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Abstract. This paper proposes a novel method to deal with overexpo-
sure for C-arm CT reconstruction. The proposed method is based on
recent progress of one-bit compressive sensing (1bit-CS), which is to re-
cover sparse signals from sign measurements. Overexposure could be re-
garded as a kind of sign information, thus the application of 1bit-CS to
overexposure correction in CT reconstruction is expected. This method is
evaluated on a phantom and its promising performance implies potential
application on clinical data.

1 Introduction

In the Angiographic C-arm Computed Tomography (C-arm CT), due to the
limited dynamic range of C-arm flat detectors and the high contrast variation of
different imaged object components, the problem of overexposure arises in the
acquired projections during a 3D acquisition. Consequently, the reconstructed
image, especially the low contrast structures, will be severely degraded by streak
artifacts and capping artifacts due to the overexposed projection values. Thus,
it is important to establish overexposure correction methods to reduce these
artifacts.

The overexposure problem is similar to the truncation problem [1] in the
sense of the resulting discontinuity between measured and unmeasured data
and hence the truncation correction methods [2,3,4,5] are potentially feasible
for overexposure correction. Generally, these methods heavily rely on the prior-
knowledge about the object structure. As a specific example, [6] is to correct
the overexposure for knee images based on cylinder shapes that are fitted in
the sinogram domain. But such methods are no longer accurate if there is little
prior-knowledge or the shapes are too complicated to be modeled.

The essence of overexposure artifacts is the lack of measurements, which in-
spires us to think about compressive sensing (CS). Based on sparsity, CS can
recover signals/images with a relatively small number of observations. The re-
lated theory and algorithms can be found in, e.g., [7,8,9]. When overexposure
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occurs, the observed projection value is zero. The value itself is useless, but
it implies that the true projection is less than the threshold. Thus, in over-
exposure correction, it is still possible to acquire some information from those
projections, which is closely linked with so-called one-bit compressive sensing
(1bit-CS) [10,11,12]. Our task is between CS and 1bit-CS: we have both analogy
observations (un-overexposed part) and one-bit information (overexposed part).
Therefore, we call our correction method as mixed one-bit compressive sensing
(M1bit-CS).

In the rest of this paper, we first mathematically formulate the overexpo-
sure correction problem and give M1bit-CS method for this problem. Then the
proposed method is evaluated on the Shepp-Logan phantom and the paper is
concluded with some discussions.

2 Materials and Methods

2.1 Overexposure on CT projection

The X-ray transform of an object f is denoted by R. Then the ideal acquired
projection is

p = Rf . (1)

However, due to the dynamic range of the detector, projections could be over-
exposed such that our observations y is a truncation of p. Mathematically,

yi =

{
pi, if pi > s,

0, if pi ≤ s,

where s is the threshold of overexposure determined by the highest X-ray in-
tensity that can be measured by the detector. In this paper we assume that we
know which projection is overexposured, which could be modeled as a boolean
indicator vector Φ:

Φi = 1 ⇔ pi > 0 and yi = 0.

Our aim in this paper is to reconstruct f from the truncated projection y with
the above prior assumption.

2.2 (Mixed) one-bit compressive sensing

Compared to the regular CT construction, the major problem of overexposure
is that we do not have the exact values for the overexposed projections. Instead,
we only know that (Rf)i < s if Φi = 1. This inequality inspires us to consider
1bit-CS, which is to recover sparse signals from sign measurements. As afore-
mentioned, we have both un-overexposed projections and one-bit information.
Therefore the following M1bit-CS model is proposed,

min
f

µ∥f∥TV +
1

2

∑
i:Φi=0

((Rf)i − yi)
2
+ λ

∑
i:Φi=1

max {0, (Rf)i − s} , (2)
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where µ and λ are relaxation parameters, ∥ · ∥TV is the total variation term that
pursues sparsity, (·)2 is the least squares loss to penalize the inconsistency on
analogy measurers, and max{0, ·} is the hinge loss for the inequality consistency.
Obviously, (2) is a convex model and can be solved by standard convex opti-
mization methods, such as interior-point method, coordinate descent algorithm,
alternating direction method of multipliers, and so on.

3 Results

3.1 Simulated Phantom Design

To demonstrate the performance of M1bit-CS method on overexposure cor-
rection, the standard high contrast Shepp-Logan phantom is employed; see,
Fig. 2(a). The image size is 256×256 with an isotropic pixel length of 1mm. We
simulate a fan-beam scan to acquire the overexposed sinogram. The source-to-
isocenter distance is 750mm and isocenter-to-detector distance is 450mm. The
angular step is 1◦ and the total scan range is 360◦. The equal-spaced detector
length smax is 620mm with pixel element length ∆s = 1mm.

The ideal sinogram of the Shepp-Logan phantom is shown in Fig.1(a). With-
out overexposure, the classical reconstruction algorithms such as FBP [13] and
SART [14] can be applied for reconstruction. However, overexposure that leads
to severe information loss makes these reconstruction algorithms not applicable.
To simulate the overexposure, we take the threshold s = 0.55pmax, where pmax is
the maximum value in the projection domain. The sinogram with overexposure
is shown in Fig.1(b) and our task is to accurately reconstruct the image from
this overexposed sinogram.

(a)

(b)

Fig. 1. (a) Projection of the Shepp-Logan; (b) Projection with overexposure.
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3.2 Reconstructed image

We first consider the reconstruction performance of FBP and SART. FBP utilizes
all the “fake” zeros, i.e., the overexposure projections that correspond to non-
zero real values but zero observations. For SART, if we use those fake projection
data, the performance will be similar to FBP. If we simply drop away them and
only use the remaining un-overexposed projections, the reconstructed result is
much better than FBP, as illustrated in Fig.2(b).

Recall the projections in Fig.1(b), where the overexposed part is not in the
boundary. Thus, SART yields good image quality on the boundaries of the
Shepp-Logan phantom. However, in the center, the performance is not satis-
factory: there are streaks inside and detailed structures are blurred.

(a) (b)

(c) (d)

Fig. 2. Image reconstructed from the overexposed sinogram with different algorithms:
(a) Shepp-Logan phantom; (b) SART; (c) SART with TV; (d) M1bit-CS.

The result of M1bit-CS is shown in Fig.2(d). Intuitively, the reconstructed
image is very close to the ground truth and the streaks are significantly reduced.
The reconstruction performance can also be quantitatively measured by the the
root-mean-square error, which are presented in Table 1. The gray value of the
Shepp-Logan is between 0 and 1. One can see that the reconstructed image of
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M1bit-CS is quite accurate, although there is serious overexposure in projec-
tions. To further highlight the effect of one-bit measurements, we also display
the reconstruction result of applying SART together with TV minimization in
Fig.2(c). The improvement obtained by using one-bit measurements can also be
observed clearly from Table 1.

Table 1. Root of Mean Square Error (RMSE) of Reconstruction Results

method FBP SART SART-TV M1bit-CS

RMSE 0.3148 0.0242 0.0147 0.0098

4 Discussion

From the evaluation results, we can conclude that the proposed M1bit-CS method
is beneficial for overexposure correction. The corresponding theory is closely
linked with (one-bit) compressive sensing and is interesting to be investigated in
the future. Establishing an efficient algorithm to solve (2), together with evalu-
ation on clinical data, are both necessary before applying the method to clinical
trials. In the above experiment, we assume that the overexposure positions is
known. But in clinical applications, this may not be available. Thus, a good
overexposure detection method is required for practical use.
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