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Abstract. Speech intelligibility for voice rehabilitation has been successfully
evaluated by automatic prosodic analysis. In this paper, the influence of reading
errors and the selection of certain words for the computation of prosodic features
(nouns only, nouns and verbs, beginning of each sentence, beginnings of sen-
tences and subclauses) are examined. 73 hoarse patients (48.3±16.8 years) read
the German version of the text “The North Wind and the Sun”. Their intelligibil-
ity was evaluated perceptually by 5 trained experts according to a 5-point scale.
Eight prosodic features showed human-machine correlations ofr≥0.4. The nor-
malized energy in a word-pause-word interval, computed from all words (r = 0.69
for the full speaker set), the mean of jitter in nouns and verbs (r = 0.67), and the
pause duration before a word (r = 0.66) were the most robust features. However,
reading errors can significantly influence these results.
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1 Introduction

In speech therapy and rehabilitation, a patient’s voice is usually evaluated by the ther-
apist. Automatically computed, objective measures can support this task. However, es-
tablished methods for objective evaluation, that analyze only sustained vowels, cannot
evaluate speech criteria, like intelligibility. For this study, the test persons read a given
standard text that underwent prosodic analysis afterwards. Earlier studies showed the
suitability of this approach [3–5]. However, each prosodicfeature was averaged over all
words in the text and then used for further computation. Hence, content and function
words, long and short words, and words at different positions in sentences, were all put
together with the risk of losing information. Additionally, the influence of errors made
during reading has not been analyzed in detail. When the automatic system expects the
exact reproduction of a given text, then repetitions or out-of-vocabulary words have to
be mapped to the pre-defined word sequence. As a consequence,the word identities
and boundaries assigned by the speech recognizer are wrong.Using them for the word-
based prosodic analysis leads to erroneous prosodic feature values. This problem could



2 Tino Haderlein et al.

be solved by replacing the text reference by a transliteration of the respective speech
sample. However, this method is not applicable in clinical practice. It was shown that
the influence of reading errors is negligible for the averagepatient [5], but for smaller
patient groups, the effects are unclear. Two main questionsare addressed in this paper:

– How does the position and type of words that are selected froma read-out text
influence the reliability of the automatic analysis of intelligibility?

– In what way is the automatic analysis influenced by the numberof reading errors?

This work is organized as follows: Section 2 introduces the test data and the per-
ceptual evaluation reference. The computation of the prosodic features is described in
Sect. 3. The results of the experiments (Sect. 4) will be discussed in Sect. 5.

2 Test Data and Subjective Evaluation

73 German subjects with different severity of chronic hoarseness participated in this
study (Table 1). Patients suffering from cancer were excluded. Each person read the text
“Der Nordwind und die Sonne” (“The North Wind and the Sun”, [7]), a phonetically
rich standard text which is frequently used in clinical speech evaluation in German-
speaking countries. It contains 108 words (71 distinct) with 172 syllables. The data were
recorded with a sampling frequency of 16 kHz and 16 bit amplitude resolution using
an AKG C 420 microphone (AKG Acoustics, Vienna, Austria). They were recorded
in a quiet room at our university and digitally stored on a server by a client/server-
based system [11, Chap. 4]. The study respected the principles of the World Medical
Association (WMA) Declaration of Helsinki on ethical principles for medical research
involving human subjects and has been approved by the ethicscommittee of our clinics.

Five voice professionals (one ear-nose-throat doctor, four speech therapists) evalu-
ated the intelligibility of each original recording perceptually. The samples were played
to the experts once via loudspeakers in a quiet seminar room without disturbing noise or
echoes. Rating was performed on a five-point Likert scale. For computation of average
scores for each patient, the grades were converted to integer values (1 = ‘very high’,
2 = ‘rather high’, 3 = ‘medium’, 4 = ‘rather low’, 5 = ‘very low’). For each patient, an
intelligibility mark, expressed as a floating point value, was calculated as the arithmetic
mean of the single scores. These marks served as ground truthin our experiments.

