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Abstract

A multispectral or hyperspectral sensor captures images of high spectral reso-
lution by dividing the light spectrum into many narrow bands. With the advent
of affordable and flexible sensors, the modality is constantly widening its range of
applications. This necessitates novel tools that allow general and intuitive analysis
of the image data. In this work, a software framework is presented that bundles
interactive visualization techniques with powerful analysis capabilities and is accessi-
ble through efficient computation and an intuitive user interface. Towards this goal,
several algorithmic solutions to open problems are presented in the fields of edge
detection, clustering, supervised segmentation and visualization of hyperspectral
images.

In edge detection, the structure of a scene can be extracted by finding discon-
tinuities between image regions. The high dimensionality of hyperspectral data
poses specific challenges for this task. A solution is proposed based on a data-driven
pseudometric. The pseudometric is computed through a fast manifold learning
technique and outperforms established metrics and similarity measures in several
edge detection scenarios.

Another approach to scene understanding in the hyperspectral or a derived
feature space is data clustering. Through pixel-cluster assignment, a global segmen-
tation of an image is obtained based on reflectance effects and materials in the scene.
An established mode-seeking method provides high-quality clustering results, but is
slow to compute in the hyperspectral domain. Two methods of speedup are proposed
that allow computations for interactive use. A further method is proposed that finds
clusters in a learned topological representation of the data manifold. Experimental
results demonstrate a quick and accurate clustering of the image data without any
assumptions or prior knowledge, and that the proposed methods are applicable for
the extraction of material prototypes and for fuzzy clustering of reflectance effects.

For supervised image analysis, an algorithm for seed-based segmentation is
introduced to the hyperspectral domain. Specific segmentations can be quickly
obtained by giving cues about regions to be included in or excluded from a segment.
The proposed method builds on established similarity measures and the proposed
data-driven pseudometric. A new benchmark is introduced to assess its performance.

The aforementioned analysis methods are then combined with capable visualiza-
tion techniques. A method for non-linear false-color visualization is proposed that
distinguishes captured spectra in the spatial layout of the image. This facilitates the
finding of relationships between objects and materials in the scene. Additionally,
a visualization for the spectral distribution of an image is proposed. Raw data
exploration becomes more feasible through manipulation of this plot and its link
to traditional displays. The combination of false-color coding, spectral distribution
plots, and traditional visualization enables a new workflow in manual hyperspectral
image analysis.



Zusammenfassung

Multispektrale und hyperspektrale Kameras nehmen Bilder mit hoher spektraler
Auflosung auf, indem das Lichtspektrum in viele schmale Bénder zerlegt wird. Durch
die Verfiigbarkeit von giinstigen und flexiblen Bildsensoren wird die Technologie fiir
stetig neue Anwendungen interessant. Dabei entsteht ein Bedarf fiir neue Werkzeuge,
die eine allgemeine und intuitive Analyse der Bilder erlauben. Diese Arbeit fiihrt ein
Softwareframework ein, das interaktive Visualisierungstechniken mit performanten
Analysefahigkeiten kombiniert und durch eine effiziente und intuitive graphische
Oberflache zugéanglich ist. Hierfiir werden algorithmische Losungen zu bisher of-
fenen Problemen in den Bereichen Kantendetektion, Clustering, nutzergestiitzte
Segmentierung und Visualisierung von hyperspektralen Bildern entwickelt.

Kantendetektion ermdglicht durch das Finden von Unstetigkeiten zwischen Bild-
bereichen, Riickschliisse auf die Struktur der Bildszene zu ziehen. Dabei bringt die
hohe spektrale Auflosung bestehende Verfahren an und iiber ihre Grenzen. Um diese
zu verschieben, stellen wir eine datenbezogene Halbmetrik vor, die mithilfe einer
Methode zum schnellen Erlernen einer Mannigfaltigkeit berechnet wird. Sie erzielt
gegeniiber etablierten Metriken und AhnlichkeitsmaRen deutliche Verbesserungen
in verschiedenen Kantendetektionsszenarien.

Die Bildszene kann auch im hyperspektralen Raum oder einem davon abgeleite-
ten Datenraum mittels Datenclustering greifbar werden. Durch die Clusterzugeho-
rigkeiten der Pixel erhdlt man eine globale Segmentierung des Bildes basierend auf
Reflexionseffekten und Materialien in der Szene. Eine etablierte Clustering-Methode,
die sehr gute Ergebnisse liefert, ist im hyperspektralen Raum nur langsam zu berech-
nen. Zwei Methoden zur Beschleunigung werden vorgestellt, die diese Berechnung
im interaktiven Zeitrahmen ermoglichen. Eine weitere Methode wird vorgeschlagen,
die eine erlernte topologische Reprasentation der von den Daten aufgespannten
Mannigfaltigkeit zum Clustering nutzt. Die experimentellen Ergebnisse zeigen, dass
ein schnelles und préazises Clustering der Bilddaten ohne spezifische Annahmen
oder weiteres Vorwissen erreicht werden kann. Ferner wird die Extraktion von
Materialprototypen sowie weiches Clustern von Reflexionseffekten ermoglicht.

Um die nutzergestiitzte Bildanalyse zu erlauben, fiihren wir einen Algorithmus
zur saatbasierten Segmentierung fiir hyperspektrale Bilder ein. Er verwendet Hinwei-
se liber Regionen, die im Segment enthalten oder von ihm ausgeschlossen sind. So
kann der Nutzer rasch die gewiinschte Segmentierung erzielen. Die vorgestellte Me-
thode nutzt etablierte AhnlichkeitsmaRe sowie die neue datenbezogene Halbmetrik.
Ihre Tauglichkeit wird mittels eines neu erstellten Benchmarks nachgewiesen.

Schlie8lich werden die genannten Analysemethoden mit leistungsfahigen Vi-
sualisierungstechniken kombiniert. Eine Methode zur nichtlinearen Falschfarben-
darstellung wird eingefiihrt, die aufgenommene Spektren in der Anordnung des
Bildes differenziert und es ermoglicht, Zusammenhénge zwischen den Objekten und
Materialien in der Szene zu finden. Ebenso wird eine Visualisierung der spektralen
Verteilung eines Bildes eingefiihrt. Interaktive Manipulation dieses Plots und sei-
ne Verkniipfung mit anderen Ansichten ermoglicht die Erkundung unverarbeiteter
Daten. Die Kombination von Falschfarbendarstellung, Plots der spektralen Vertei-
lung und traditioneller Visualisierungen erlaubt einen neuen Arbeitsablauf bei der
manuellen Inspektion von multispektralen und hyperspektralen Bildern.
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Chapter 1

Introduction

In our daily lives we solve many challenging vision problems, most of the time even
without giving them a further thought. Detection, recognition, tracking are classical
computer vision problems where human performance often stays unmatched by
algorithmic solutions to date. On the other hand, autonomous systems strive to
beat human performance in many fields, e.g. to improve traffic safety with driving
assistance systems; even heading towards completely autonomously controlled
vehicles. One corner stone to enable machine vision to beat human vision are
sensors that can see what a human eye cannot.

