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Abstract

Forming limit diagrams are used to evaluate the
formability of metal sheets and describe the maximum
strain to failure in terms of major and minor strain.
The main idea is the detection of the onset of necking
in limited areas of the investigated sheet metals. Cur-
rent methods introduce location- or time-dependency
or may require user interaction. Within this contri-
bution we interpret the onset of necking as classifica-
tion problem and show that a support vector machine
performs comparable to a human experts group. Best
results reach up to 87.5 % avg. precision and 84.9 %
avg. recall, using all available 2D-information, while
being time- and location-independent.

1 Introduction

Climate change, increasing price of raw materials
and legal requirements encourage the automotive in-
dustry to produce vehicles with reduced emission and
fuel consumption. One possibility to realize these goals
is to reduce the weight of their upcoming product
generations and thus the substitution of conventional
steelworks with high-strength and lightweight mate-
rial. In comparison with conventional deep drawing
steelworks, high-strength lightweight materials often
have a lower forming capacity due to their different ma-
terial properties. To investigate the feasibility of the
production of components, numerical simulation meth-
ods e.g. finite element analysis are taken into account.
These forming simulations are used to predict the fail-
ure probability and thus highly depend on a failure
criterion that identifies the maximum forming capac-
ity of sheet metals. This criterion is either described
by the local thinning in the direction of the sheet thick-
ness or by the cancellation of the material composite
in form of a crack. The forming limit diagram (FLD)
considers both criteria and is an established method
excessively used within finite element analysis. Form-
ing limit analysis was introduced by Keeler [1] in 1963
and to this day the onset of necking leading to crack ini-
tiation is considered as the forming limit of sheet met-
als, denoted by the forming limit curve (FLC) within
the FLD. Current established methods [2, 3, 4] use
an optical strain measurement system based on digital
image correlation (DIC) to determine the FLC, while
sharing some disadvantages. The standardized evalu-
ation method [2] is position-dependent and does not
consider the strain development over time. The time-
dependent methods by Merklein et al. [3] and Volk and
Hora [4] consider the strain development over time, but
are limited regarding their evaluation area. Volk and
Hora define the onset of necking as a sudden change of
thickness reduction in the critical area and as conse-
quence do not incorporate the development of the ma-

terial structure outside of the investigated area. This
is disadvantageous especially in case of materials with
abrupt fracture behavior, as potentially valuable infor-
mation is missed and thus may lead to wrong forming
limits. Aside from this the time-dependent methods
introduce a high variance for the forming limit as they
are dependent on the acquisition rate of the strain mea-
surement system.
This paper introduces and discusses a classification ap-
proach to alternatively define the forming limit curve.
The main difference in comparison with state of the
art methods is the incorporation of expert knowledge
as well as the evaluation of the complete image data,
besides being time- and location-independent. In ad-
dition, a comparison between the experts group and
the classification approach is performed to evaluate the
feasibility of automation.

2 Related Work

The forming limit describes the maximum strain to
failure in dependence of major strain (ε1) and minor
strain (ε2), while major strain defines the direction
of largest deformation and minor strain is perpendic-
ular to it. In this context, strain is defined by the
relative elongation of a chassis under load conditions
e = ∆l

