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Abstract. In limited angle tomography, missing data in an insufficient angular

scan will cause streak artifacts in the reconstructed images. Correspondingly, in

the frequency domain representation of the imaged object, a double wedge-shaped

region is missing. In this paper, we perform a regression in sinogram domain and

an image fusion in frequency domain to restore the missing data. We first convert

the sinogram restoration problem into a regression problem based on the Helgason-

Ludwig consistency conditions. Due to its severe ill-posedness, regression only partially

recovers the correct frequency components, especially lower frequency components,

and will introduce erroneous ones, particularly higher frequencies. Bilateral filtering

is utilized to retain the most prominent high frequency components and suppress

erroneous ones. Afterwards, a fusion in the frequency domain utilizes the restored

frequency components to fill the missing double wedge region. The proposed method

is evaluated in a parallel-beam study on both numerical and clinical phantoms. The

root-mean-square errors of the reconstructed images decrease from 302HU to 78HU

for the noise-free Shepp-Logan phantom, from 355HU to 175HU for the noisy Shepp-

Logan phantom, and from 187HU to 56HU for the clinical data. The results show

that our method is promising in streak reduction and intensity offset compensation in

both noise-free and noisy situations.

Keywords: limited angle tomography, Helgason-Ludwig consistency conditions, streak

artifacts, regression, fusion
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1. Introduction

In computed tomography (CT), a minimum angular range is required to acquire enough

projection data for image reconstruction. However, in practical applications, the gantry

rotation of a CT system might be restricted by other system parts or external obstacles.

Reconstruction from data acquired with such an insufficient angular range is called

limited angle tomography. The missing data will cause artifacts in the reconstructed

image, typically in the form of streak artifacts.

The ill-posedness of the limited angle tomography problem has been well

investigated and some stable approximate inversions are given. Davison and Louis

(Davison 1983, Louis 1986) provided condition numbers for varying angular ranges

by computing the singular value decomposition (SVD) of matrix representations of

the Radon transform. Davison pointed out that mollification methods stabilize the

inversion problem. Other stable approximate inversions can be obtained using the

SVD pseudo-inverse or Tikhonov-Phillips regularization (Natterer 1986, Quinto 2006).

Quinto (Quinto 2007) used microlocal analysis to predict which singularities (e.g.,

boundaries) of objects can be well reconstructed from limited angle data. Theoretically

the Radon transform can detect a boundary point of an object when an X-ray tangent

to the boundary at this point exists.

Iterative reconstruction algorithms can incorporate prior information to obtain a

unique solution. For example, iterative projection onto convex sets (POCS) can be

utilized to obtain high quality images (Saito & Kudo 1988, Olson 1995). Statistical

prior information can also be incorporated into iterative reconstructions (Hanson &

Wecksung 1983, Siltanen et al. 2003). Recently, iterative reconstruction algorithms

with total variation (TV) regularization in particular (Sidky & Pan 2008, Ritschl

et al. 2011, Wu et al. 2012, Frikel 2013), which exploits the sparsity at the image

gradient domain, have become popular in limited angle tomography. As streaks in

limited angle tomography are highly dependent on the scan trajectory, anisotropic total

variation algorithms can be designed to reduce streaks more efficiently than isotropic

ones (Chen et al. 2013, Huang et al. 2016). However, iterative algorithms require

expensive computation. Deep learning with convolutional neural networks can learn

compensation weights (Riess et al. 2013) for a mapping between limited angle data and

artifact-free images while keeping the same computational complexity as a standard

filtered backprojection (FBP) reconstruction (Würfl et al. 2016, Zhang et al. 2016).

To deal with data insufficiency problems, many extrapolation/interpolation

methods have been proposed (Hsieh et al. 2004, Zamyatin & Nakanishi 2006,

Constantino & Ozanyan 2008, Xia et al. 2015). They can improve the image quality

for the truncation problem and the sparse projection problem. However, they are

not effective for limited angle tomography where a large amount of data is missing.