A multispectral or hyperspectral sensor is such a sensor. It allows to capture rich
reflectance information that is not accessible to our own visual system. While the
latter is based on three stimuli — different cones in the eye that perceive the colors red,
green, and blue —, these sensors provide a much better discrimination in the visible
spectrum, or even beyond. Multispectral and hyperspectral imaging have played a
key role in the field of remote sensing for decades, ever since reconnaissance aircraft
and satellites became equipped with such sensor systems for earth observation.
Today, the range of available sensor designs and applications for multispectral and
hyperspectral imaging has widened significantly, far beyond remote sensing and
astronomy, for example in areas like cultural heritage, agriculture, and medical
imaging.

1.1 Motivation

In a multispectral image, each pixel is a high-dimensional vector of intensity values,
where each value corresponds to the scene radiance over a small range of wave-
lengths (a narrow band). The high-dimensional nature of the data and its strong
inter-band correlations pose challenges to computer vision algorithms. It turns out a
superior sensor is only half the battle: Software adaptations are needed to expose
and exploit the information contained in the data.

A similar problem arises when one intends to manually process such high-
dimensional data. How do you view a hyperspectral image? High-dimensional data
is unintuitive, and it typically cannot be fully represented in a single, static display.
Many new applications bring this imaging domain to new users — domain experts
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who did not work with hyperspectral data before but need to find and analyze details
that are seemingly hidden in the data. The typical answer to these problems is data
reduction. However, when is data reduction really needed and if so, can we find
new ways to achieve it?

One major goal of this thesis is to provide new answers to both parts of this
question. Where traditional displays are based on static imagery and dimensionality
reduction, we investigate a new workflow for interactive inspection that works with
simultaneous visualization of different aspects of the information; including the
display of all raw spectra contained in the image or a region-of-interest. To help
unravel the rich data, we develop new tools for the user to separate parts of the
data automatically or with a guided algorithm that was adapted to hyperspectral
images. We also improve on the computational performance of algorithms that
already work on hyperspectral input to enable their use in the interactive analysis.
One important ingredient of these efforts is reducing data in several ways, based on
a fast-to-compute manifold learning method.

1.2 Contributions

In this thesis, we introduce a novel software platform for interactive analysis and
visualization of multispectral and hyperspectral data to help proliferate research
and application of multispectral and hyperspectral imaging [Jord 16b]. Towards this
goal, the following work was carried out:

* A probabilistic manifold learning method [Jord 14, Robl 15],
* a new pseudometric for edge detection [Jord 11],

* fast global clustering with superpixel support [Jord 13b],

* supervised segmentation for hyperspectral images [Jord 12b],
 fast non-linear false-color visualization [Jord 13a], and

* efficient, interactive visualization of spectral distributions [Jord 10].

The Gerbil hyperspectral image visualization and analysis framework originating
from this work is available as free software for use in teaching, research and
industry [Jord 16a]. It incorporates the algorithms presented in this thesis with the
state-of-the-art in interactive hyperspectral image analysis.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 introduces the multispectral and
hyperspectral imaging modalities. Due to a new software platform being an integral
part of this thesis, currently available software for hyperspectral image analysis is
reviewed. As a foundation for the algorithms presented in this thesis, it is explained
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how spectral image data is typically described and how spectra are compared. We
also mention the challenges inherent to this domain.

In Chapter 3, we discuss the prevalent topic of dimensionality reduction in hyper-
spectral image processing. Dimensionality is often reduced as a feature extraction
step to combat the problems inherent to the high dimensionality of the captured
data. After an overview on well-studied transformations typically employed in this
context, we concentrate on the Self-organizing Map (SOM), which achieves vector
quantization and dimensionality reduction through manifold learning. In our work,
we found new variants of the SOM to aid in a range of traditional image process-
ing problems for hyperspectral data [Jord 11, Jord 13a], which are introduced at
this point. We follow up on this by discussing a new point of view on how the
mechanisms inherent to the SOM can be cast as a probabilistic manifold learning
algorithm [Jord 14], a joint work with Antonio Robles-Kelly. The chapter is con-
cluded by a range of experiments seeking to validate both the viability of the SOM
for manifold learning on hyperspectral images, and the performance improvements
achieved by our own contributions to the algorithm. For the latter, we derive a new
method for SOM-based classification of spectra.

Chapter 4 visits three prominent image processing problems in the context
of hyperspectral image analysis. First, the problem of edge detection is tackled,
where points in the image are identified that observe spectral discontinuities. The
performance of current state-of-the art methods in hyperspectral edge detection is
discussed. Then, we propose two variants of an algorithm that defines a dependable
and globally consistent measure of spectral discontinuity. The first variant is based
on the traditional SOM and was published in [Jord 11]. The second variant leverages
our improved SOM algorithm introduced in Chapter 3. We compare the performance
of these two algorithms with state-of-the-art edge detection methods.

Second comes global clustering. Here, we briefly discuss popular directions in
image clustering, before going in more detail for the family of so-called shift-based
methods. The Mean Shift algorithm is a prominent example and finds clusters in the
data by density gradient estimation. We show that a fast variant of mean shift, the
Fast Adaptive Mean Shift (FAMS), can provide good quality segmentations of hyper-
spectral images. To obtain such segmentations under interactive time constraints,
we develop two variants of FAMS based on a sparsification or quantization of the
data distribution. One is based on superpixel segmentation [Jord 13b], the other
on manifold learning [Jord 14]. A third proposed method works with the topology
derived by a SOM. We assess the utility of our methods by comparing clustering
results with FAMS and another algorithm designed for hyperspectral data, and show
an application in fuzzy clustering.

The third problem we visit is supervised segmentation. Other than global clus-
tering methods, supervised segmentation finds locally connected segments and is
guided by the user. While supervised segmentation can be very helpful for interactive
analysis, to the best of our knowledge, it was not studied so far for hyperspectral
images. We present an efficient solution to this problem that works with either
established measures of spectral dissimilarity or the new measure introduced at the
beginning of this chapter [Jord 12b].
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Chapter 5 complements the analysis carried out in Chapter 4 by the visualization
of multispectral and hyperspectral image data, which is crucial for interactive inspec-
tion. First, traditional display methods are discussed before we introduce two new
approaches. Our first approach follows the traditional false-color technique. Here,
a color image is produced that follows the spatial layout of the high-dimensional
image, but derives an artificial coloring from computed data. We generate such a col-
oring using our own variant of the SOM that was introduced in Chapter 3 [Jord 13a].
Our second approach does not work in the spatial layout of the image, but rather
visualizes the data by the means of an interactive plot of the image’s underlying
spectral distribution [Jord 10]. The discussion includes further refinements to the
plotting method.