l0
, where l0 denotes the original length and ∆l

the deviation length. This can be reformulated to true
strain ε = ln (1 + e). Thinning (ε3) in the direction
of sheet metal thickness reduction can only be deter-
mined indirectly by exploiting the law of volume con-
stancy (0 = ε1 + ε2 + ε3) [5].
The FLC can be determined experimentally following
a Nakazima or Marcinak test setup under laboratory
like conditions as standardized in [2]. Both test se-
tups are based on the same idea. The sheet metal is
clamped into a blank holder and deformed until frac-
ture by applying load with a punch. Beforehand the
examined sheet metals are prepared with a speckle pat-
tern, digitally subdivided into small rectangular areas
and tracked during the forming procedure using an op-
tical measurement system in combination with a DIC
approach. The displacements between subsequent im-
ages are used to calculate the principal strains and vi-
sualized as 2-D strain distributions as ε1 – ε3 in Fig. 1.
The onset of necking is the local concentration of re-
maining plastic deformation in small bands and a fall-
back of the remaining areas in the elastic range. The
strain inside these bands increases over time while it
remains constant outside as visualized in Fig. 1. To
determine the complete FLC multiple specimen with a
variety of cutouts from the sheet metal (S30 - S245) are
investigated to simulate different strain states, ranging
from uniaxial stretching (ε1 = −2ε2) over plane strain
(ε2 = 0) to biaxial stretching (ε1 = ε2), whereby the
resulting forming limit per strain state is defined by



ε1

ε2

ε3

Figure 1. Strain progression (left to right) and
localization effect of ε1 – ε3 during forming.

the average of three trials. The international stan-
dard [2] describes the intersection line method to deter-
mine the FLC. This method uses the major- and minor
strain values along a virtual intersection line in the
2-D strain distribution through the maximum major
strain value, perpendicular to crack progression. This
procedure clearly introduces location dependence that
is partly addressed by performing multiple sections.
To improve the predictability of the onset of necking
new methods were introduced taking the forming his-
tory into account. Merklein et al. [3] and Volk and
Hora [4] follow comparable approaches, investigating
limited areas of different principal strains. Merklein et
al. evaluate ε1 information, whereas Volk and Hora ex-
amine ε3. Both methods use the last frame before crack
occurrence to define the evaluation area. Afterwards
the complete forming procedure is re-investigated us-
ing this defined and averaged area. The necking cri-
terion introduced by Volk and Hora is visualized in
Fig. 2. To define the forming limit, the thinning rate,
the first derivative of the deformation in ε3 direction,
is evaluated. Two straight lines are fitted into the ho-
mogeneous and instable forming region, while their in-
tersection depicts the onset of plastic instability and
the related ε1 and ε2 values define the forming limit.
Aside from the evaluation area size, the quality of the
estimates of the intersection lines is dependent on the
amount of available points and thus dependent on the
acquisition rate. Two FLCs of AC170 aluminum al-
loy obtained using the described methods are shown in
Fig. 3 with the forming history of one uniaxial strain
state (S60). The general shapes of the FLC seem com-
parable, but large deviations between individual strain
states are apparent indicating that current methods
are approximations of varying quality. Vysochinskiy
et al. [6] introduced the thickness-ratio to define the
onset of necking, that compares single point with lim-
ited area effects, in combination with user interaction.
Only Vacher et al. [7] exploit complete images by using
the strain velocity, the difference between two subse-
quent ε1 distributions, to determine the onset of in-
stability without defining a concrete necking criterion.
A first attempt to introduce pattern recognition meth-
ods in forming analysis was introduced by Merklein
et al. [8], as they used multiple random strain values
of ε1–ε3 in a random forest regression experiment to
predict the onset of fracture. Beside the approach of
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Figure 2. Onset of necking according to Volk and
Hora [4].
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Figure 3. Different forming limit curves with
AC170-S60 strain path forming history.

Vacher et al., all of the mentioned methods share the
similarity that only limited parts of the available infor-
mation is considered and that user interaction in terms
of thresholds or prior-knowledge is required. Possible
effects that occur outside the evaluation area or the in-
vestigated principal strain are neglected. Thus it may
be beneficial to incorporate the whole image informa-
tion (ε1 – ε3) rather then restricting the evaluation
to one of the principal strains with limited investiga-
tion area. To avoid the time- and location dependency,
expert knowledge is used to describe the forming be-
havior and the onset of instability.

