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Abstract. The purpose of this work is to evaluate methods from deep learning for 
application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently 
proposed measurement technique for generating quantitative parameter maps. In 
MRF a non-steady state signal is generated by a pseudo-random excitation pattern. 
A comparison of the measured signal in each voxel with the physical model yields 
quantitative parameter maps. Currently, the comparison is done by matching a 
dictionary of simulated signals to the acquired signals. To accelerate the 
computation of quantitative maps we train a Convolutional Neural Network (CNN) 
on simulated dictionary data. As a proof of principle we show that the neural 
network implicitly encodes the dictionary and can replace the matching process. 

Keywords. Convolutional Neural Networks, Deep Learning, Machine Learning, 
Magnetic Resonance Fingerprinting, Supervised Machine Learning 

1. Introduction 

Previously presented methods for generating parameter maps in MRF are time-
consuming and require a dictionary of time series for every possible combination of 
parameters like T1 and T2 relaxation times [1, 2]. Furthermore, such a dictionary will 
only have discrete entries for reasons of efficiency. This can lead to errors in MRF 
parameter maps [3]. To overcome these time and storage limitations, we train a 
Convolutional Neural Network (CNN) to predict quantitative T1 and T2 values from 
MRF time series. Deep leaning has recently been shown to be a promising technique for 
many applications in medical imaging, e.g. reconstruction in X-ray computed 
tomography [4, 5]. Two advantages of this method are i) fast computation of the 
quantitative parameter maps and ii) a better representation of the dictionary data (our 
trained model requires about 2 MB compared to 210 MB for a dictionary with e.g. 8750 
T1/T2 combinations). Moreover, the CNN can predict values for time series 
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continuously. This study investigates the execution time and accuracy of predicted 

parameters using a CNN compared to the conventional dictionary matching approach 

using simulated data from a FISP MRF implementation [6]. 

2. Methods 

Experiments were performed on a head-shaped gel phantom, a NIST phantom [7] and 

healthy subjects on a MAGNETOM Skyra 3T (Siemens Healthcare, Erlangen, Germany). 

2D MRF-FISP [6] data served as the experimental basis of the dictionary simulation. It 

was acquired using a prototype sequence with the following parameters: Field-of-view 

(FOV) 300 mm, resolution 1.17x1.17x5 mm3, variable repetition time (TR, 12-15 ms), 

flip angle (FA, 5-74°), number of repetitions (Nrep) 3000. A dictionary with high 

resolution was simulated to obtain a large amount of training and testing data. Relaxation 

parameters present in normal human tissues [8, 9, 10] and in the NIST phantom [7] were 

selected for the simulation (T1: 50 to 4500 ms, T2: 20 to 800 ms, with steps from 2 to 50 

ms, with relative B1+ magnitude values ranging from 0.7 to 1.3, step: 0.05, overall about 

120,000 time series). Implementation and testing were run on GPU using the machine 

learning library TensorFlow [11]. The architecture of the network (Figure 1) was inspired 

by neural networks used in the domain of speech processing [12], as these problems are 

similar to our problem. We tested different architectures using different numbers of 

convolutional and fully connected layers. We found that the network model with smallest 

average error for validation data consists of 3 convolutional layers (kernel size = 3, stride 

size = 2), each followed by a rectified linear unit (ReLU) activation function. The number 

of the feature maps per convolutional layer is increasing, from 32 in the first to 128 in 

the last. After convolution an average pooling layer follows with the same size as the 

stride size. The last layer is fully connected, with 2 outputs. The simulated time series 

data was randomly partitioned into disjunct sets for training, validation and testing 

(80/10/10 %). The weights were initialized uniformly randomly distributed. Training was 

done with the ADAM  [13] optimization method with an initial learning rate of 5*10^-4, 

by minimizing the Mean Squared Error. Batch size was set to 5 time series. The model 

was trained for maximal 200 epochs. Early stopping was performed using the validation 

data. The training was stopped when the validation average error of current epochs 

increased in comparison to the past epochs. 

 

 

 

Figure 1. Schema of the CNN. The input is one simulated time series, the outputs are the estimated quantitative 

values for T1 and T2. 
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3. Results 

The range of T1 and T2 values was chosen to be close to values present in the NIST 
phantom [7] and in human tissues, especially brain regions [8, 9, 10]. Estimated values 
of our proposed method show only small average deviations from ground truth values 
(Figures 2 and 3): The mean absolute deviations (standard deviation, SD) are 0.29% 
(0.44%) for T1 and 1.22% (2.04%) for T2 for relevant NIST values (T1: 80-1500, T2: 
20-450), and the mean absolute deviations (SD) for complete test data (T1: 50-4500, T2: 
20-800) are 0.18% (0.44%) for T1 and 1.3% (2.23%) for T2. The comparison between 
estimated parameters from the network and the simulated dictionary time series for some 
T1 and T2 values and their deviations are shown in Figures 4 and 5. The comparison of 
execution time was carried out on a 2.7 GHz Intel Core i5. While the estimation for one 
time series using the matching method proposed by [1] took about 100 ms, the CNN 
approach vastly improves this by a factor of 30 (or about a factor of 100 on a GPU). 

 

 

 
Figure 2. Left: Estimated T1 values for some typical NIST values (90, 120, 180, 240, 360, 500, 700, 980 and 
1440 ms). The dashed line is the x = y line, the solid line is the linear regression, with its formula in the bottom 
right corner. Right: The relative deviations of the estimated values from ground truth values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Left: Estimated T2 values for some typical NIST values (22, 32, 46, 64, 96, 130, 190, 280 and 400 
ms). The dashed line is the x = y line, the solid line is the linear regression, with its formula in the bottom right 
corner. Right: The relative deviations of the estimated values from ground truth values. 
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Figure 4. Left: Quantitative examples for estimated T1 values. The solid line is the linear regression, with its 
formula in the bottom right corner. Right: The relative deviations of the estimated values from ground truth 
values. 

 

 

Figure 5. Left: Quantitative examples for estimated T2 values. The solid line is the linear regression, with its 
formula in the bottom right corner. Right: The relative deviations of the estimated values from ground truth 
values. 

4. Discussion and conclusion  

A CNN, trained with simulated time series from a MRF dictionary, is shown to produce 
accurate predictive results for quantitative parameters like T1 and T2 times. Thus the 
CNN is able to detect the relevant features and differences between time series for the 
different T1 and T2 times and can learn these features by itself during training.  A CNN 
model works well as an alternative approach for prediction of quantitative values from 
time series in MRF. Besides providing accurate results for simulated time series, it also 
has the following two advantages compared to state-of-the-art matching methods: Firstly, 
the computation time can be greatly reduced. Secondly, the neural network also provides 
a very efficient representation of the model when compared to a dictionary. Future work 
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will include the adaption of the proposed concept to real measured time series for 
generating quantitative parameter maps of human tissues. 
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