Based on this work, we obtain a new workflow in visual hyperspectral image
analysis that tightly integrates traditional displays, false-coloring and interactive
spectral plots with unsupervised and supervised analysis methods [Jord 16b]. We
illustrate this workflow within our software framework. In the experimental vali-
dation of our methods, we contrast them with existing approaches, but also reveal
relations between them and how the spectral distribution plots can be used to
compare feature spaces and evaluate other algorithmic results.

To conclude, Chapter 6 provides an outlook on prolific further research directions
before we summarize the findings in this thesis in Chapter 7.



Chapter 2

Background

While having close algorithmic ties to other disciplines, imaging spectroscopy, or
hyperspectral imaging, resides in its own realm in image processing. In this chapter,
we first give an overview of sensors, applications, and available image data that is
widely used for evaluation. A comprehensive study is provided on existing software
frameworks that address the need for hyperspectral analysis tools. Then, we review
how multispectral and hyperspectral image data is typically described internally, and
which measures are used to differentiate between individual spectra. Finally, we
look at the challenges that are present today for intuitive inspection and analysis of
hyperspectral data.

2.1 Imaging Spectroscopy

The term imaging spectroscopy describes the measurement and examination of the
light spectrum, as opposed to monochromatic measurements, on an image level.
In practice, each pixel of the image contains a considerably high-resolution repre-
sentation of the incident light spectrum. The benefits of such an instrument when
compared to a regular color sensor can be easily illustrated by an example. A regular
color sensor separates the incoming visible light spectrum into three wide bands, rep-
resenting red, green, and blue (RGB) each. While this may generally suffice for our
own image viewing pleasure, it is a very limited view when going into specific color-
based vision applications. For example, the absorption spectra of the components
present in the human skin layers are depicted in Figure 2.1 [Mals 11]. Particularly
characteristic is the w-shape between wavelengths of 500 nm and 600 nm formed
by oxygenated hemoglobin (oxyhemoglobin). Concentration of oxyhemoglobin is
a feature used for measuring oxygen saturation, which by itself is an important
indicator in medical diagnosis. With this knowledge, we are not only able to visually
recognize human skin with overwhelming reliability, we can also derive dermato-
logical properties by decomposing the absorbers, to diagnose bruises, the degree of
burn wounds, diabetes, and skin cancer [L.u 14]. Note that in the considerably lower
spectral resolution of RGB, this feature cannot be observed.

Several instrument designs exist to obtain a representation of the incident light
with moderate to ultra-high spectral resolutions to facilitate this application and

5
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Figure 2.1: Absorption spectra of different absorbers in skin [Mals11]. Baseline
absorption stems from structures like organelles and cell membranes. Courtesy of
Eva Eibenberger.

many others. The distinction between multispectral and hyperspectral instruments
is diffuse. Per-se, multispectral describes the capture of multiple bands, which
includes RGB sensors. While RGB images are traditionally referred to as color images,
nowadays the term multispectral is more commonly found in literature as describing
RGB. Even more so, the RGB+NIR modality, where an image contains four wide-band
channels including near-infrared, is regularly described as multispectral. Therefore,
it becomes increasingly common in literature to employ the term hyperspectral as
soon as a significantly larger number of bands is involved. Traditionally, the term
hyperspectral was used for sensors that either provide a very high spectral resolution,
or image the electromagnetic spectrum outside the visible light, or both.

In this thesis, when we use the term multispectral, we refer to images with about
30 bands in the visible range, an example of which is depicted in Figure 2.2. For
hyperspectral images, we assume hundreds of bands that may reach a typical range
of 400 nm to 2400 nm.

2.1.1 Sensors

Multispectral or hyperspectral image data is often referred to as a cube. The first
two axes of the cube refer to the image plane, while the z-axis denotes the spectral
component. Several techniques exist to acquire such a cube, band-by-band, line-by-
line, or pixel-by-pixel. Traditionally, acquisition takes a significantly longer time than
RGB imaging. Recent advantages however lead us towards real-time capture, and
therefore, video capture possibilities. Here we describe the three most prominent
designs.
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Figure 2.2: Illustration of an example multispectral image from the CAVE dataset.
The image consists of 31 bands ranging from 400 nm to 700 nm. True-color and
false-color representations are computed from the image data.

Line Scanners

A line scanner is typically referred to as push-broom scanner in aerial capture. It
obtains the image cube line-by-line and is designed after a spectrometer. A prism
between the lens and a CCD or CMOS chip splits the incoming light according to
wavelength. On the sensor, each column then reflects the spectrum of a single
point on the image plane. Mechanical movement of the sensor perpendicular to
the line orientation allows the gradual capture of the image. In passive remote
sensing, this is the satellite movement in the orbit. In industrial settings, typically
a fixed sensor observes a moving production line. In the lab, a rotating mirror can
be used [Herr 12]. Figure 2.3 shows the two components of such a hyperspectral
sensor design by manufacturer SPECIM.

Push-broom scanners are typically hyperspectral, as a high spectral resolution can
easily be obtained with a spectroscope. The drawback is that acquisition time grows
linearly with vertical resolution. Images from push-broom sensors are typically
obtained in the Band interleaved by line (BIL) format according to the image
formation process.

Tunable Filters

Filter-based designs are typically found “on the ground”, but are also suitable for
space and airborne imaging. Similar to the line scanner design, a monochromatic
sensor chip is used. A filter is placed in front of the sensor that transmits a small
wavelength band and excludes light of other wavelengths to obtain one image band.
The image cube is obtained by subsequent captures with different filter settings.
Early setups would use a filter wheel that is rotated between shots. Today, filter
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Figure 2.3: Two components of a SPECIM hyperspectral sensor. The mirror unit to
the left is attached in front of the lens seen on the right.

switching is done without mechanical work, using liquid crystal tunable filters
(LCTF) or acousto-optical tunable filters (AOTF). They are electronically controlled
and significantly improve capture speed and reduce misalignment between image
bands.

A LCTF/AOTEF-based sensor is more compact and less complicated to setup and
operate when compared to push broom scanners. A major drawback is the low light
efficiency of such filters. Long exposure times are needed to avoid underexposure,
and acquisition time grows linearly with the spectral resolution. Especially in
the case of AOTF, image quality is poor, for the benefit of faster tuning speeds
and a broader wavelength range. Older reviews of such sensors are provided by
Fisher etal. and Gat [Fish 98, Gat 00]. Lu and Fei, and Liang discuss more recent
technology [Lu 14, Lian 12].

A recent design by Xerox PARC embeds an LCTF layer directly on the chip for a
significant reduction in sensor size and increase in aperture. A drawback of their
chip is that it produces wider bands especially in higher wavelengths [Hegy 15].