3 Materials and Methods

Nakajima Test Setup. A Nakajima testing ma-
chine was used for the present investigation. Fig. 4
shows the scheme of the test setup as well as the in-
vestigated sample geometry. A sample, clamped in
between the blank holder and the die, is formed until
fracture by a punch progressing in vertical direction.
The forming procedure is evaluated with a two CCD-
camera setup, using the optical strain measurement
system Aramis (GOM). A high-strength lightweight
aluminum alloy AC170 is selected as specimen material
with a sheet thickness of 1 mm. To generate the data
set three trials of the S60 geometry were performed
with a constant punch velocity of 1 mm/s and a sam-
pling rate of 15 Hz.

Expert Interviews. Each of the three trials
were evaluated by four experts of the Institute of
Manufacturing Technology of the Friedrich-Alexander-
University Erlangen-Nuremberg. Within each video
sequence the individual frames of the strain distribu-
tions are labeled, based on visual impressions, with
four different classes, namely in-suspicious (C0), dif-
fuse necking (C1), local necking (C2) and crack initi-
ation (C3). The mean and standard deviation of the
experts decisions are visualized in Fig. 5. A majority
scheme is enforced to realize distinct transitions be-
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Figure 4. Nakajima test setup with S60 geometry.
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Figure 5. Beginning of classes (stage in time) ac-
cording to experts with standard deviation.

tween the individual classes. As the amount of experts
is four, the decision in case of parity is made in favor
of the higher class. The distributions of classes within
each trial is depicted in Tab. 1.
Feature Extraction & Classification. The deci-

sions of the experts are based on visual impressions.
This indicates that contrast changes, inhomogeneities
as well as edges are important within the process of
decision-making. Jaremenko et al. [9] solve a compa-
rable classification problem, despite the different im-
age characteristic, based on the evaluation of inhomo-
geneities. Hence, local binary patterns (LBP) [10] and
gray level co-occurrence matrices (GLCM) [11] serve
as features extracted from ε1 – ε3. Multiple radii (1,
3, 5) and neighborhoods (8, 16, 24) are chosen in case
of the rotation invariant LBPs following a multiscale
approach. In case of the GLCM multiple distances are
combined ranging from 1 to 5. As a result of the heavy
data imbalance, the classification problem is solved in
a hierarchical manner based on support vector ma-
chines [12], that was showing superior performance in
preliminary studies in comparison with a one vs all ap-
proach. Therefore three binary classification problems
are solved sequentially based on the outcome of the
previous classification stage.

4 Experiments

The inter-experts consistency is measured with
a “Leave-One-Expert-Out Cross-Validation” (LOEO-
CV) based on the assigned labels per trial. A majority

Table 1. Class support – Majority.
Class C0 C1 C2 C3

Trial-1 51 5 4 1
Trial-2 47 6 7 1
Trial-3 54 1 5 1

Total 152 12 16 3

Table 2. Overall expert consent (in %).
C0 C1 C2 C3 Precision Recall

C0 95.8 3.4 0.8 0.0 96.1 95.8
C1 59.0 25.6 15.4 0.0 21.7 25.6
C2 1.7 25.9 72.4 0.0 77.8 72.4
C3 0.0 0.0 7.7 92.3 100.0 92.3

Mean 73.9 71.5

Table 3. Classification results (in %) – PS-25.
C0 C1 C2 C3 Precision Recall

C0 100.0 0.0 0.0 0.0 98.7 100
C1 16.7 58.3 25.0 0.0 70.0 58.3
C2 0.0 18.7 81.3 0.0 81.3 81.3
C3 0.0 0 0.0 100.0 100 100

Mean 87.5 84.9

voting scheme of the expert decisions of each individual
trial provides the labels used in the classification pro-
cedure. The performance of the classifier is determined
based on “Leave-One-Sequence-Out Cross-Validation”
(LOSO-CV) experiments, while three different feature-
extraction methods are evaluated and compared. The
“PS-AVG” experiment uses rectangular-patches with
a side length of 25 pixels and 50% overlap with subse-
quent averaging and calculation of the standard devi-
ation over all patches and features. The “FI” exper-
iment evaluates the whole image without subdivision
into patches. In case of the “PS-25” experiment the av-
eraging step is skipped, that leads to a large location-
dependent feature vector. All experiments are evalu-
ated using precision and recall as evaluation measure.

