Restoration of Missing Data in Limited Angle Tomography Based on Consistency Conditions

Yixing Huang¹, Oliver Taubmann^{1,3}, Xiaolin Huang^{1,4}, Joachim Hornegger^{1,3}, Guenter Lauritsch², Andreas Maier^{1,3}

- ¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- ² Siemens Healthcare GmbH, Forchheim, Germany
- ³ Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany ⁴ Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China

Introduction

Limited angle tomography (parallel-beam case)

- **Definition:** Scan angle $\theta_{max} < \pi$, here $[\theta_{min}, \theta_{max}] = [0^{\circ}, 160^{\circ}]$
- Challenge: Data incompleteness causing streak artifacts
- **Technique:** Data restoration based on consistency conditions

Materials and Methods

Results

High contrast Shepp-Logan Phantom study:

Angular step 0.5° , 1537 detector pixels with pixel size 0.2 mm, image size 512×512 with pixel size 0.4 mm

- I. Background theory
 - **1. Helgason-Ludwig Consistency Conditions (HLCC):**

 $a_n(\theta) = \int_{-1}^1 p(s,\theta) U_n(s) ds, \qquad b_{n,m} = \frac{1}{2\pi} \int_0^{2\pi} a_n(\theta) e^{-im\theta} d\theta,$ where $U_n(s) = \frac{\sin((n+1)\arccos(s))}{\sqrt{1-s^2}}$ and n is the order. **HLCC**: $b_{n,m} = 0$, when |m| > n or n + m is odd.

2. Sinogram restoration:

 $p_{n_r}(s,\theta) = \frac{2}{\pi} \sum_{n=0}^{n_r} a_n(\theta) \big(W(s) \cdot U_n(s) \big),$

where n_r is the number of orders used and $W(s) = \sqrt{1 - s^2}$.

3. Fourier property of the restored sinogram:

 $W(s) \cdot U_n(s)$ is a high-pass filter (cut-off frequency $w_{c,n} \approx n$). Only a circular area with radius w_{c,n_r} is restored in the Fourier domain when reconstructing from $p_{n_r}(s,\theta)$.

- **II.** Proposed method [1]:
 - **1.** Regression method for sinogram restoration [2]:
 - Based on HLCC, when *n* is even, only even terms,

(a) f_{limited} , RMSE = 310 HU

(b) f_{HLCC} , RMSE = 189 HU

 $[\mathbf{1}, \cos(2\theta), \sin(2\theta), \cos(4\theta), \sin(4\theta), \dots, \cos(n\theta), \sin(n\theta)]\boldsymbol{\beta}_n = a_n(\theta);$ when *n* is odd, only odd terms,

 $[\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos(n\theta), \sin(n\theta)]\beta_n = a_n(\theta),$ where β_n is the vector of Fourier series coefficients.

• Regression form:

$$\underline{X_n(\boldsymbol{\theta})}\boldsymbol{\beta}_n = a_n(\boldsymbol{\theta}).$$

• Ill-conditioned, Lasso regression:

$$\boldsymbol{\beta}_n = \operatorname{argmin} \frac{1}{2} \| \boldsymbol{X}_n(\boldsymbol{\theta}) \boldsymbol{\beta}_n - a_n(\boldsymbol{\theta}) \| + \tau_n \| \boldsymbol{\beta}_n \|_1,$$

where $\tau_n = 0.001 \cdot \left(1 - \frac{n}{1000} \right).$

2. Bilateral filtering (BF):

- Reconstruction from restored sinogram, denoted by $f_{\rm HLCC}$;
- Apply BF to f_{HLCC} , get f_{BF} and its Fourier transform F_{BF} .

3. Image fusion in frequency domain:

- Reconstruction from limited angle sinogram f_{limited} and its Fourier transform F_{limited} ;
- A binary double wedge mask M, $M(w,\theta)|_{\theta_{\max} \le \theta < \pi, -\infty < w < \infty} = 0$;

(c) $f_{\rm BF}$, RMSE = 178 HU

(d) f_{fused} , RMSE = 136 HU

Fig. 3: Reconstruction results and their root-meansquare errors (RMSE) w.r.t. the ground truth phantom.

Discussion and Conclusion

- Missing data restoration in sinogram domain and frequency domain based on HLCC.
- Three techniques: regression, bilateral filtering, and image fusion.

Fusion at frequency domain:

 $F_{\text{fused}}(w,\theta) = F_{\text{limited}}(w,\theta) \cdot M(w,\theta) + F_{\text{BF}}(w,\theta) \cdot (1 - M(w,\theta)).$

Fig. 1: Illustration of the image fusion in frequency domain. The black, blue, and green areas are the missing, measured, and HLCC estimated frequencies.

- Low frequency components are restored faithfully.
- Streak artifacts are suppressed in the final image.

References

[1] Huang, Yixing, et al. "Restoration of Missing Data in Limited Angle Tomography Based on Helgason-Ludwig Consistency Conditions." Biomedical Physics & Engineering Express (2017).

[2] Louis, Alfred K., and W. Törnig. "Picture reconstruction from projections in restricted range." Mathematical Methods in the Applied Sciences 2.2 (1980).

Contact

vixing.yh.huang@fau.de
www5.cs.fau.de/~yixing

Disclaimer

The concepts and information presented in this paper are based on research and are not commercially available.