The Gerchberg-Papoulis based extrapolation/interpolation algorithms (Happonen &

Ruotsalainen 2005, Qu et al. 2008, Qu & Jiang 2009) have been demonstrated beneficial

for improving the image quality of limited angle tomography. An alternative approach
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is to restore the missing projection data based on data consistency conditions. Many

consistency conditions have been explored. For example, epipolar consistency in cone-

beam CT (Debbeler et al. 2013, Aichert et al. 2015) and John’s equation (Patch 2002)

describe redundency in cone-beam projection data. The 2-D Fourier transform of a

parallel-beam or fan-beam sinogram should contain a double wedge zero region (Edholm

et al. 1986, Mazin & Pelc 2010). Truncated parallel-beam and fan-beam data exhibits a

polynomial behavior after integration with certain weights (Clackdoyle & Desbat 2015).

The Helgason-Ludwig consistency conditions (HLCC) (Ludwig 1966, Helgason 1980).

Essentially, HLCC are necessary and sufficient for a transform to be a Radon transform

(Deans 2007). Louis and Törnig reformulated the sinogram extrapolation/interpolation

problem into a system of linear equations based on HLCC such that an approximate

sinogram can be estimated (Louis & Törnig 1980, Louis 1981). Willsky and Prince

proposed to restore the complete sinogram by solving an Euler-Lagrange partial

derivative equation which integrates HLCC as a constraint (Willsky & Prince 1990).

Kudo and Saito utilized POCS to incorporate HLCC for limited angle sinogram recovery,

but their approach requires a prior sinogram (Kudo & Saito 1991). Patch stated that

HLCC can indirectly improve image quality for the problem of bad detector channels

(Patch 2001).

In this paper, we propose a regression and fusion method to restore the missing data

in limited angle tomography: In sinogram domain, we convert the sinogram recovery

problem into a regression problem based on HLCC, which allows us to analyze its ill-

posedness conveniently. Due to the ill-posedness, regression only partially recovers the

correct frequency components, mainly for lower frequencies, and will introduce erroneous

ones, particularly for higher frequencies. To deal with ill-posedness, we propose to use

Lasso regression based on the sparsity of the coefficients. Bilateral filtering is utilized

to obtain the most prominent high frequency components and suppress erroneous ones.

Afterwards, in the frequency domain we perform a fusion of the filtered image and the

image reconstructed from the limited angle sinogram. The fusion makes the most of

the original measured data and only uses the filtered image for unobserved frequency

components. The proposed method is demonstrated in both numerical and clinical

phantoms in noise-free and noisy situations.

2. Method and materials

2.1. Background

The parallel-beam sinogram of a 2-D object f(x, y) is denoted by

p(s, θ) =

∫ ∞

−∞
f(s cos θ − t sin θ, s sin θ + t cos θ)dt, (1)

where θ is the rotation angle and s is the detector index. In practice, the spatially

bounded object can be assumed to be supported on a unit disk centered at the origin,
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i.e., −1 ≤ s ≤ 1. We define the nth order moment curve as,

an(θ) =

∫ 1

−1

p(s, θ)Tn(s)ds, (2)

where Tn(s) = sn. The Fourier transform of the moment curve is,

bn,m =
1

2π

∫ 2π

0

an(θ)e
−imθdθ. (3)

HLCC (Ludwig 1966, Helgason 1980) can be expressed as,

bn,m = 0, |m| > n or n+m is odd. (4)

When Tn(s) is replaced by orthogonal polynomials, e.g., Chebyshev polynomials,

Legendre polynomials or Gegenbauer polynomials, p(s, θ) can be conveniently restored

from an(θ). In this paper, we use the Chebyshev polynomial of the second kind

(Lewitt 1983),

Un(s) =
sin((n+ 1) arccos(s))√

1− s2
=

sin((n+ 1)t)

sin t
, where s = cos t. (5)

Two important properties are attributed to the Chebyshev transform in Eq. (2):

(i) Un(s) is a family of orthogonal polynomials at domain [-1, 1] with the scalar

weight W (s) = (1− s2)1/2, i.e.,∫ 1

−1

W (s) · Un(s) · Um(s)ds =

{
0, n ̸= m

π/2, n = m.
(6)

Thus, an approximate sinogram can be restored by the inverse Chebyshev transform

from the moment curves,

pnr(s, θ) =
2

π

nr∑
n=0

an(θ)(W (s) · Un(s)), (7)

where nr is the number of orders used. When nr → ∞, the sinogram is restored exactly.