Table 1.The test speakers (entire set, group with few and group with many reading errors)

group persons age reading errors
all men women µ σ min max µ σ min max

overall 73 24 49 48.316.8 19 85 3.103.50 0 17

low-error 32 9 23 48.513.7 26 76 0.340.47 0 1
high-error 41 15 26 48.118.9 19 85 5.243.34 2 17

Due to reading errors, repetitions, and additional remarks, such as “read now?”, the
recordings did not only contain words appearing in the text reference but also additional
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Table 2.Number of reading errors (in parentheses: percental per speaker)

all files low-error reading high-error reading
orig. files error-treat.orig. fileserror-treat. orig. files error-treat.

all 226 (3.10)149 (2.04) 11 (0.34) 9 (0.28) 215 (5.24)140 (3.41)
substitutions 80 (1.09) 77 (1.05) 8 (0.25) 8 (0.25) 72 (1.76) 69 (1.68)
deletions 7 (0.09) 7 (0.09) 0 (0.00) 0 (0.00) 7 (0.17) 7 (0.17)
inserted words 55 (0.78) 3 (0.04) 2 (0.06) 0 (0.00) 53 (1.29) 3 (0.07)
fragments 64 (0.88) 62 (0.84) 1 (0.03) 1 (0.03) 63 (1.54) 61 (1.49)
inserted fragments 20 (0.27) 0 (0.00) 0 (0.00) 0 (0.00) 20 (0.49) 0 (0.00)

Table 3.Number of recordings with a certain number of reading errors

errors 0 1 2 3 4 5 6 7 8 11 15 17

original files 21 11 8 6 6 8 3 3 3 2 1 1
error-treated files29 13 11 3 7 3 2 2 1 1 0 1

words and word fragments. The topic of this paper is not a fulllinguistic analysis of the
reading errors, since the automatic analysis of intelligibility used here does not work
on the linguistic level of speech. In order to describe the errors, a manual word-based
counting of errors was adopted instead [5]. The three basic error classes are substitu-
tions, deletions, and insertions. We also distinguished between substitutions of a word
by another word or a word fragment, and between insertions ofa full word or word frag-
ment, respectively (Table 1, 2). We consider this word-based method sufficient since
most of the errors affect one word only: the rate of single-word errors on newspaper
and magazine articles among healthy speakers has been reported to be almost 70% [8].

The problem of reading errors has been addressed in two ways.In order to study
the effect of errors on the evaluation on subsets of reasonable size, the overall data set
was divided into an age-matched ‘low-error’ group with at most one reading error per
speaker and a ‘high-error’ group with 2 to 17 errors per speaker (Table 1, 3). In order
to determine the influence of errors within one particular data subset, a second version
of the audio files was created by removing the speech parts containing additional words
and fragments. Deletions, however, cannot be repaired as the correct word was not spo-
ken in the sample. For substitutions, the situation is similar. The text flow was supposed
to be preserved, so misread single words without corrections were not removed. For
instance, the repetition “einst stri– einst stritten” was reduced to the correct “einst strit-
ten” while the word “Nordwand” instead of “Nordwind” without correction was left
unchanged. The data set created in this way will further be denoted as ‘error-treated’.

3 Prosodic Features

The speech recognition system used for the experiments [3] is based on semi-continuous
Hidden Markov Models (HMM). For each 16 ms frame, a 24-dimensional feature vector
is computed. It contains short-time energy, 11 Mel-frequency cepstral coefficients, and
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the first-order derivatives of these 12 static features. Therecognition vocabulary of the
recognizer was changed to the 71 words of the standard text. Only a unigram language
model was used so that the results mainly depend on the acoustic models.

In order to find counterparts for intelligibility, a ‘prosody module’ was used to com-
pute features based upon frequency, duration, and speech energy (intensity) measures.
This is common in automatic speech analysis on normal voices[12–14]. The module
processes the output of the word recognition module and the speech signal itself.