Single-Shot Designs

Other sensor designs that employ a custom chip in a traditional camera system
recently became commercially available. They allow to capture the whole image
cube in a single shot.

In the design by IMEA, spectral filtering is incorporated into the CMOS manufac-
turing process [Geel 14]. The bandpass filters are directly attached to the sensor and
can therefore be applied on a per-pixel basis. As compared to other sensor designs,
the manufacturer claims production costs similar to a regular, monochromatic CMOS
chip. Several chip layouts are offered, including a mosaic layout. The chip is divided
into 4 X 4 regions which captures one spectral band per pixel, obtaining a 16-band
image. This is similar to the Bayer pattern of RGB cameras, where 2 X 2 regions on
the chip capture the colors red, green, green, blue. One drawback of the current
offering is a limited wavelength range.

Another recent design is based on transverse field detectors [Mart 14]. Here, the
incoming light passes through several layers in the detector chip. In this case, spatial
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Wavelength (um) Characteristics and Uses

@ 0.45-0.52 Bathymetric mapping (max. water penetration), distinguises
soil from vegetation, deciduous from coniferous vegetation

@ 0.52-0.60 Emphasizes peak vegetation, good for assessing plant vigor
(3) 0.63-0.69 Discriminates vegetation slopes

@ 0.77-0.90 Emphasizes biomass content and shorelines

@ 1.55-1.75 Discriminates moisture content of soil and vegetation

@ 10.40-12.50 Thermal infrared: thermal mapping, estimated soil moisture
@ 2.09-2.35 Hydrothermally altered rocks associated with mineral deposits

Table 2.1: Bands captured by LANDSAT Thematic Mapper and their characteris-
tics [US G15, Gonz 08, Chapter 1].

023 ® 5 @
HEa

| |
I I |

400 700 1000 A (nm) 2400

Figure 2.4: Bandpass wavelengths of LANDSAT Thematic Mapper for all bands in
Table 2.1 except (6), which is far off-scale.

resolution is not sacrificed for spectral resolution, as the full spectrum is recovered
in each pixel. In one capture shot, they capture up to 18 bands. However, the filter
responses do not cover the spectrum as uniformly as LCTF.

These new designs are promising, as they are first to allow high quality video
capture of a full image cube. They also further reduce production costs and design
complexity.

2.1.2 Applications

Emerging sensor designs that reduce the cost to operate a multispectral or hyperspec-
tral sensor and lift restrictions on their setup in non-lab environments are constantly
widening the field of applications. Based on the hardware that most recently be-
came commercially available, we can expect an even broader application scope of
multispectral imaging in the near future. Here we give a non-exhaustive overview.

Remote Sensing and Astronomy

As mentioned earlier, multispectral and hyperspectral image capture has the longest
tradition in remote sensing. An introduction to the topic is given by Shaw and
Manolakis [Shaw 02]. The NASA LANDSAT satellites are a prime example of high-
quality earth imaging and were equipped with multispectral sensors early on. The
LANDSAT 4, 5 satellites carry the Thematic Mapper instrument, capturing seven
wide bands with a whisk-broom sensor (a precursor to the push-broom sensor
with a rotating mirror scanning each line), while the still operational LANDSAT 7
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captures an additional panchromatic band for increased spatial resolution [US G 15].
Table 2.1 lists the filter bands and their specific characteristics and uses. Figure 2.4
shows all filter bandpasses except thermal infrared on the wavelength scale. Since
2013, LANDSAT 8 is operating with further enhanced push-broom sensors and a
total of 11 bands. The selection and characterization of bands for the Thematic
Mapper give a good hint at the information of interest in remote sensing and the
wavelengths relevant for it.

There is a plethora of applications in earth observation using image data from
the LANDSAT thematic mapper, the Earth Observing-1 Mission (EO-1) satellite,
the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and
other sources. High quality spectral libraries are publicly available containing
thousands of spectra that allow for classification of minerals, rocks, terrestrial soils,
manmade materials, meteorites, vegetation, snow and ice [Clar07, Bald 09]. A
recent, comprehensive review of applications and methods popular in hyperspectral
remote sensing data analysis is provided by Bioucas-Dias etal. [Biou 13].

Instead of observing earth from space, multispectral data is also produced by
observing space from earth. In astronomy, images are formed by combining the
output of sensors that capture a wide range of electromagnetic emission features
(i. e. intensities and wavelengths) of astrophysical objects through telescopes [Li 08].
Different properties come to light depending on the wavelength range. A well-known
source of such data representations are the so coined allsky surveys that attempt to
cover a major portion of the entire celestial sphere.

Medical diagnosis

A range of medical applications were studied for hyperspectral imaging, including,
but not limited to, dermatological diagnosis, ophthalmology, detection of several
cancer types, and diabetes. Lu and Fei give a broad review of applications and
discuss clinical trials, in-vivo studies, and histological studies [L.u14]. Sensors
used for diagnosis typically measure reflectance, in some applications combined
with fluorescence. In some cases, usually when integrated in microscopy, also the
transmission of light is captured.

For diagnosing retinal diseases, a fundus camera can be integrated with a hy-
perspectral sensor, as presented by Johnson etal. [John07]. A snapshot system
captures 450 nm to 700 nm with 50 bands in about 3 ms. Through the hyperspectral
data, functional maps are computed, e. g. to detect diabetes, venous occlusion, or
shortage of blood flow via oxygen saturation. As related earlier, oxygen saturation
of the blood is an indicator used to diagnose several medical conditions. Hyperspec-
tral imaging of the human skin not only helps in detecting melanoma (malignant
melanoma are a deadly form of skin cancer) or Kaposi’s sarcoma. The observation
of quantitative and qualitative changes in the level of skin oxygenation can also be
used to diagnose patients in shock [Canc 06].

Detection in biochemical and morphological changes helps provide diagnostical
information for different types of cancers. Major areas of research are measurement
of the blood volume and oxygenation, in vivo examination of tissue surfaces, mor-
phological and structural analysis of histological specimens and in vivo recognition
of protein biomarkers on the cellular level. Numerous published studies discuss
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recognition of cervical cancer, breast cancer, head and neck cancer, prostate cancer,
and colon cancer [Lu 14].

Diabetic foot ulceration is a major complication of diabetes, where changes
in large vessels and microcirculation of the foot are pivotal in its development.
Greenman et al. use a hyperspectral sensor with high spectral resolution in the range
of 400 nm to 500 nm to investigate the hemoglobin saturation in the forearm and
foot for diagnosis [Gree 05].

Other domains where spectral characteristic of a tissue are valuable information
are image-guided surgery or heart and circulatory pathology, e. g. the peripheral
arterial disease or atherosclerosis [Lu 14].