(ii) The Fourier transform of W (s) · Un(s) is computed as,

F(W (s) · Un(s))(w)

=
1∫

−1

√
1− s2 · sin((n+1) arccos(s))√

1−s2
· e−iwsds

= −
π∫

−π

sin t · sin((n+1)t)
sin t

· e−iw cos t · sin tdt

=
π∫
0

cos((n+ 2)t)e−iw cos tdt−
π∫
0

cos(nt)e−iw cos tdt

= π(J ′
n+2(iw)− J ′

n(iw)),

(8)

where F is the Fourier transform operator and J ′
n(z) is the modified Bessel function of

order n, i.e., J ′
n(z) =

1
π

∫ π

0
cos(nt)e−z cos tdt. Because J ′

n(z) rapidly tends to zero when

the argument |z| becomes less than n, W (s) ·Un(s) can be regarded as a high-pass filter,

F(W (s) · Un(s))(w)

{
≈ 0, 0 ≤ w < wc,n,

≥ 0, wc,n ≤ w,
(9)
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Figure 1. Discrete Fourier transforms of the Chebyshev polynomials, U50(s) · W (s)

and U200(s) ·W (s) as examples.

where wc,n is the cutoff frequency for order n. We approximate the cutoff frequency as

wc,n ≈ n. As an illustration, the discrete fast Fourier transforms (FFT) of W (s) ·Un(s)

for orders n = 50 and n = 200 are displayed in Fig. 1.

Therefore, the missing polynomials of orders higher than nr only contribute to the

frequency range above wc,nr and the frequency range [0, wc,nr ] should be complete, i.e.,

a circular area with radius wc,nr in the Fourier space of the object is restored correctly

if we use pnr(s, θ) for reconstruction.

2.2. Regression method for sinogram restoration

In practical applications, discretization of the above formulas is necessary. We

denote the projection angles as θ = [θ0, θ1, . . . , θN−1]
⊤ where 0 ≤ θk < θmax, k =

0, 1, ..., N − 1, θmax is the maximum scanned angle, and N is the total number of

acquired projections. The available samples on each moment curve are denoted by

an(θ) = [an(θ0), an(θ1), an(θ2), ..., an(θN−1)]
⊤. We seek to restore the complete 180◦

sinogram at angles θcomp = [0, 1, . . . , (K − 1)]⊤ · ∆θ from the acquired samples where

K = ⌊π/∆θ⌋ and ∆θ is the angular step.

According to HLCC and the inverse Fourier transform of Eq. (3), the moment curve

an(θ) can also be represented as the following trigonometric Fourier series,

an(θ) = cn,0 +
n∑

m=1

(cn,m cos(mθ) + dn,m sin(mθ)), (10)

where cn,0 = bn,0 and (cn,m − dn,mi)/2 = bn,m. Accordingly, cn,m = 0 and dn,m = 0 when

n +m is odd. That is, when n is even, m can be 0, 2, 4, . . . , n − 2, n. Thus, an(θ) has

n+1 unknown coefficients denoted by βn,e = [cn,0, cn,2, dn,2, cn,4, dn,4, . . . , cn,n, dn,n]
⊤. As

a result, we get the following linear regression problem:

[1, cos(2θ), sin(2θ), cos(4θ), sin(4θ), ..., cos(nθ), sin(nθ)]βn,e = an(θ),(11)

where cos(·) and sin(·) are element-wise operators.

When n is odd, we get a similar regression problem with again n + 1 unknown

coefficients,

[cos(θ), sin(θ), cos(3θ), sin(3θ), ..., cos(nθ), sin(nθ)]βn,o = an(θ), (12)
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Figure 2. Condition numbers of Xn(θ) as a function of the order n and the missing

angular range Φ: (a) both n and Φ vary, the condition numbers are logarithmized as

log10(κn) and the lines are contours with step size 2; (b) only n varies, Φ = 20◦, θ =

[0◦, 0.5◦, 1◦, . . . , 159.5◦]⊤; (c) only Φ varies, n = 10, θ′ = [0◦, 0.5◦, 1◦, . . . , 180◦ − Φ]⊤.

where βn,o = [cn,1, dn,1, cn,3, dn,3, . . . , cn,n, dn,n]
⊤.