‘Local’ prosodic features are computed for each word position. Originally, there
were 95 of them. After several studies on voice and speech assessment, however, a rele-
vant core set of 33 features has been defined for further processing [6]. The components
of their abbreviated names are given in parentheses:

– Length of pauses (Pause): length of silent pause before (–before) and after (–after),
and filled pause before (Fill-before) and after (Fill-after) the respective word

– Energy features (En): regression coefficient (RegCoeff) and the mean square error
(MseReg) of the energy curve with respect to the regression curve; mean (Mean)
and maximum energy (Max) with its position on the time axis (MaxPos); absolute
(Abs) and normalized (Norm) energy values

– Duration features (Dur): absolute (Abs) and normalized (Norm) duration
– F0 features (F0): regression coefficient (RegCoeff) and mean square error (MseReg)

of theF0 curve with respect to its regression curve; mean (Mean), maximum (Max),
minimum (Min), voice onset (On), and offset (Off) values as well as the position of
Max (MaxPos), Min (MinPos), On (OnPos), andOff (OffPos) on the time axis; all
F0 values are normalized.

The last part of the feature name denotes the context size, i.e. the interval of words
on which the features are computed (see Table 4). They can be computed on the current
word (W) or in the interval that contains the second and first word before the current
word and the pause between them (WPW). A full description of the features used is
beyond the scope of this paper; details and further references are given in [1, 3].

Besides the 33 local features, 15‘global’ features were computed for intervals of 15
words length each. They were derived from jitter, shimmer, and the number of detected
voiced and unvoiced sections in the speech signal [1]. They covered the means and
standard deviations of jitter and shimmer, the number, length, and maximum length of
voiced and unvoiced sections, the ratio of the numbers of voiced and unvoiced sections,
the ratio of the length of the voiced sections to the length ofthe signal, and the same for
unvoiced sections. The last feature was the standard deviation of theF0.

The human listeners gave ratings for the entire text. In order to receive also one
single value for each feature that could be compared to the human ratings, the average
of each prosodic feature over all selected words served as final feature value. Pearson’s
correlation coefficient was computed between the respective values of all speakers and
the according average human intelligibility ratings.

4 Experiments

Earlier experiments averaged each prosodic feature over the entire read-out text. For
this study, we examined whether the restriction to certain subsets might be beneficial:
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Table 4. Local prosodic features; the context size denotes the interval of words on which the
features are computed (W: one word,WPW: word-pause-word interval).

features context size
WPW W

Pause: before, Fill-before, after, Fill-after •

En: RegCoeff, MseReg, Abs, Norm, Mean • •

En: Max, MaxPos •

Dur: Abs, Norm • •

F0: RegCoeff, MseReg • •

F0: Mean, Max, MaxPos, Min, MinPos, Off, OffPos, On, OnPos •

– averaging overall words (108 words; as in earlier studies, i.e. the reference)
– nouns only (24 words)
– nouns and verbs (44 words)
– beginnings of sentences, i.e. the first 3 words of each of the 6 sentences (18 words)
– beginnings of sentences and subclauses, i.e. the first 3 words of each of the 6 sen-

tences and 10 subclauses (48 words)

Nouns and verbs were chosen because content words generallyshow less pre-
dictability and hence intelligibility than function words, such as articles, prepositions,
and conjunctions [15]. The beginnings of sentences and subclauses, without the regard
of the word classes, were chosen with respect to the medical application. Many voice
and speech patients show higher speaking effort and shorterphonation time, so they will
have to pause more often and fragment the paragraph to be readinto shorter sections.
These breaks usually occur at syntactic boundaries.

5 Results

Table 5 shows the features that for at least one of the experiments reached a human-
machine correlation ofr≥0.4.

