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ABSTRACT

Kidney stones is a renal disease with high prevalence and one of the
major reasons for emergency room visits. The prevalence of kidney
stones is increasing, and the lifetime recurrence rate is estimated as
almost 50%. Thus, treatment of kidney stones becomes an increas-
ingly important topic. However, different types of kidney stones re-
quire specific treatments, which creates the need for accurate diag-
nosis of the stone type prior to the intervention. Imaging techniques
that are commonly used for the detection of kidney stones, such as
X-ray CT and ultrasound, are insufficient to differentiate the types
of kidney stones.

In this paper, we present a proof-of-concept study for differ-
entiating kidney stones using X-ray dark-field tomography. The
most important advantage of this method is its ability to image
non-homogeneous kidney stones, i.e., to localize and identify the
individual components of mixed-material kidney stones. We use a
weighted total-variation regularized reconstruction method to com-
pute the ratio of dark-field over absorption signal (DA Ratio) from
noisy projections. We evaluate the performance of the proposed ap-
proach on two kidney stones of homogeneous composition, and one
well-defined numerical phantom with known ground truth for mixed
types of stones. We illustrate that the DA Ratio is significantly
distinguished for different materials from the experiments. Recon-
struction of phantom data recovers voxel-wise material information
with high accuracy. We show that X-ray dark-field tomography has
a significant potential in selective characterization of kidney stones.

Index Terms— X-ray imaging, kidney, Image reconstruction -
analytical & iterative methods

1. INTRODUCTION

The kidney stone disease has an estimated prevalence of 13% for
men and 7% for women [1] and often leads to emergency department
(ED) visits. In U.S., about 1.3 million kidney stone-related ED visits
are recorded in 2009 [2]. Both the prevalence and ED visits are
increasing [1, 3]. Moreover, current estimates state that nearly half
of the patients will have kidney stones again in their lifetime [1].
For a safe and efficient treatment of kidney stones, it is critically
important to know the actual type of the stone: for example, non-
surgical treatment like lithotripsy and alkalinization can be applied
to uric acid stones. Removal of struvite stones oftentimes requires
treatment with antibiotics prior to intervention [4, 5].

Various medical imaging techniques have been investigated to
classify the types of kidney stones. Conventional CT and sonog-

raphy are currently widely used for diagnosing kidney stones, but
neither of these two modalities provides good discrimination of the
stone type. Dual-energy CT is shown to be a better choice for distin-
guishing stone types [6, 7, 8]. Recently, researchers explored X-ray
dark-field radiography as a new way of imaging and differentiating
kidney stones [9]. X-ray dark-field imaging visualizes ultra-small
angle scattering of a sample. As such, this imaging technique is
sensitive to micro-structural variations at a length scale below the
spatial resolution of the images, which enables various new imag-
ing tasks [10, 11]. Technically, such a system can be implemented
with a X-ray Talbot-Lau interferometer (TLI). Per pixel, TLI pro-
vides the absorption intensity, the first derivative of the phase shift,
and a quantity dependent on the ultra-small-angle scattering (the so-
called dark-field signal). It has been shown that the ratio of the dark-
field signal over absorption (called DA Ratio) is particularly useful
to distinguish kidney stones in radiography on the specific examples
of uric acid, calcium oxalate, and mixtures thereof [9].

While these first results are promising, radiography suffers from
the limitation that it can only measure average signal intensities
along the X-ray projection direction. Since most uric stones consist
of multiple materials [12, 13], such averages are oftentimes insuf-
ficient to classify kidney stones. In this work, we propose X-ray
dark-field tomography to localize and quantify mixture materials.
We reconstruct absorption and dark-field to compute the DA Ratio
per voxel. A statistical analysis shows that the proposed approach
effectively distinguishes between different types of stones.