For each case, the above regression problems can be written as,

Xn(θ)βn = an(θ). (13)

With an estimate β̂n of the parameters βn, the complete nth moment curve

ân(θcomp) is attained as

ân(θcomp) = Xn(θcomp)β̂n. (14)

Then the complete sinogram can be restored using inverse Chebyshev transform (Eq. (7))

and the object can be reconstructed with any reconstruction algorithm.

The conversion of the sinogram restoration problem into the regression problem in

Eq. (13) has the following benefits:

(i) θ can be a partial angle range and it does not have to be uniformly distributed.

(ii) Computing the condition number of matrix Xn(θ) is a practical way to analyze

the ill-posedness of the sinogram restoration problem. An example is illustrated in Fig. 2.

It indicates that when the order n or the missing angle Φ = π − θmax increases, the

condition number increases drastically. Intuitively, when n or Φ is small, the number of

the unknown parameters is small and thus βn can be well estimated. However, when n

gets larger while Φ is fixed, the condition number κn increases exponentially (Fig. 2(b)).

When Φ increases while n is fixed, the condition number increases even faster than

exponential growth (Fig. 2(c)). Furthermore, when n ≥ N = (180◦ − Φ)/∆θ, Xn(θ)

with size N × (n+ 1) becomes underdetermined. In these cases, the condition number

tends to infinity (upper right triangle in Fig. 2(a)). Therefore, the regression problem

(Eq. (13)) for sinogram restoration is ill-posed.

(iii) Various existing algorithms are available to solve the ill-posed regression

problem by different solvers with different regularization terms. Louis & Törnig and

Natterer solve it with the SVD pseudo-inverse or Tikhonov-Phillps regularization (Louis

& Törnig 1980, Natterer 1986). It is well known that most medical images are

sparse at the image gradient domain, which results in less variations on the moment

curves. Therefore, the moment curves only have a few dominant frequency components.
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Figure 3. Sparsity of parameters, β80 and β100 of the Shepp-Logan phantom as

examples.

Observing the parameters βn are approximately sparse (Fig. 3), in this paper we use

Lasso regression (Tibshirani 1996),

βn = argmin
1

2
||Xn(θ)βn − an(θ)||+ τn||βn||1, (15)

where τn is a regularization coefficient. It can be solved by the iterative soft-thresholding

algorithm (Daubechies et al. 2004).

2.3. Image fusion in frequency domain

The proposed regression method is applied to restore the complete sinogram pnr(s, θ).

The image reconstructed from pnr(s, θ) is denoted by fHLCC(x, y). The reconstructed

image resolution is primarily determined by the detector element size ∆s; the maximum

image frequency that can be resolved is π/∆s. Thus, we can choose nr ≈ π/∆s to

restore an adequate discrete sinogram. If the number of orders nr is not large enough,

the reconstructed image will suffer from ringing artifacts. However, as aforementioned,

the condition number of Xn(θ) increases drastically when n increases. Therefore, only

certain orders of the moment curves are estimated correctly. Let nc denote the highest

order that is still estimated correctly. Then, the frequency components of fHLCC(x, y) are

only correct inside a circular area with radius w = wc,nc . As a consequence, regression

errors in the restored moment curves from order nc + 1 to nr will introduce artifacts.

Since it is difficult to find a compromise between these artifacts and ringing artifacts by

selecting an optimal nr, we opt to choose a relatively large nr to avoid ringing artifacts,

followed by a bilateral filtering (BF) and an image fusion to mitigate regression artifacts.

We denote the image reconstructed from the limited angle sinogram by flimited(x, y)

and its 2-D Fourier transform in polar coordinates by Flimited(w, θ). The central slice

theorem reveals that a double wedge region is missing in Flimited(x, y), i.e.,

Flimited(w, θ)|θmax≤θ<π,−∞<w<∞ = 0. (16)

We only want to use the restored information contained in fHLCC to fill in this

unobserved region. For this purpose, we design a double wedge-shaped mask M(w, θ)

in frequency domain where values outside the double wedge zero region are 1. The

binary mask M(w, θ) is smoothed by a Gaussian filter to get a smooth transition at its
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=

Mask FfusedFlimited FHLCC

+

Figure 4. Illustration of the image fusion at the frequency domain using the mask, the

black, blue, and green areas are the missing, measured, and HLCC estimated frequency

components, respectively, where the faded green area might be not correctly estimated.

boundaries. A small region around the origin is exempt from this smoothing. Then the

following image fusion (Fig. 4) is performed,

Ffused(w, θ) = Flimited(w, θ) ·M(w, θ) + FHLCC(w, θ) · (1−M(w, θ)), (17)

where FHLCC is the 2-D Fourier transform of fHLCC. The fused image ffused can be obtained

with a 2-D inverse Fourier transform of Ffused.