The pause duration before a word (Pause–before) is only a robust indicator when
it is measured before nouns. Although other scenarios, except for the beginning of sen-
tences, also show correlations up tor = 0.70, the results for low-error reading are rather
poor. This is supported by the correlations on error-treated files, which drop slightly
when the additional utterances are removed.

The regression coefficient of the energy in a word-pause-word interval (EnRegCo-
effWPW) works best when it is measured at the beginning of sentencesand subunits. On
the average, its human-machine correlation isr = 0.59, in low-error reading it decreases
to r = 0.48; in high-error reading,r = 0.62 was achieved. The difference to the values on
the error-treated files is not significant.

The normalized energy in a word-pause-word interval (EnNormWPW) has been re-
ported to be a good indicator for intelligibility [3, 5]. Theresults in this study confirm
this with r = 0.59 on low-error reading,r = 0.70 on high-error reading, andr = 0.69 for
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Table 5. Human-machine correlationr for single local and global prosodic features (r≥0.4),
depending on the words used for computation: all, nouns only, nouns and verbs (n+v), beginnings
of sentences (senti) or of sentences and subclauses (s+si); bold-face: best results of each line

type feature name all nouns n+v senti s+s i all nouns n+v senti s+s i

all original files all error-treated files

local Pause–before 0.64 0.65 0.66 0.35 0.51 0.62 0.64 0.65 0.32 0.47
local EnRegCoeffWPW 0.51 0.37 0.52 0.45 0.59 0.48 0.31 0.49 0.46 0.58
local EnNormWPW 0.69 0.64 0.59 0.59 0.66 0.68 0.62 0.59 0.59 0.65
local DurNormWPW 0.65 0.66 0.63 0.43 0.56 0.64 0.65 0.62 0.43 0.55
global MeanJitter 0.63 0.65 0.67 0.61 0.63 0.61 0.64 0.66 0.54 0.60
global StandDevJitter 0.55 0.58 0.60 0.48 0.53 0.52 0.57 0.59 0.43 0.49
global Dur–Voiced 0.31 0.18 0.21 0.36 0.41 0.34 0.20 0.21 0.34 0.44
global DurMax–Voiced 0.36 0.21 0.24 0.32 0.42 0.38 0.21 0.23 0.30 0.46

original low-error files error-treated low-error files

local Pause–before 0.36 0.62 0.36 0.16 0.20 0.35 0.61 0.33 0.14 0.19
local EnRegCoeffWPW 0.38 0.44 0.44 0.36 0.48 0.36 0.38 0.40 0.36 0.48
local EnNormWPW 0.59 0.43 0.48 0.48 0.52 0.57 0.44 0.47 0.46 0.50
local DurNormWPW 0.39 0.38 0.43 0.30 0.32 0.37 0.39 0.43 0.28 0.31
global MeanJitter 0.60 0.61 0.73 0.57 0.57 0.60 0.61 0.73 0.57 0.57
global StandDevJitter 0.50 0.53 0.64 0.46 0.46 0.50 0.53 0.63 0.44 0.46
global Dur–Voiced 0.41 0.42 0.39 0.31 0.38 0.41 0.43 0.39 0.26 0.37
global DurMax–Voiced 0.41 0.43 0.38 0.31 0.37 0.42 0.44 0.38 0.27 0.36

original high-error files error-treated high-error files

local Pause–before 0.69 0.66 0.70 0.44 0.60 0.69 0.65 0.71 0.46 0.57
local EnRegCoeffWPW 0.51 0.30 0.51 0.46 0.62 0.48 0.24 0.49 0.46 0.61
local EnNormWPW 0.70 0.70 0.63 0.60 0.68 0.70 0.67 0.63 0.61 0.67
local DurNormWPW 0.70 0.71 0.66 0.50 0.62 0.70 0.70 0.65 0.52 0.62
global MeanJitter 0.62 0.62 0.63 0.62 0.63 0.60 0.62 0.60 0.51 0.59
global StandDevJitter 0.58 0.58 0.57 0.50 0.55 0.54 0.56 0.55 0.42 0.50
global Dur–Voiced 0.30 0.09 0.14 0.41 0.47 0.35 0.12 0.17 0.39 0.53
global DurMax–Voiced 0.36 0.13 0.21 0.36 0.47 0.40 0.14 0.21 0.34 0.55

the entire database, computed on the full text (Fig. 1, left). Especially for low-error read-
ing, a selection of words from the text lowers the correlation to the perceptual scores.