Cultural Heritage

In cultural heritage, imaging spectroscopy goes back as far as the early 1990s. Most
prominent in this area are the conservation and analysis of historical art and artifacts
in archeology [Casi 99, Pico 07, Lian 12]. Cucci et al. present two case studies of
Gentile da Fabriano’s panel painting Polittico dell'Intercessione (c. 1425) in the
church of San Niccolo, Florence and a tempera drawing on paper by Attilio Mussino
made in 1911 [Cucc 11]. The acquired images deliver valuable information of the
characteristics of pigmentation and dyes, helping in the goal of identifying pictorial
materials and their distribution. A particular concern for study is how various
parameters like the particle size, concentration and types of binding medium can
influence pigment identification [Lian 12]. It is shown that surface dirt does not
affect the shape of the spectrum. Under-drawings that may exist, retouched areas
and the artist’s technique can also be revealed. One resulting application can be
artist identification and authentication. Color measurements are also obtained for
monitoring the conservation of artworks, for example the cleaning of a contemporary
mural [Marc 14]. Damages and past interventions can be detected, and the natural
degradation in the course of time due to moisture, transportation or laser cleaning
can be visualized by rendering an image under artificial illumination [Lian 12]. UV-
fluorescence imaging is particularly helpful for recovering erased or faded writing,
while a combination of multispectral imaging with other non-invasive imaging tech-
niques such as laser scanning and photogrammetry or optical coherence tomography
(OCT) can amplify analysis capabilities [Lian 12].

Multispectral imaging offers an important and effective non-invasive method
for examination of historical documents [Kim 10, Hedj 13]. Research objectives are
analysis of the chemical composition of the ink, recognition of latent patterns in
a palimpsest (a manuscript page from which the text has been scraped or washed
off for reuse), segmentation of the written text as well as detection of degradation
signs. Degradation is one of the main problems rendering works difficult to decipher.
Hedjam and Cheriet digitized over 110 multispectral images of writs between the
17th and 20th century [Hed]j 13].

Food Quality and Safety

Gowen etal. review a large body of work on hyperspectral imaging in food qual-
ity and safety control [Gowe 07]. Hyperspectral sensors are employed in non-
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Identifier Amount, Type Pixels Bands Range (nm) | Source
CAVE 32, lab 508 x 512 31 400- 700 | [Yasul0]
Foster 8, nature 1340 x 1020 33 400- 720 | [Fost06]
1, lab 820 x 820 31 410- 710
Indian Pines 1, remote sens. 145 x 145 200 400-2500 | [Purd16]
D.C. Mall 1, remote sens. | 307 X 1280 191 400-2475 | [Purd 16]
Diirer 2, art scan 1087 x 908 557 400- 900 | [Stef07]
1040 x 850
Harvard 50, urban 1392 x 1040 31 420- 720 | [Chak11]

Table 2.2: Image datasets used in this thesis for illustration and empirical testing.

destructive food analysis, being faster and less expensive than previous approaches
such as liquid chromatography or mass spectrometry. Contamination and defects are
recognized, and overall consistency and quality classified. Freshness of a wide range
of food products, including meat, common vegetables, and fruits, is monitored with
classifiers on hyperspectral data in the visible to near-infrared (400 nm to 1000 nm)
or infrared (1000 nm to 1700 nm) wavelength ranges. Nicolai et al. review studies
on measuring fruit and vegetable quality, which includes factors like the bitter pit or
bruises on apples, or firmness of peaches [Nico 07]. Elmasry etal. give an overview
for objective meat quality evaluation. Hyperspectral imaging is used for quantifying
and characterizing visual features of meat such as color, quality grade, marbling,
maturity, and texture, but also for identifying the chemical structure and related
physical properties of all types of meat [Elma 12]. Imaging spectroscopy is now
increasingly gaining in traction in the food industry, as its major drawbacks, high
hardware costs and relatively slow acquisition speed [Gowe 07], are mended by
more recent Sensors.

2.1.3 Image Datasets

As of today, multispectral and hyperspectral sensors are significantly more expensive
and harder to operate than RGB cameras. The storage size of a spectral cube, often
preserved with a high bitrate, is also a factor when sharing data. Therefore, less data
is publicly available when compared to more common imaging modalities. Table 2.2
provides the characteristics of the datasets used in this thesis, which are further
described below.

In remote sensing, data from the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) is very popular in benchmarking [Gree 98]. AVIRIS scans taken from
ultra-high altitude reconnaissance aircraft were among the first publicly available
hyperspectral remote sensing data. The Indian Pines image, captured in 1992
over the Purdue University Agronomy farm, is a prominent example, as it is well-
understood, including ground-truth labels for classification [Baum 15, Tara 09].
Figure 2.5 depicts the ground-truth labels for Indian Pines. Per consensus in literature,
pre-processing is performed on this image. Twenty bands are discarded as they
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M Corn no till [l Grass/trees
Corn min till [ Grass/pasture mowed
M corn [l Hay windrowed
I soybean no till B oats
I Soybean min till B Wheat
[l soybean clean till [} Woods
B Alfalfa [ Buildings/grass/trees/drives
B Grass/pasture Stone/steel towers

Figure 2.5: Ground-truth labels for Indian Pines. Labels overlay a grayscale repre-
sentation of the image.

contain only atmospheric noise, resulting in only 200 of the 220 bands being
used [Camp 05].

Another popular source of remote sensing data is the hyperspectral digital im-
agery collection experiment (HYDICE) sensor. The D.C. Mall image depicts the
National Mall park in Washington D.C. and was captured in 1995. As with the
AVIRIS image data, not all 210 bands are used due to some bands from near-infrared
and infrared wavelengths are known to contained mostly noise due to water absorp-
tion in the atmosphere, and 191 bands remain. The image data can be obtained
at [Purd 16]. Finally, often used for evaluating classification performance next to
Indian Pines is the imagery of the Pavia university and city center taken by the
Reflective Optics System Imaging Spectrometer (ROSIS) in 2002, with 115 narrow
bands in the range 430 nm to 860 nm [Holz 03].

Several high-quality multispectral datasets are available that depict natural
scenes. One was published in two parts, in 2002, and 2004, respectively by Foster
et al. who studied the appearance of metamerism (i. e. materials of varied reflectance
properties appear in same color) in natural scenes [Fost 06]. From these, we use
outdoor scenes from the 2004 set and one indoor scene (the only lab scene) from
the 2002 set. Recently, Foster etal. extended the set of available images and
published new multispectral images of scenes undergoing natural illumination
changes [Nasc 16, Fost 16]. Additionally, Chakrabarti etal. published an extensive
dataset of indoor and outdoor scenes in daylight illumination for the goal of deriving
statistics on multispectral images [Chak 11].