Thereby, the measured frequency components are fully used. However, higher

frequency components inside the double wedge region are still missing or erroneously

estimated. Thus, bilateral filtering can be applied to fHLCC before the fusion to obtain

only the most prominent and reliable high frequency components associated with sharp

edges and suppress erroneous ones (Tomasi & Manduchi 1998). It is defined as,

fBF(x) =
∑

x′∈N fHLCC(x
′)·c(x,x′)·s(fHLCC(x),fHLCC(x

′))∑
x′∈N c(x,x′)·s(fHLCC(x),fHLCC(x′))

, (18)

where x is the pixel index, N denotes the neighborhood of pixel x, and Gaussian

functions c(x,x′) and s(v, v′) measure the spatial closeness and range similarity with

standard deviations σc and σs,

c(x,x′) = e−||x−x′||22/σ2
c , s(v, v′) = e−|v−v′|2/σ2

s . (19)

In Eq. (17), we replace FHLCC by FBF which is the Fourier transform of fBF. Then, another

fused frequency domain estimate Ffused2 and corresponding image ffused2 are obtained.

2.4. Experiments

To evaluate the performance of our proposed method, three experiments on the standard

high-contrast Shepp-Logan phantom (Fig. 7(a)) are conducted. The size of the Shepp-

Logan phantom is 204.8mm× 204.8mm. The linear attenuation coefficients are between

[0, 0.08]/mm. We convert it to Hounsfield scale between [-1000, 3000]HU. For the first

experiment, a limited angle sinogram is computed analytically (Toft & Sørensen 1996)

in a parallel-beam trajectory. The total scanned angular range is 160◦ and the angular

step is 0.5◦. The number of the equal-space detector pixels is 1537 and the detector

element size is 0.2mm, which is kept the same for other experiments. For the first

experiment, we do not add artificial noise. For the second experiment, we additionally
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simulate Poisson noise during acquisition. We assume that each X-ray contains I0 = 104

photons. After passing through the object the number of photons for each X-ray is

I(s, θ) = I0e
−p(s,θ). Poisson noise is simulated as I ′(s, θ) = P(I(s, θ)), where P(λ) is a

Poisson random variable with a mean parameter λ. Thus, the sinogram with Poisson

noise is p′(s, θ) = − ln(I ′/I0). For the third experiment, we choose smaller angular

ranges. Two limited angle sinograms are analytically computed without Poisson noise

in 140◦ and 120◦ trajectories.

For comparison, Ridge regression (Tikhonov 1943) is performed for the noise-

free Shepp-Logan phantom, i.e., βn = argmin 1
2
||Xn(θ)βn − an(θ)|| + τn||βn||2,

where the values of τn are chosen the same as those in Lasso regression. An

extrapolation/interpolation method based on the Gerchberg-Papoulis algorithm is

also performed for the noise-free Shepp-Logan phantom. The Fourier property of the

sinogram (Edholm et al. 1986, Mazin & Pelc 2010) indicates that the sinogram is band-

limited. Therefore, we apply a double-wedge filter instead of a typical low-pass filter at

the Fourier domain of the sinogram as shown in (Pohlmann et al. 2014).

As a preliminary study for clinical data, we take one slice reconstructed from a

3-D clinical head dataset as a ground truth image (Figs. 12(a) and 12(g)). The dataset

is acquired from a Siemens Artis zee angiographic C-arm system (Siemens Healthcare

GmbH, Forchheim, Germany). The image size of the chosen slice is 512 × 512 with

an isotropic pixel size of 0.4mm. The linear attenuation coefficients are between [-

1000, 2000] HU. A limited angle sinogram is simulated using a ray-driven method with

a sampling rate of 7.5/mm in the 160◦ parallel-beam trajectory.