5 Results

The results of the LOEO-CV experiment is visual-
ized in Tab. 2. Overall an avg. precision of 73.9 % and
avg. recall of 71.5 % is achieved. The best consensus
is reached within C0 and C3 with 96.1 % and 100 %
precision, respectively. Good consensus of 77.8 % is
achieved in C2, while a low consent of 21.7 % between
the experts prevails in C1. Within all LOSO-CV exper-
iments, the LBP features consistently slightly outper-
formed the GLCM features. Therefore only the LBP
feature results of the different experiments are visu-
alized in Tab. 3-5. Best results in terms of avg. re-
call and avg. precision are achieved with the PS-25
(87.5 %,84.9 %) experiment, outperforming the PS-
AVG (79.5 %, 82.0 %) and FI (80.7 %, 82.0 %) ex-
periment. Differences exist within the individual class
recognition rates. The PS-AVG and FI method have
advantages classifying C2 and C3 as precision and re-
call reach 88.9 %, 100 % and 94.1 %,100 and 100 %,
100 %, respectively. In case of C1 only 33.3 % and
33.3 % precision and recall are achieved. The PS-25
method outperforms the other approaches in case of
C0 and C1, especially within C1 as it reaches 70 %
precision and 58.3 % recall, while it performs worse in
case of C2 with 81.3 % for both measures.

6 Discussion and Conclusion

The LOEO-CV experiment highlights the consent
between the individual experts. Very good consistency



Table 4. Classification results (in %) – PS-AVG.

C0 C1 C2 C3 Precision Recall

C0 94.7 5.3 0.0 0.0 96.0 94.7
C1 50.0 33.3 16.7 0.0 33.3 33.3
C2 0.0 0.0 100.0 0.0 88.9 100
C3 0.0 0.0 0.0 100.0 100 100

Mean 79.5 82.0

Table 5. Classification results (in %) – FI.
C0 C1 C2 C3 Precision Recall

C0 94.7 5.3 0.0 0.0 95.4 94.7
C1 58.3 33.3 8.3 0.0 33.3 33.3
C2 0.0 0.0 100.0 0.0 94.1 100
C3 0.0 0.0 0 100.0 100 100

Mean 80.7 82.0

is achieved in C0, C2 and C3. Especially in case of
C3 this was to be expected as the crack occurs very
abruptly on the last stage of the sequence. The local-
ization effect as well as the in-suspicious class is recog-
nized by all experts with good consent as precision and
recall emphasize. Diffuse necking seems to be more dif-
ficult to recognize, as the low values of the evaluation
measures indicate. This results from inconsistencies
between expert opinions and the fact that not all ex-
perts were able to identify a diffuse necking state for
this material and geometry.
The output of the classifiers are hard decision based on
the majority voting of all human experts. The same
difficulties in distinguishing C1 from the other classes
can be seen within the classification results of PS-AVG
and FI, as most of the missclassifications occur between
C0 and C1. Both methods are location-independent
due to the analysis of either the whole image or the
averaging scheme. As nearly 50 % of the instances of
C1 are missclassified as C0 and C2, this might indicate
that diffuse necking is a very short phase of the forming
procedure or that one of the three trials behaves differ-
ently in comparison with the rest. One candidate for
this misbehavior is trial-3 as indicated by the majority
scheme with the low amount of C1 members. When lo-
cation dependence is maintained, the classification of
C0 and C1 improve with the PS-25 method. Neverthe-
less, the classification of C1 still performs worse while
the precision and recall nearly double. As a downside
the precision and recall of C2 decreases as missclassifi-
cations between C1 and C2 increase. The localization
effect of the sheet metal as well as the crack initia-
tion can be identified nearly perfect with the location-
independent PS-AVG and FI method as emphasized by
the classification results of C2 and C3. Both methods
do not confuse any instance of C2 with other classes.
This is advantageous as C2 would be the most sig-
nificant class in forming processes as it describes the
localization effect and thus the missclassifications in
C0 and C1 may be tolerated. Currently all instances
are processed with the same importance and none of
the classes is preferred over the other with a weighting
scheme. Of course a certain amount of subjectivity is
introduced and addressed by using the knowledge of
multiple experts. Another aspect that needs further
investigation is the exact area definition of the onset
of necking in terms of major and minor strain. This