The normalized duration of a word-pause-word interval (DurNormWPW) has also
been a good indicator for intelligibility in earlier studies and could on the average
mostly replace the energyEnNormWPW [5]. Here, it shows about the same results as
the energy, but the drop for the low-error reading is much more remarkable. Only for
the nouns+verbs scenario, the correlation exceedsr = 0.40. BothDurNormWPW and
Pause–before reveal the overall speaking rate.

MeanJitter shows the highest correlation of all in this study, namelyr = 0.73 for low-
error reading and computation on nouns and verbs (Fig. 1, right). The other computation
scenarios in this case are by∆r≈ 0.15 lower; for high-error reading, the correlation is
stable atr≈0.63. In the error-treated files, only one single significantdrop of correla-
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Fig. 1. Human-machine agreement: left side: for the normalized energy in a word-pause-word
interval, computed on all words; right side: for the mean jitter, computed on nouns and verbs

tion appears when the prosodic features are computed on the beginnings of sentences.
StandDevJitter shows the same trend asMeanJitter, but with lower correlations.

The durations of the unvoiced sections in the recording (Dur–Voiced) and the longest
unvoiced section (DurMax–Voiced), that contain information about the voice quality, ex-
ceedr = 0.40 in a few cases, but, in general, they are too unreliableto be recommended
for the evaluation of intelligibility. There is a large variation among the computation
scenarios: for nouns in high-error reading, onlyr = 0.09 was reached forDur–Voiced.

We are aware of the problem arising when standard texts are used for measuring
intelligibility. However, our listeners were well-trained speech therapists who were in-
structed to evaluate intelligibility and not voice quality. It is obvious that spontaneous
speech would be the best choice for this task, and the kind of stimulus presented to the
listener has an influence on the perceptual results [9]. However, spontaneous speech
causes other problems. There may be a mismatch in the vocabulary of speaker and lis-
tener, the sentence structure and distribution of vowels and consonants may vary among
the speakers, etc. [2]. This affects also the speech recognizer underlying the prosodic
analysis. Furthermore, the prosodic evaluation of different persons is not comparable
any more due to different word lengths, ratios of voiced and unvoiced sections, etc.
This complexity cannot be handled properly at the moment. Onthe other hand, it has
been shown that the text-based evaluation performed by trained listeners is as reliable
as an inverse intelligibility test, where naı̈ve raters write down a previously unknown
sequence of words that was read by the test person [4]. Nevertheless, independence of
a given text is a long-term goal of our work. For instance, an existing German sentence
test for speech intelligibility assessment [10] contains different sentence lists which
introduce more variety and complexity and represent every-day communication better.

In summary,EnNormWPW computed from all words of the text,MeanJitter of nouns
and verbs, andPause–before computed from nouns as an indicator of speaking rate, are
the most robust single features for evaluation of intelligibility in this study, i.e. they
show the least variability among data with different numbers of reading errors. The
combination of all features and computation scenarios may reveal some more beneficial
interrelations. This has been shown for features, that wereaveraged over the entire text,
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and for the average patient without regarding the reading errors. There is also room for
improvement concerning the regression method, etc. This ispart of future work. With
additional preprocessing steps of out-of-vocabulary detection and word class identifi-
cation, the automatic prosodic analysis will gain even morereliability.
Acknowledgments: Dr. Döllinger’s contribution was supported by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft; DFG), grant no. DO1247/8-1.
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