Empirically, we choose nr = 720 to restore the sinograms. For each order, the

soft-threshold τn = 0.001 · (1− n/1000) is used for Lasso regression in Eq. (15) and the

iteration stops when ||β̂
l+1

n −β̂
l

n||2/||β̂
l

n||2 < 10−4 where β̂
l

n are the estimated parameters

at the l-th iteration. We use the linear correlation coefficient of the estimated moment

curve and the ground truth moment curve to indicate the accuracy of the estimated

parameters β̂n, i.e.,

rn =
K−1∑
k=N

(an(θk)− µ)(ân(θk)− µ̂)/(σ · σ̂), (20)

where µ and σ are the mean and standard deviation of the ground truth moment curve

at the missing region, µ̂ and σ̂ are the mean and standard deviation of ân(θcomp) at the

missing part, and ân(θk) is the k-th element of ân(θcomp).

The images are reconstructed using FBP with the Ram-Lak filter. The size of the

reconstructed images is 512× 512 with an isotropic pixel size of 0.4mm. The bilateral

filter is characterized by σc = 30, σs = 0.05, and an N = 40 × 40 neighborhood.

The binary mask M(w, θ) is smoothed by a Gaussian filter with a cutoff frequency at

0.4 Nyquist frequency. The experimental setup is implemented in CONRAD (Maier

et al. 2013), a software framework for medical imaging processing.
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(a) Limited angle sinogram, 160◦ (b) Restored sinogram, 180◦ (c) Restoration error

Figure 5. The measured limited angle sinogram, the restored complete sinogram, and

the difference of restored sinogram and ground truth of the Shepp-Logan phantom,

noise free, window for (a) and (b): [0, 4], window for (c): [-1, 1].
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Figure 6. Lasso regression and Ridge regression results of the Shepp-Logan phantom,

noise-free: (a) Plot of curve â100(θcomp) as an example. The area in the two red

lines corresponds to the missing region. The angular range [180◦, 360◦) is obtained

from p(s, θ) = p(−s, θ + π). The linear correlation coefficient between the green and

blue curves is 0.95 while it is -0.6 between the green and magenta curves. (b) Linear

correlation coefficients of the estimated curve and the ground truth curve at the missing

region for different orders.

3. Results

The 160◦ limited angle sinogram, the restored sinogram using Lasso regression, and the

difference between the restored sinogram and the 180◦ ground truth sinogram of the

noise-free Shepp-Logan phantom are shown in Fig. 5. From the simulated sinogram, the

partial moment curves an(θ) are computed and the complete moment curves ân(θcomp)

are estimated with Lasso regression. The curves of â100(θcomp) using Lasso regression

and Ridge regression are plotted in Fig. 6(a) as an example to illustrate the regression

problem. It shows that both estimated moment curves have some deviations to the

ground truth moment curve a100(θcomp), indicating the existence of regression errors.

However, the curve estimated by Lasso is closer to the ground truth curve. The

linear correlation coefficients for different orders are plotted in Fig. 6(b), which reveals

that only low orders of the moment curves, particularly when n is smaller than 40,

can be recovered perfectly. When the orders are higher than 40, outliers occur for

both regression algorithms. Compared with Ridge regression, Lasso regression achieves

significantly better correlations, especially in higher orders.

The reconstructed images, their absolute differences from the ground truth, and

their Fourier transforms for the noise-free Shepp-Logan phantom using Lasso regression
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(a) fGT (b) flimited (c) fHLCC (d) ffused (e) fBF (f) ffused2

(g) difflimited (h) diffHLCC (i) difffused (j) diffBF (k) difffused2

(l) FGT (m) Flimited (n) FHLCC (o) Ffused (p) FBF (q) Ffused2

Figure 7. Reconstructions of the Shepp-Logan phantom and their Fourier transforms,

noise-free. The RMSEs for flimited, fHLCC, ffused, fBF, and ffused2 are 302HU, 131HU,

91HU, 118HU, and 78HU, respectively. Window: [-1400, 3400]HU and [-1000,

1000]HU for the top row and the middle row, respectively. The frequency amplitudes

are logarithmized and all displayed in the same window.