One major challenge for this approach lies in the fact that dark-
field projections typically contain high levels of noise. In a TLI
setup, for each projection phase stepping is applied to acquire fringe
curves from which attenuation, phase shift and dark-field are de-
rived. Any noise in the raw data is typically amplified in the com-
puted dark-field signal [14, 15]. This may lead to inaccurate results
for the DA Ratio, which is essential for differentiating mixture com-
ponents. As a consequence, it is important that the tomographic re-
construction algorithm reduces the noise in the reconstruction and
provides a relatively stable result for the DA Ratio computation.
To achieve this, we choose an iterative reconstruction approach. Its
ability to incorporate prior knowledge is expected to effectively re-
cover information from noisy data [16]. A popular prior is the as-
sumption that the gradient of a natural image are sparse [17]. We
apply a weighted total-variation-regularized (wTV) reconstruction
algorithm [18, 19] to enhance the sparsity of the data and thus to
achieve good performance at high noise levels. Proof-of-concept ex-
periments on two kidney stones of different types and a numerical
phantom show the feasibility of the proposed technique.

978-1-5090-1172-8/17/$31.00 ©2017 IEEE 1112



Fig. 1: Sinogram of the phantom.

2. RECONSTRUCTION METHODS

The voxel-wise DA Ratio is defined as

(r)x,y,z =
(udf)x,y,z
(uabs)x,y,z

, (1)

where (udf)x,y,z is the reconstructed dark-field signal and (uabs)x,y,z
is the absorption signal at voxel (x, y, z). Reconstruction of absorp-
tion and dark-field signals can be written as the weighted total
variation-regularized optimization problem

argmin
u·∈Rn

‖u·‖wTV s.t. Au· = p· . (2)

Here, A is the imaging system matrix, u· denotes the unknown vec-
tor collecting absorption or dark-field signals over the whole image,
and p· denotes the observed absorption or dark-field projection sig-
nals. For X-ray tomographic reconstruction, p· acts as a placeholder
for either the dark-field pdf or the absorption pabs. Both measure-
ments are available at every detector pixel in a Talbot-Lau interfer-
ometer. Analogously, the estimated signal is denoted as udf or uabs

respectively, depending on whether they are computed from pdf or
pabs. The weighted TV norm is defined as

‖u·‖wTV =
∑
x,y,z

(W)x,y,z‖(Du·)x,y,z‖2,1 . (3)

Here, W is the weight matrix and D denotes the spatial forward
difference operator defined as

D : (u·)x,y,z 7→

 Dx

Dy

Dz

 =

 (u·)x+1,y,z − (u·)x,y,z
(u·)x,y+1,z − (u·)x,y,z
(u·)x,y,z+1 − (u·)x,y,z

 ,

and ‖ · ‖2,1 is the isotropic norm

‖(Du·)x,y,z‖2,1 =
√

(Dx)2 + (Dy)2 + (Dz)2 .

The reconstruction problem can be written as

argmin
u·∈Rn

1

2
‖Au· − p·‖22 + λ‖u·‖wTV + lR+(u

·) , (4)

where λ is the regularization weight, and lR+(u·) is the charac-
teristic function of R+ that constrains the solution to non-negative
space [20]. This optimization problem can be solved by primal-dual
based iterative algorithms. In our implementation, we use the split-
Bregman method by Goldstein et al. [21]. Within each iteration,
(W)x,y,z is updated by using value of u·

pre from the previous itera-
tion, i.e.,

(W)x,y,z =
1

‖(Du·
pre)x,y,z‖2,1 + ε

, (5)

and lR+(u·) is enforced by setting all negative values to zero.

Fig. 2: 3-D volume rendering of the mixed stone phantom.

3. EXPERIMENTS

Evaluation is performed on real stones and a numerical phantom.
The purpose of the experiments is to show that the DA Ratio allows
to distinguish different type of stones. The phantom demonstrates
the ability to detect voxel-wise material phases of a mixed stone.

3.1. Pure materials kidney stones

Measurements were performed using one calcium oxalate stone and
one struvite stone at the Center for X-ray Analytics, Empa, Switzer-
land1. The imaging setup consists of a X-ray Talbot-Lau interfer-
ometer within a micro-focus CT setup. The design energy of the
interferometer is 45 keV at a tube voltage of 80 keV, filtered with
0.5mm Al. The detector pixels have a size of 0.2mm. Two frames
are averaged to obtain one image, and a total of seven phase steps are
acquired per projection. For tomography, we collect 400 projections
on a half circle (π radians).

