

FACULTY OF ENGINEERING

SIEMENS ... Healthineers

Streak Artifact Reduction in Limited Angle Tomography Using Machine Learning

Yixing Huang¹, Yanye Lu¹, Oliver Taubmann^{1,2}, Guenter Lauritsch³, Andreas Maier^{1,2}

¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

² Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

³ Siemens Healthcare GmbH, Forchheim, Germany

Introduction

Limited angle tomography

• **Definition:** Insufficient scan angle during data acquisition

Results

Results of the Shepp-Logan phantom

- Scenario: Intervention in C-arm CT systems
- **Challenge:** Data incompleteness causing streak artifacts
- **Technique:** Machine learning techniques

Method And Materials

- Machine Learning Algorithms
 - **Input:** images reconstructed from limited angle data
 - **Output:** residual artifact images
 - Learning: an image patch from the input image to the center pixel of that patch in the output image
 - Feature extraction:
 - **MVM:** mean-variance-median statistic of an image patch
 - Hessian: the two eigenvalues and the orientation of the main eigenvector of the Hessian matrix at each pixel
 - Regression models:
 - **Linear regression (LR):** linear models

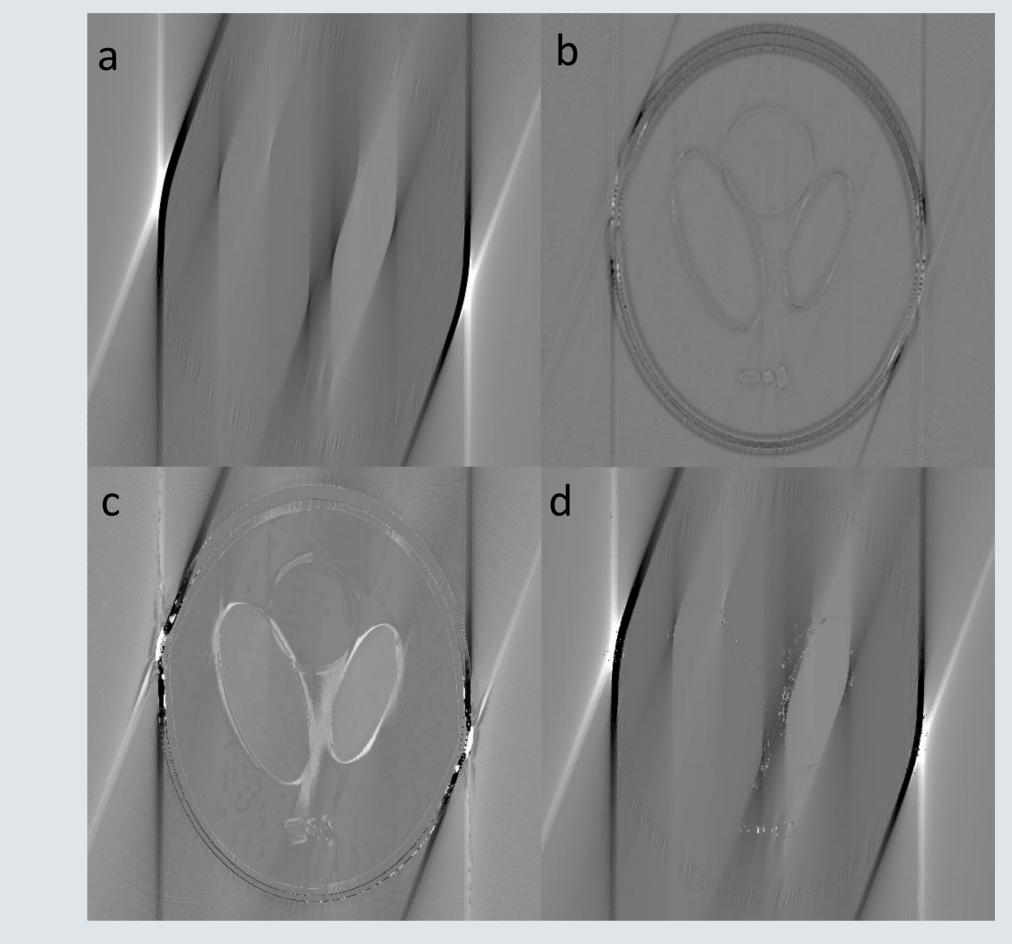
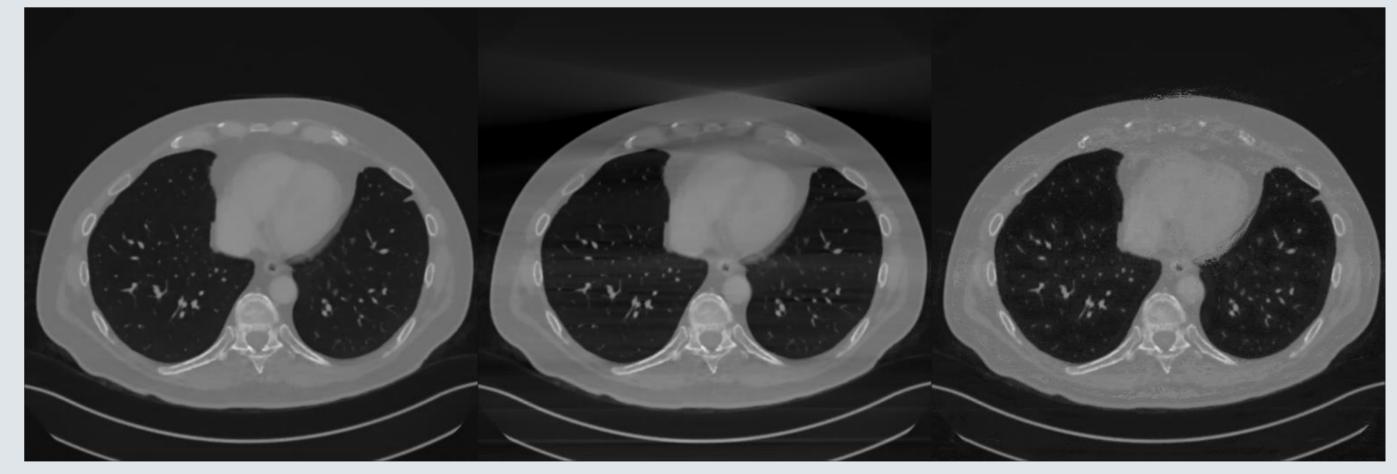