An example of hyperspectral imaging for art analysis and preservation is the
scan of Albrecht Diirer’s Adoration of the Magi by IFAC-CNR using a custom scan-
ner [Stef07, Pico 07]. It provides a high spectral resolution in the visible to near-
infrared range as well as a very high spatial resolution of 289 ppi. The data is
available in two forms: the full image with a spatial undersampling of 1:12 and
a detail of the image in the captured resolution. Hedjam and Cheriet provide 21
multispectral images of historical documents written between the 17th and 20th
centuries for the ICDAR 2015 MultiSpectral Text Extraction Contest [Hedj 15]. Eight
bands in the ultra-violet, visible, and infrared wavelength range were captured with
a filter-wheel camera [Hedj 13].
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Lab images are also available from various groups. They have the advantage of
providing considerably clean data which is helpful mostly for illustration, teaching
and early testing of algorithms. The CAVE dataset by Yasuma et al. provides various
objects in a lab setting [Yasu 10]. As the first four columns in each image consist of
noise, these are trimmed for our use, hence the remaining resolution of 508 x 512
pixels. The Commonwealth Scientific and Industrial Research Organisation also
provides lab images of good quality under a restrictive license [Data 16]. It dictates
that the data is to be used only in conjunction with their Scyven software product.

Figure 2.6 depicts five example images that represent the different sensor types
and image settings covered by the datasets used in this thesis. The images depicted
are a true color representation of the respective original image data that relates
human color perception. To obtain such a representation, the CIE 1931 colorimetric
system and sRGB color space are used [Wysz 00, Chapter 3]. A detailed description
of the computation will be given in Section 5.1.2 (see page 124). In this thesis we
often show the true-color representation of an image along with algorithmic results
on the image. It is an aid for understanding the depicted scene, yet the intuition
given by such an image needs to be taken with a grain of salt: Obviously, many
aspects of the original image data are lost in this representation.

2.2 Software for Hyperspectral Analysis

Alike multispectral and hyperspectral sensors, software for analysis of their output
has a long history. One of the first widely recognized software packages, LARSYS, be-
came available in the 1960s. It was operated via a text terminal. Several frameworks
for graphical, interactive multispectral or hyperspectral data analysis that are still of
broad influence today date back to the early 1990s. Earlier frameworks focus on a
specific application, most prominently in the field of remote sensing. Boardman et al.
provided an overview and the history of established software systems for remote
sensing hyperspectral data [Boar 06]. Larry Biehl created an updated list on the web
in 2007 [Bieh 07]. In this section we give first a brief overview of domain-specific
software packages before reviewing more widely applicable software. We focus on
the interactive inspection of images.

2.2.1 Remote Sensing

The Spectral Image Processing System (SIPS) was presented by Kruse etal. in
1992 [Krus 93]. It introduced the Spectral Angle Mapper (SAM), a tool still popular
in the field of spectral matching [Denn 04]. SAM is used to compare observed spectra
with a reference set for identification. Other included features were interactive
contrast enhancement and spectral unmixing. Data was presented either as single
bands or in a false-colored composite of three user-selectable bands. Additionally;,
the user could select a pixel to see its corresponding spectrum. Color-coded stacked
spectra were provided for a selected slice (a vertical or horizontal line scan, or an
arbitrary path in the image). This set of visualization forms is still typical in popular
software for hyperspectral capture or analysis today.
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(b) Diirer 1

(d) Harvard d3

i

(e) D.C. Mall

Figure 2.6: Example images from the multispectral and hyperspectral datasets used
in this thesis. On (e), illuminant correction was applied for daylight illumination.
Due to its high dynamic range, the contrast of (c) was enhanced for better visibility.
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Being initially released in the same timeframe as SIPS, the MultiSpec freeware
package by Landgrebe and Biehl is still under active development [Bieh 02]. Mul-
tiSpec can analyze multispectral images from various sources, using the versatile
GDAL library for data I/0 [Warm 08]. The focus of this software is classification. The
target audience is the general Earth science community. MultiSpec provides common
visualizations, e.g. single-band or false-colored spatial view, and single pixel spectral
plots. Additionally, it can generate biplots that relate selected regions in a pair of
bands and a statistics image display, which depicts the correlation between these
bands.

A widely used commercial software is ENVI, initially developed by Boardman,
Kruse and others [Exel 16, Boar 06]. The first version of ENVI was also released
in the early 1990s. Several innovations in hyperspectral analysis were introduced
in ENVI, including for example the Pixel Purity Index (PPI) [Boar 95]. PPI finds
the most spectrally pure pixels in an image. These pixels typically correspond to
endmembers (constituent spectra of an image) and are used in ENVI for endmember
extraction. A notable innovation in visualization is the n-Dimensional Visualizer,
which uses PPI as input. It is an interactive n-dimensional data visualization method
that allows real-time rotation of scatterplots in n-dimensions. The presentation
of n-dimensional scatterplots in 2-D can be somewhat unintuitive. Yet the tool is
valuable to experts for identification of endmembers based on the depicted point
clouds.

Two other notable pieces of software for hyperspectral remote sensing data
analysis are HyperCube [Unit 16] and Opticks [Ball 16]. HyperCube is released by
the U.S. Army Geospatial Center and contains functions to filter, warp (register
two images), calibrate and undistort, photometrically project, and arithmetically
manipulate the data. Opticks was originally developed by Ball Aerospace for the US
Air Force and is freely available as open-source since 2007. It also includes many
common tools like GIS annotations, false-coloring, and histograms. Furthermore, it
incorporates the appealing concept of extensions, where third-parties can provide
functionality through an external module. Thus, a range of available extensions adds
further capabilities to the software. For example, the Spectral Processing Extension
includes typical tools for hyperspectral data analysis [Ball 14]. Both HyperCube
and Opticks are well-equipped, but do not provide alternatives to the common
visualization paradigms present in SIPS, MultiSpec, or ENVI.

Within the remote sensing context, many works exist on visualizing a multi-
spectral image by employing dimensionality reduction, which in itself is also often
well-applicable to data from other sources. The goal is to present the image in
false-color RGB, but not based on a simple combination of bands as in color com-
posite images. Rather, dimensionality is reduced from spectral vectors to vectors
of length 3, which are then used as r, g, b values. Based on the resulting pixel
colors, the user should be able to discriminate regions of the image according to his
specific interests. Methods to achieve this include variants of the Principal Compo-
nent Analysis (PCA), Independent Component Analysis (ICA), as well as non-linear
methods. Some variants also incorporate classification results, e.g. in thematic
mapping. A recent approach by Cui et al. focuses on the interactive adaptation of
such visualization [Cui 09]. We further discuss these methods in Section 5.1.3.
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(a) image-stack model (b) volume-rendered model

Figure 2.7: Horseshoe model displays of astronomical data [Lio8). A user-
adjustable transfer function controls the opacity of data points in (b). Images
courtesy of Hongwei Li.

