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Abstract. Limited-angle computed tomography suffers from missing
data in the projection domain, which results in intensity inhomogeneities
and streaking artifacts in the image domain. We address both challenges
by a two-step deep learning architecture: First, we learn compensation
weights that account for the missing data in the projection domain and
correct for intensity changes. Second, we formulate an image restora-
tion problem as a variational network to eliminate coherent streaking
artifacts. We perform our experiments on realistic data and we achieve
superior results for destreaking compared to state-of-the-art non-linear
filtering methods in literature. We show that our approach eliminates the
need for manual tuning and enables joint optimization of both correction
schemes.

1 Introduction

Computed Tomography (CT) is a clinical routine imaging modality that is used
to diagnose certain diseases and trauma. In some applications, CT data cannot
be acquired over the full angular range which is known as limited-angle CT. Ex-
amples for such setups are robot assisted scanners in medicine or scanning of very
large objects in industrial CT. As limited-angle CT does not acquire data over
the full angular range, the projection data is incomplete which results in inten-
sity inhomogeneities as well as streaking artifacts in the image domain. Further
sources for streaking artifacts are the non-linear attenuation of polychromatic
X-rays or inelastic scattering of photons. All these artifacts are corrected with
specialized heuristic compensation procedures that tune each step independently.

Many specialized iterative algorithms exist which clearly improve the image
quality [1,2]. A disadvantage of iterative techniques is their high runtime require-
ment. In contrast, analytical algorithms are less demanding, but typically suffer
from intensity inhomogeneities and streaking artifacts in the image domain due
to missing projections. To correct for intensity inhomogeneities, Riess et al. [3]
use a heuristic scheme to estimate compensation weights. Würfl et al. [4] re-
formulate filtered back-projection as a neural network and learn compensation
weights for limited-angle CT reconstruction. However, their approach cannot ac-
count for the remaining streaking artifacts due to the missing non-linear filtering
step.
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To correct for remaining streaking artifacts, Riess et al. [3] apply a bilateral
filter [5] after the compensation of missing projection data. Although there ex-
ists a number of other non-linear filtering methods such as BM3D [6] and Total
(Generalized) Variation (T(G)V) [7,8], they can mainly correct for unstructured
Gaussian noise. These models cannot describe the complex image content as
they make assumptions on the image statistics such as piece-wise constancy in
the case of TV. This motivates the use of deep learning approaches that learn
the statistics of images [9], and thus can account for coherent noise artifacts.
Recently, Hammernik et al. [10] proposed a deep learning approach to remove
coherent backfolding artifacts in accelerated magnetic resonance image recon-
struction.

In this paper, we propose a deep learning architecture for limited-angle CT
reconstruction. In a first step, we estimate compensation weights in the projec-
tion domain [4]. The focus of our work is the second step: We propose to learn a
non-linear filtering method inspired by variational image restoration problems [9]
to remove streaking artifacts in the image domain.

2 Materials and Methods

The basic network architecture for artifact compensation in limited-angle CT is
illustrated in Fig. 1. To account for missing projection data due to the limited-
angle CT acquisition, a neural network architecture is used to estimate the com-
pensation weights in the first step. In a second step, we eliminate streaking
artifacts using a variational network architecture.
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Step 1: Neural network CT reconstruction Step 2: Variational network non-linear filtering

Fig. 1. Deep learning architecture for limited-angle CT reconstruction. The first neu-
ral network (blue) models filtered backprojection and corrects the intensity inhomo-
geneities in the image domain by learning compensation weights Wcomp in the pro-
jection domain. The second variational network (red) formulates non-linear filtering as
T unrolled gradient descent steps (GD). In each step t, the filters ki,t, derivative of
potential functions ρ′i,t and the regularization parameter λt are learned to remove the
remaining streaking artifacts.
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2.1 Step 1: A neural network to learn compensation weights

To correct for intensity inhomogeneities in limited-angle CT, we use the network
architecture of Würfl et al. [4]. The input of the neural network is a sinogram
with missing angular data, denoted by x. The network reformulates the fan-beam
reconstruction as

yNN = Ψ (BCWcompWcosx) (1)

where B denotes the backprojection operator, C implements filtering with a
one-dimensional convolution kernel and the weighting operators Wcos, Wcomp

implement elementwise multiplications with cosine weights and compensation
weights, respectively. The non-negativity constraint is realized via the operator
Ψ. While the operators B,C and Wcos are fixed, the compensation weights in
Wcomp are learned. After training, the network can be applied to a new sinogram
and yields the intensity corrected reconstruction yNN . This output defines the
input for the following variational network that focuses on destreaking.