are shown in Fig. 7. Comparing fHLCC with flimited, large streak artifacts are reduced and

the shape of the outer boundary is reconstructed better in fHLCC. However, it suffers

from artifacts caused by regression errors, which appear as small streaks. Fig. 7(h)

displays that the edges in fHLCC also have large errors. It is apparent that a double

wedge region is missing in Flimited while high frequency components are lost in FHLCC

due to the low number of nr. The fused frequency components are shown in Fig. 7(o)

where the high frequency components inside the double wedge region are still missing or

erroneous. Correspondingly, artifacts still exist in ffused and the outer boundary has large

errors at the left and right sides. However, the edges at the upper and lower areas are

sharper because they correspond to the measured frequency area due to their spatial

orientations. The edge sharpness improvement can be appreciated in the difference

image Fig. 7(i) and the line profiles plotted in Fig. 8. Figs. 7(e) and 7(p) demonstrate

that the bilateral filter can remove artifacts caused by regression errors and partially

recover high frequency components. With the image fusion, streak artifacts are reduced

in ffused2 while avoiding the introduction of new artifacts due to regression. The root-

mean-square error (RMSE) is reduced from 302HU to 78HU.

For comparison, the reconstructed images fHLCC and ffused2 using Ridge regression

are shown in Figs. 9(a) and (b). Even though some streaks are reduced, the outer
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Figure 8. Line profiles of different reconstructions of the noise-free Shepp-Logan

phantom. The location of the plotted line is shown in Fig. 7(a).

(a) fHLCC, Ridge (b) ffused2, Ridge (c) fG-P

Figure 9. Reconstructions of the noise-free Shepp-Logan phantom with Ridge

regression and the Gerchberg-Papoulis based extrapolation/interpolation algorithm.

The RMSEs for fHLCC (Ridge), ffused2 (Ridge), and fG-P are 208HU, 181HU, and

179HU, respectively. Window: [-1400, 3400]HU.

boundaries of the Shepp-Logan phantom are not well reconstructed, which demonstrates

the advantage of Lasso regression over Ridge regression. The reconstruction result of

the Gerchberg-Papoulis based extrapolation/interpolation algorithm is also displayed in

Fig. 9(c), denoted by fG-P. Like Figs. 9(a) and (b), the outer boundaries in fG-P are not

well reconstructed either.

(a) flimited (b) fHLCC (c) ffused2

Figure 10. Reconstructions of the Shepp-Logan phantom with Poisson noise. The

RMSEs are 355HU, 135HU, and 175HU, respectively. Window: [-1400, 3400]HU.

The reconstructions of flimited, fHLCC, and ffused2 with Poisson noise are displayed

in Fig. 10. Fig. 10(b) indicates that Poisson noise is suppressed at fHLCC. The results

demonstrate that our proposed method also works in a noisy situation.

The reconstruction results of the noise-free Shepp-Logan phantom in 140◦ and 120◦

angular ranges are shown in Fig. 11. With more data missing, more artifacts are caused

by regression errors and thus the image quality degrades. However, our method is still
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(a) flimited, 140
◦ (b) fHLCC, 140

◦ (c) ffused2, 140
◦ (d) flimited, 120

◦ (e) fHLCC, 120
◦ (f) ffused2, 120

◦

Figure 11. Reconstruction results of the noise-free Shepp-Logan phantom in the

angular range of 140◦ and 120◦. The RMSEs from left to right are 435HU, 194HU,

160HU, 532HU, 309HU, and 287HU, respectively. Window: [-1400, 3400]HU.

able to roughly restore the shape of the outer boundaries.

The results of the preliminary clinical experiments are shown in Fig. 12. Comparing

Fig. 12(f) with Fig. 12(b), ffused2 offers a better bone outline. In the narrower window,

the brain textures in ffused2 (Fig. 12(l)) can be better distinguished. In contrast, they

are obscured by streak artifacts or artifacts caused by the regression in Figs. 12(h) and

12(i). The intensity offset in flimited due to the missing data is corrected in ffused2.

4. Discussion

With the regression, an approximate sinogram can be restored. Since our regression

formulation integrates HLCC, the estimated moment curves are smooth even though

they are partially inaccurate at the missing region (Fig. 6(a)). As a result, the restored

sinogram is continuous over the whole angular range of [0, π). Due to ill-posedness of the

problem, high order moment curves are difficult to estimate (Fig. 6(b)). Consequently,

the restored sinogram has errors at the missing angular range (Fig. 5(c)).

