualityis obvious that spontaneous
speech would be the best choice for this task, and the kintmfikis presented to the
listener has an influence on the perceptual results [9]. Mewespontaneous speech
causes other problems. There may be a mismatch in the vecglmilspeaker and lis-
tener, the sentence structure and distribution of vowalscansonants may vary among
the speakers, etc. [2]. This affects also the speech reoeganderlying the prosodic
analysis. Furthermore, the prosodic evaluation of difiepersons is not comparable
any more due to different word lengths, ratios of voiced andoiced sections, etc.
This complexity cannot be handled properly at the momentth@rother hand, it has
been shown that the text-based evaluation performed hyetldisteners is as reliable
as an inverse intelligibility test, where naive raterstevdown a previously unknown
sequence of words that was read by the test person [4]. Nelest, independence of
a given text is a long-term goal of our work. For instance,xsteng German sentence
test for speech intelligibility assessment [10] contaiiffetent sentence lists which
introduce more variety and complexity and represent edagyeommunication better.

In summaryEnNormWPW computed from all words of the texleanJitter of nouns
and verbs, an8ause—before computed from nouns as an indicator of speaking rate, are
the most robust single features for evaluation of intelliigy in this study, i.e. they
show the least variability among data with different nunsbef reading errors. The
combination of all features and computation scenarios reegal some more beneficial
interrelations. This has been shown for features, that esgeaged over the entire text,
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and for the average patient without regarding the readirgy&rThere is also room for
improvement concerning the regression method, etc. Thaarisof future work. With
additional preprocessing steps of out-of-vocabularyatete and word class identifi-
cation, the automatic prosodic analysis will gain even nreli@bility.
Acknowledgments: Dr. Dollinger’'s contribution was supported by the Germas R
search Foundation (Deutsche Forschungsgemeinschaff, [gFgat no. DO1247/8-1.
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