2.2.2 Astronomy

Another field with a long history of hyperspectral imaging is astronomy. The ds9 soft-
ware can be considered the most notable software framework in this field [Joye 03].
It is available from the Smithsonian Astrophysical Observatory and has its root in the
SAOtng package, which dates back to 1995. This software is very powerful in the
spatial representation of astronomical imagery. However, it provides a limited 3-D
visualization of the data cube, where the z-axis may represent either the spectral
domain, or the time domain in the case of consecutive monochromatic captures.
The 3-D visualization does not utilize modern volume rendering techniques, making
it rarely viable for display of non-astronomical data.

Li et al. explicitly tackled the question of how to present multi-band data [Li 08].
They drew image bands in 3-D space either as an image-stack or as a volume-
rendered model, e.g. a horseshoe model. See Figure 2.7 for an example. Their
volume rendering handles the obvious problem of clutter by applying transparency
to individual data points based on their intensity or on a user-adjusted mask. This
works especially well for astronomical data, which is rather sparse in the spatial
domain. However, one cannot generally assume that large image regions may be
faded out in such a manner for an unobstructed display of relevant data.

2.2.3 Other Application Domains

Multispectral imaging has become increasingly popular in the preservation and
analysis of artwork as well as historical documents.

Colantoni et al. analyzed multispectral images of paintings from the perspective
of human color perception [Cola 06]. From the image data, a representation in
the CIE XYZ color space [Wysz 00, Chapter 3] is computed under controlled virtual
illumination. Several tools can then be applied for visualization of trichromatic data.
The original spectra are not considered in the analysis.

In 2010, Kim et al. presented a solution for interactive visualization of historical
documents [Kim 10]. They provided a thoughtfully designed self-contained analysis
tool and incorporated innovations in how the data is presented. Some are specific to
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document analysis, e.g. dealing with aging-related artifacts, while others are more
general. Within the view of a single spectral band, the user can select a region for
which the data from a different band is displayed, referred to as the ‘spectral lens’.
Similarity maps can be computed between the mean spectral value of a selected
region and all pixels from the image. The user can select a wavelength range over
which the similarity is computed. However, similarity measures tailored to comparing
spectra like SAM would be better suited for spectra comparison than the Ly norm
employed by the authors. The methods of Kim etal. are limited regarding the
employed visualization techniques. Displays include single spectral bands, similarity
maps, true-color images, and false-color images based on contrast-enhanced band
fusion. A 3-D histogram plot is used to compare two spectra.

The Commonwealth Scientific and Industrial Research Organisation (CSIRO)
offers the Scyven software free-of-charge which features the reflectance recovery
and material classification pipeline developed at CSIRO [Habi 15, Robl 12]. Its
visualization includes false coloring and an adaptation of the Parallel Coordinates
visualization introduced in this work (see Section 5.3).

Labitzke et al. introduced an interactive framework for linear spectral unmixing
of multispectral datasets [Labi 13a]. Spectral unmixing is especially popular in
remote sensing, where the spatial resolution is often low. Many algorithms exist for
finding endmembers and performing spectral unmixing [Kesh 02]. Labitzke etal.
introduced an iterative method that can semi-automatically find endmembers. Then,
visual feedback is provided by their complementary visualization that reflects the
quality of the characterizing set. This set can be interactively modified in order to
improve the unmixing. The authors explicitly differentiated their approach from
our framework [Labi 13a, Jord 10]. Notably, the algorithm and workflow proposed
by Labitzke etal. nicely complement the visualization capabilities discussed in
Section 5.3.

2.3 Data Descriptors

The data behind a hyperspectral image,

often termed “hyperspectral data cube”, i
or shorter, “hypercube”, consists of nx
pixels x € X. Each pixel is a vector of
spectral coefficients and has length np,
whereas np is the number of bands cap- /'
tured in the image. Each coefficient x, rows
holds the sensor response in the corre-

sponding band b, with a center wave-

length A;. The full width at half maxi-

mum (FWHM) is often also known for columns
each band, but of limited concern for

most applications.

In this section we describe how this data cube is formed and discuss alternative
representations that may be computed from it.
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2.3.1 Image Formation

The intensity values x; that we obtain from a photosensitive sensor correspond to
the incident irradiance on the area of a pixel on the sensor plane. In the notation
of Angelopoulou, [Ange 00, Ange 071, for each point p = (x, y,z)" in the scene, the
light incident on p is determined by its spectrum e(A) and its direction relative to
the point in the scene E(p). For this, we assume a single light source with a constant
spectral distribution in all directions. Then, the amount of light reflected from point
p, denoted as I(p, A), results from a combination of the light incident on p and the
surface reflectance S(p, A) of the surface at p,

where A denotes wavelength. The reflectance function S(p, A) depends on the
surface material, the scene geometry and the viewing and incident angles. Note that
in the typical scene setup in hyperspectral capture, there is only a single light source
present. This is direct sunlight in remote sensing satellite imagery or a controlled
light source in most other applications. Models exist that deal with more light
sources, e.g. a combination of direct and ambient illumination [Ries 09].

To obtain a consistent sensor response x; ~ I(p, A4) across the spectrum, sensors
need to be calibrated. The calibration can be done with a spectral calibration
light source and needs to be renewed frequently. However, in many analysis tasks,
the goal of data capture is to obtain x; ~ R(p, A) = E(p) S(p, A), i. e. the relative
amount of light that would be reflected from an object into the sensor under
flat illumination. In this case, data may be normalized against both wavelength-
dependent sensor response variations and light spectrum at the same time using a
Lambertian calibration target, e.g. the Spectralon [Geor 07]. The term Lambertian
refers to purely diffuse materials [Hugh 13, Chapter 27].

In the example of the CAVE dataset (see Table 2.2), the coefficients x; approxi-
mate R(p, A). To do so, a normalization was carried out by setting the exposure time
for each band capture individually, such as to obtain the same response across bands
on a target present in each scene. Due to limited sensitivity of the sensor at smaller
wavelengths, however, the first three bands of these images remain underexposed,
effectively introducing an artificial illumination that is flat across most bands.

2.3.2 Normalized Data

As described above, R(p, 1) depends on scene geometry and the viewing and incident
angles. For Lambertian surfaces, these effects do not interact with the surface mate-
rial and changes of intensity induced by geometry are not depending on wavelength.
A common method to diminish geometry effects therefore is the normalization of
spectral vectors according to their magnitude in Lo,

N(x) = ——, (2.2)
[l
where || - |2 denotes the L, norm. The imperfection of this method lies in

the reliance on Lambertian surfaces. With only very few exceptions (e.g. the
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aforementioned Spectralon), materials in the real world do not exhibit purely diffuse
reflectance.