(a) fGT (b) flimited (c) fHLCC (d) ffused (e) fBF (f) ffused2

(g) fGT (h) flimited (i) fHLCC (j) ffused (k) fBF (l) ffused2

Figure 12. Preliminary results of clinical data, the RMSEs for flimited, fHLCC, ffused,

fBF, and ffused2 are 187HU, 73HU, 62HU, 72HU, and 56HU, respectively. Window:

[-1200, 2000]HU and [-200, 300]HU for top and bottom images, respectively.
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The image quality of fHLCC is highly dependent on the accuracy of the regression

estimation. On the one hand, high order moment curves are required to achieve a

proper spatial resolution. On the other hand, as aforementioned, the ill-posedness

prohibits their correct recovery. In this paper, we propose to utilize Lasso regression,

which exploits sparsity at the domain of Fourier coefficients of the moment curves.

Compared with Ridge regression (Fig. 6(b)), Lasso regression can estimate higher order

moment curves better, which contribute to the image quality, especially to high contrast

structures. However, some orders still show errors when using Lasso regression. Thus,

artifacts exist in fHLCC (Figs. 7(c) and 12(i)). To reduce these artifacts, one potential

approach is to explore a more effective regression algorithm with other regularization

terms. In this paper, two simple but effective techniques are applied:

(i) A bilateral filter is used to reduce these artifacts and partially recover some

high frequency components. Even though some high frequency components might be

incorrect, the most prominent and reliable ones are recovered which are associated with

dominant high contrast edges and thus crucial for image quality. However, the fine

structures like small ellipses and the brain textures in Figs. 7(e) and 12(k) are removed

by the bilateral filter. Hence, using bilateral filter alone is not sufficient to obtain a high

quality image and an additional fusion operation is necessary.

(ii) A mask is designed for fusion in frequency domain. With this mask, the

frequency components inside the double wedge region are taken from the restored

sinogram while the measured frequency components outside the double wedge region are

preserved. The fusion along with the bilateral filtering can reduce artifacts efficiently

while preserving fine structures (Figs. 7(k) and 12(f)). Since the zero frequency

component is taken from fHLCC, the intensity offset in flimited is also corrected in the

fused images.

Our proposed method is robust to Poisson noise. Noise mostly adds high frequency

components to moment curves. In the regression step, Lasso regression will estimate

smooth moment curves according to HLCC. Hence, the high frequency noise will be

reduced. Therefore, noise is somewhat suppressed in fHLCC. However, it is brought back

at the fusion step by reintroducing the acquired frequency components.

Louis and Natterer pointed out that the extrapolation/interpolation procedure

for sinogram restoration is as fast as FBP (Louis & Natterer 1983, Louis & Törnig

1980, Louis 1981). Our method uses the iterative soft-thresholding algorithm to

solve Eq. (13), which is a series of smaller problems with only n + 1 unknown

parameters for each order n and can be solved efficiently. Additionally, we utilize a

bilateral filter and 2-D FFT for fusion in frequency domain. While bilateral filtering

does introduce an additional computational cost, our method is still faster than

iterative algorithms with TV regularization. Quinto extrapolated the limited angle

sinogram using linear interpolation along the angular direction in order to apply their

adapted Lambda Tomography algorithm called exterior reconstruction algorithm (ERA)

(Quinto 1998). However, ERA requires a priori information about the shape of the

object, specifically an annulus object with known radius, while our method does not.
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5. Conclusion

In this paper, we propose a regression and fusion method to restore the missing data in

limited angle tomography. The limited angle sinogram restoration problem is converted

to a regression problem based on HLCC. By computing the SVD of the regression

matrix Xn(θ), its ill-posedness is investigated. To solve the regression problem, Lasso

regression is chosen. However, it is only able to estimate the low order moment curves

accurately. Correspondingly, only low frequency components of the imaged object are

estimated correctly. Therefore, bilateral filtering is utilized to obtain the most prominent

and reliable higher frequency components and suppress erroneous ones. Afterwards, a

fusion is performed in the frequency domain. The frequency components at the missing

double wedge region are attained from the restored ones while the original measured

frequency components are preserved. With our proposed method, the intensity offset is

compensated and streak artifacts are reduced in the final fused image.

Disclaimer: The concepts and information presented in this paper are based on

research and are not commercially available.
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