2.2 Step 2: A variational network to remove streaking artifacts

To remove streaking artifacts in the neural network reconstruction yNN , we
learn a non-linear filtering method. We seek an optimal image with eliminated
streaking artifacts yV N . Based on the theory of [9], we formulate a network for
non-linear filtering as a fixed number of T unrolled gradient descent steps

yt
V N = yt−1

V N − gt(yt−1
V N ). (2)

The gradient of these steps is set to the gradient of a variational model

gt(yt−1
V N ) = ∇yE(y)|y=yt−1

V N
. (3)

The variational image restoration problem is given as

E(y) =
λ

2
‖yV N − yNN‖22 +

Nk∑
i=1

ρi(KiyV N ) (4)

where the first term is a data fidelity term that measures the similarity to the
network input yNN and the second term is the regularization term that imposes
prior knowledge on the image yV N . The impact of both terms is regulated by
a parameter λ. For the regularization term, we apply Nk convolution operators
Ki, followed by non-linear functions ρi : RN 7→ R to yV N . Note that applying
the convolution operator Kiy equals to a convolution with filter kernels ki ∗ y.
Plugging the gradient of the variational model into Eq. 2 yields

yt
V N = yt−1

V N −
Nk∑
i=1

KT
i,tρ
′
i,t(Ki,ty

t−1
V N )− λt(yt−1

V N − yNN ) . (5)

This allows the parameters to adapt in every gradient descent step. In the gra-
dient calculation, we additionally introduce the derivative of potential functions
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ρ′i,t : RN 7→ RN and transpose convolution operators KT
i,t. The vector ρ′i,t is

understood in a point-wise manner. After a training procedure, we obtain the
convolution kernels ki,t, non-linear derivatives of potential functions ρ′i,t and the
regularization parameter λt for each of the T gradient steps by minimizing the
the mean-squared error (MSE)

LMSE =
1

2S

S∑
s=1

‖yT
V N,s − zs‖22 (6)

where S is the number of training samples and z defines the full scan reference.

2.3 Experimental Setup

To obtain training data, we simulated 450 fan-beam projections of size 512×512
from volumetric datasets of ten different patients. For evaluation, we performed
a 5-fold cross validation and split the dataset into 80% training data and 20%
validation data. As we focused on the evaluation of destreaking, we refer the in-
terested reader to [4] for more details on the estimation of compensation weights.
For our variational network architecture, we report results for different kernel
sizes k ∈ {5, 7, 9, 11, 13} and fixed the number of filter kernels Nk = 24 and gra-
dient steps T = 5 empirically. For training, we used the L-BFGS-B optimizer and
run 1200 iterations in total, i.e. 5× 100 iterations pre-training of each gradient
step and 700 iterations joint training of all gradient steps [9].

3 Results

We compared our variational network results to bilateral filtering, BM3D, TV
and TGV quantitatively and to BM3D qualitatively. Table 1 shows the mean val-
ues and standard deviations for Peak Signal-to-Noise Ratio (PSNR) and Struc-
tured Similarity Index (SSIM). In order to perform a fair comparison, the pa-
rameters for all methods were estimated by grid search such that the PSNR
of the validation data was maximized. Figure 2 shows the qualitative compari-
son of different methods and illustrates that the variational network result has
less streaking artifacts and appears more natural compared to BM3D, which is
like T(G)V and bilateral filtering not well suited for structured noise. Our deep
learning architecture outperforms all methods qualitatively and quantitatively.
The best results were achieved for a filter kernel size of 13.

4 Discussion

We propose a two-step deep learning architecture to correct for imperfections in
limited-angle CT reconstruction due to missing projection data. In a first step, we
correct intensity inhomogeneities in the image domain by learning compensation
weights in the projection domain. In a second step, we train a variational net-
work to learn regularization to remove structured streaking artifacts. Our results
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Method PSNR SSIM

Neural Network 34.66 ± 2.07 0.908 ± 0.015

Bilateral Filtering (σs = 0.5, σc = 0.1) 29.93 ± 3.61 0.907 ± 0.021

BM3D (σ = 1.5) 34.75 ± 2.09 0.911 ± 0.015

TV (λ = 300) 34.82 ± 2.10 0.914 ± 0.014

TGV (λ = 2, α0 = 0.01, α1 = 0.02) 34.80 ± 2.09 0.914 ± 0.014

Variational Network (k = 5) 36.16 ± 2.13 0.930 ± 0.010

Variational Network (k = 7) 36.86 ± 2.01 0.938 ± 0.010

Variational Network (k = 9) 38.14 ± 2.27 0.947 ± 0.009

Variational Network (k = 11) 37.87 ± 1.98 0.949 ± 0.009

Variational Network (k = 13) 38.23 ± 2.06 0.952 ± 0.010

Table 1. Quantitative comparison of non-linear filtering methods along with the used
parameter settings. The comparison is performed in terms of PSNR and SSIM (mean ±
standard deviation) in the field-of-view. The intensity corrected neural network recon-
struction defines the input to all methods. Our variational network results outperform
all reference methods significantly.

Full Scan Reference Neural Network Input

BM3D Variational Network (k = 13)

Fig. 2. Qualitative comparison of different non-linear filtering methods to the full scan
reference. The neural network result is the intensity corrected output of a first correction
step and defines the input to all methods. The variational network reconstruction with
kernel size k = 13 shows significantly reduced streaking artifacts compared to BM3D.
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reduce streaking artifacts significantly and outperform current state-of-the-art
non-linear filtering approaches that can mainly deal with unstructured noise.
The strength of our proposed model is that it eliminates the need for manual
tuning and replaces heuristic compensation steps by data-driven optimization.
In the future, we want to explore further extensions to our network architecture
that account for more physical effects and train both networks jointly.
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