All stones have diameters between 3mm to 5mm. The re-
construction algorithm is implemented in the CONRAD frame-
work [22]. The value ε in Eq. 5 is empirically set to 0.0001. Each
data set was reconstructed using 30 iterations. Thresholding was
applied to segment the stones from the background.

3.2. Numerical phantom of a mixture of kidney stones

We evaluate the method’s ability to localize and quantify the con-
stituents of mixed-type kidney stones on a phantom. The measured
stone is used as phantom template, with a volume size of 2563 vox-
els. Voxels are in equal parts randomly labeled as calcium oxalate
and struvite. The averaged dark-field and absorption signals from
the real stones are used as voxel coefficients of the phantom. For-
ward projection is simulated by linearly accumulating these coeffi-
cients along the ray path. A sinogram is generated from 400 projec-
tions over a half circle, and Gaussian noise is added with a standard
derivation of 0.5. An example sinogram of one slice is shown in
Fig. 1. Figure 2 shows a 3-D volume rendering of the full phantom
of the ground truth. For reconstruction, we used the same parameters
as in the previous experiments.

4. RESULTS AND DISCUSSION

Reconstruction results of the scanned stones are shown in Fig 3. The
left column shows absorption images of a representative slice from
each stone. The right column shows the respective dark-field images
from the same slices. It has been shown via micro-CT scans that less
heterogeneity and density variation generate weaker dark-field sig-
nals [9]. This observation is confirmed in the reconstruction results:

1www.empa.ch/x-ray
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Fig. 3: Top: reconstruction of absorption image (left) and dark-field
image (right) of the struvite stone. Bottom: reconstruction of absorp-
tion image (left) and dark-field image (right) of the calcium oxalate
stone.

the struvite stone shows a higher mean absorption and lower mean
dark-field compared to the calcium oxalate stone.

Figure 4 shows a scatterplot of dark-field versus absorption to
illustrate the data distribution. Each data point represents one voxel
in a representative slice from the reconstruction. Struvite is plotted
in red circles, calcium oxalate in blue crosses. Although some points
in this plot overlap, the two groups are overall well separated. Most
points that are very close to the origin can be explained by remain-
ing noise in the data and ring artifacts in the reconstruction. Struvite
signals close to zero exhibit a stronger linear dependency than cal-
cium oxalate. Overall, the slope trends of both sets of data points are
clearly distinguishable.

Figure 5 shows a box-whisker diagram of DA Ratio of the whole
volume reconstruction of both stones. Around the mean and standard
deviations, both groups of data points are cleanly separable. Overall,
calcium oxalate results in more outliers (red points).

Ground truth and the reconstruction of the representative layer
of the phantom is demonstrated in Fig 6. The reconstruction exhibits
smoother images compared to the ground truth. One reason for this
observation is the noise that has been added to the phantom sino-
gram. To quantitatively evaluate our result on the phantom data, we
calculate the relative root mean square error (rRMSE) as

e =
1

N

∑
x,y,z

√
((rre)x,y,z − (rgr)x,y,z)2

(rgr)2x,y,z
, (6)

where rre is the DA Ratio of the reconstructed phantom and rgr is
that of the ground truth, and N is numbers of voxels of the stone.
The resulting RMSE is 1.7%, which is sufficient for differentiating
the material phases of the stones.

Fig. 4: Scatter plot of dark-field versus absorption of one representa-
tive slice from the struvite stone (red circle) and the calcium oxalate
stone (blue cross).

Fig. 5: Box-whisker diagram of DA Ratio of the whole volume from
both stones.

5. CONCLUSIONS

In this paper, we explore quantification of mixed-type kidney stones
using X-ray dark-field tomography. A weighted total variation-
regularized optimization algorithm is applied to recover information
from noisy input. Experiments show that this approach can distin-
guish between a struvite and a calcium oxalate stone. We also use a
well-defined phantom to study mixed-type kidney stones. Phantom
results indicate that the proposed method is able to differentiate
different material phases and micro-structures within a mixed-type
stone. We conclude that x-ray dark-field tomography is a very inter-
esting potential tool for characterization of kidney stones. However,
in the current work, isolated kidney stones have been investigated.
In future work, it is necessary to investigate the effectiveness of
the proposed approach for kidney stones embedded in surrounding
tissue.
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