would enable a comparison with state of the art meth-
ods, as up to now only the point in time during forming
processes is determined.
A new concept for the determination of the FLD is
presented in this contribution. It is defined as classi-
fication problem evaluating ε1 – ε3. The definition of
the necking phase relies on expert knowledge instead
of approximations based on thinning or strain rates of
limited areas. This makes it applicable to define the
necking effect in terms of ε1 – ε3. In combination with
the classification approach a transfer of knowledge on
comparable materials seems feasible. This would allow
a definition of the forming limit in terms of principal
strain and feature space. In future work this approach
is extended on the complete FLD with investigation of
multiple materials.

References

[1] S.P. Keeler and W. A. Backofen. Plastic instability
and fracture in sheets stretched over rigid punches.
Trans. Asm, 56(1):25–48, 1963.

[2] ISO12004-2:2008. Metallic Materials Sheet and Strip
Determination of Forming-Limit Curves. Part 2: De-
termination of Forming-Limit Curves in the Labora-
tory, 2008.

[3] M. Merklein, A. Kuppert, and M. Geiger. Time de-
pendent determination of forming limit diagrams.
CIRP Annals - Manufacturing Technology, 59(1):295–
298, 2010.

[4] W. Volk and P. Hora. New algorithm for a robust user-
independent evaluation of beginning instability for the
experimental FLC determination. Int. J. Mater. Form.,
4(3):339–346, 2011.

[5] D. Banabic. Sheet Metal Forming Processes. Springer
Berlin Heidelberg, 2010.

[6] D. Vysochinskiy, T. Coudert, O.S. Hopperstad, O.G.
Lademo, and A. Reyes. Experimental detection of
forming limit strains on samples with multiple local
necks. J. Mater. Process. Technol., 227:216–226, 2016.

[7] P. Vacher, A. Haddad, and R. Arrieux. Determination
of the Forming Limit Diagrams Using Image Analysis
by the Corelation Method. CIRP Annals - Manufac-
turing Technology, 48(2):227–230, 1999.

[8] M. Merklein, A. Maier, D. Kinnstätter, C. Jaremenko,
and E. Affronti. A New Approach to the Evaluation
of Forming Limits in Sheet Metal Forming. Key Eng.
Mater., 639:333–338, 2015.

[9] C. Jaremenko, A. Maier, S. Steidl, J. Hornegger, N.
Oetter, C. Knipfer, F. Stelzle, and H. Neumann. Clas-
sification of Confocal Laser Endomicroscopic Images
of the Oral Cavity to Distinguish Pathological from
Healthy Tissue. In Bildverarbeitung für die Medizin,
pages 479–485. Springer Berlin Heidelberg, 2015.

[10] T. Ojala, M. Pietikainen, and T. Maenpaa. Multireso-
lution gray-scale and rotation invariant texture classi-
fication with local binary patterns. IEEE Trans. Pat-
tern Anal. Mach. Intell., 24(7):971–987, 2002.

[11] R.M. Haralick, K. Shanmugam, and I. Dinstein. Tex-
tural Features for Image Classification. IEEE Trans.
Syst. Man Cybern., 3(6):610–621, nov 1973.

[12] J. Platt. Sequential minimal optimization: A fast al-
gorithm for training support vector machines. Tech-
nical report, Microsoft Research, 1998.