Fig. 1. Learnt streak artifacts using different machine learning algorithms in parallel-beam: (a) reference; (b) LR; (c) MLP; (d) REPTree. Window width: 1200 HU.



- Multi-layer perceptron (MLP): artificial neural network, learn nonlinear functions
- Reduced-error pruning tree (REPTree)^[1]: decision tree, pruning to reduce overfitting
- II. Experimental Set-up
 - Experimental data
 - Shepp-Logan phantom: 75 slices from a 3-D Shepp-Logan volume for training and another 75 slices for testing
 - **CT data:** 7 patients for training and 7 patients for testing, 10 slices selected from each patient
 - Simulated acquisition systems:
 - **Parallel-beam:** 160° angular range, 0.5° angular step
 - Fan-beam: 170° angular range, 0.5° angular step, 20° fanangle
 - Algorithm Framework: Weka^[2]

Conclusions

Fig. 2. "Destreaked" images using different machine learning algorithms in parallel-beam: (a) LR, (RMSE =) 139 HU; (b) MLP, 136 HU; (c) REPTree, 29 HU. Window: [-1150, 1300] HU.

II. Results of the CT data

(c) REPTree, 46 HU (a) Reference (b)f_{limited}, 96 HU

- REPTree reduces streak artifacts best.
- REPTree has the potential for clincal applications.

References

[1] Quinlan JR. Simplifying decision trees. Int J Man Mach Stud. 1987;27(3):221-234 [2] E. Frank, et al., The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques". Morgan Kaufmann, 2016.

Contact

http://www5.cs.fau.de/~yixing ⊠ Yixing.yh.huang@fau.de

Disclaimer

The concepts and information presented in this paper are based on research and are not commercially available.

(e)f_{limited}, 113 HU (d) Reference (f) REPTree, 58 HU Fig. 3. The reference images, the 170° limited angle reconstructions (flimited), and the REPTree results in fan-beam. Window: [-1150, 1300] HU.

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg

http://www5.cs.fau.de