2.3.3 Spectral Gradient

The spectral derivative was defined by Angelopoulou [Ange 00] as the partial deriva-
tive of the logarithmic image with respect to the wavelength A,

d(In(I(p, 1))
dA '

The spectral gradient is then the discrete approximation of spectral derivatives
obtained by finite differences.

We may interpret the spectral gradient based on the Cook-Torrance reflectance
model [Cook 82]. For purely diffuse surfaces, the spectral derivative is the normal-
ized partial derivative of the surface albedo p(p, A) offset by a constant illumination
term c:

Li(p,A) = (2.3)

Pa (P ’ A) n c
plp,A)  e(d) ’
where pa(p, A) = dp(p, A)/JdA is the partial derivative of the albedo with respect to
wavelength. Albedo itself is a material property, independent of illumination and
geometry. In purely diffuse surfaces, the spectral gradient is therefore invariant to
geometry. When the illuminant spectrum does not change over the topology of the
image, this means that spectral gradient values stay constant within a material.

When not dealing with a purely diffuse surface, the Cook-Torrance model covers
the dependence of specular reflectance on material properties in the Fresnel term.
It turns out that, for purely specular reflectance, the spectral derivative becomes
the normalized partial derivative of the Fresnel term offset by the same constant
illumination term [Ange 07]:

L/\(Pz /\) ~

(2.4)

Fa(p, 1) L
F(p, A1)  e(A)

where Fj(p,A) = dF(p, A)/dA is the partial derivative of the Fresnel term with
respect to wavelength. The Fresnel term is also a material property, but unlike
albedo it also depends on geometry [Hugh 13, Chapter 26]. Effectively, specular
regions in the image can be separated from diffuse ones using the spectral gradient.

Often the spectral gradient is better suited for analysis of the captured scene
when compared to the original spectral data. In the visual inspection of an image,
the spectral gradient feature-vectors can offer a view that focuses more on data
aspects that are directly related to material properties and the image formation
process [Ange 07].

Li(p, A) = (2.5)

2.4 Similarity Measures

Many algorithms are based on measuring the similarity (or dissimilarity) of two data
points. How this similarity is commonly measured is more varied in multispectral
than in RGB.
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2.4.1 Metrics

A pseudometric d(x, y) has the properties,

dix,y)+d(y,z) > d(x,z),

d(x, y) d(y,x), (2.6)
dx,x) = O,

whereas these conditions also imply that d(x, y) is non-negative. A metric or distance
function d(x, y) is a pseudometric with the additional property,

dx,y)=0ex=y. 2.7)

In our context, it is desired for a dissimilarity measure to be a pseudometric,
while the additional constraint of a metric is less relevant. Due to signal noise we do
not expect to observe identical samples, rendering Eq. 2.7 ineffective.

A general approach to measuring dissimilarity of image pixels is to rely on a
Ly-norm [Lee 07, Chapter 4], including the Manhattan distance L;, the Euclidean
distance Lo, and the less popular Chebyshev distance,

Leo(x, ) = llx = ylleo,

which intuitively is described as the maximum distance. In our work on supervised
segmentation, we found that L, is the best-suited of these three when comparing
spectral vectors, with the additional benefit of a range independent of np. However,
while the Euclidean distance is often used on spectra in literature (sometimes
denoted as the Euclidean Maximum Distance [Kesh 04]), more specific measures
were established for the comparison of two spectra x, y.

2.4.2 Spectral Matching

In spectral matching, prior knowledge exists through a library of material spectra.
Observed spectra, e.g. single pixels, are then matched to their corresponding, or
best fitting, library entry. Several similarity measures have been designed for this
task, which implies that they should work well for discerning different materials in
the scene. Robila and Gershman as well as Gutiérrez-Rodriguez et al. give a good
overview [Robi 05b, Guti 10].

Back in 1992, the Spectral Image Processing System featured the Spectral Angle
Mapper by Yuhas etal. [Yuha 92, Krus 93]. It employs the spectral angle between
two spectra x and y,

(2.8)

SA(x, y) = cos™! ( x, y) ) ,

Ixll2 - llyll2

where (-, -) denotes the inner product. SA effectively captures the angle between two
spectra and therefore is invariant to pure intensity changes. It is a pseudometric: It
is always greater or equal to zero; it is symmetric and follows the triangle inequality.
However, it is not a metric due to SA(x,ax) =0,Va > 0.
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This property is shared by the Normalized Euclidean Distance, as proposed by
Robila and Gershman [Robi 05b], given as

np 2
X4 Ya
NED(x, y) = - . 2.9
) Jijhﬂu nmu) &2

d=1

Effectively, NED constitutes working in the normalized space as described in
Eq. 2.2. In fact, SA and NED show quite similar behavior.

The Spectral Correlation Mapper (SCM) was defined by de Carvalho and Meneses
in 2000, [De C00], and is based on the sample Pearson correlation coefficient such
as,

1 1 (x-x,y-7v)
SCM(x,y) =1 - =pyy =1—-=——— L,
y 2Py 2lx %2y -7l

where x is the arithmetic mean of x. SCM, as compared to SA, has the benefit
of distinguishing between negative and positive correlations. Other versions of
SCM are the Spectral Correlation Similarity, where negative correlations are cut
off [Homa 04], or the Spectral Correlation Angle, formulated in a similar fashion to
SA [Robi 05b].

Also in 2000, Chang introduced a measure that is based on information the-
ory [Chan 00]. It is successfully applied in spectral matching scenarios [Robi 05b].
The spectral vectors are modeled as random variables. This interpretation covers the
spectral variability of a pixel based on inter-band correlation. The random variable
p™) of spectral vector x of length np is given as

(2.10)

(x) X4
Pi<i<np = D (2.11)

e=1"¢

We can then compute the Spectral Information Divergence (SID), which is based on
the symmetric Kullback-Leibler information measure, as

(y)
an W, P Z”D W, Pd
SID(x, y) = pd log (—y) + pd lOg ﬁ . (2.12)
d=1 P, d=1 P4

In 2004, Du et al. expanded SID by combining it with SA [Du 04]. As they are
built on different interpretations of a spectral vector, the authors aim for an enhanced
spectral discriminatory probability. Two versions of the combinations are proposed:

SIDSAM; (x, y) = SID(x, y) - sin (SA(x, y)) , (2.13)

SIDSAMs(x, y) = SID(x, y) - tan (SA(x, y)) . (2.14)

It was shown in literature as well as in our own experiments that the difference
between SIDSAM;, SIDSAM, is negligible. Therefore it is sufficient to concentrate
on SIDSAM; from now on.
Robila and Gershman calculate the spectral angle on the spectral gradient,
[Robi05b], as
SGA(x, y) = SA(x’, y'), (2.15)
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where x” and y’ are the gradient vectors of spectra x and y, respectively. However,
the benefit of combining the spectral gradient with the spectral angle measure is not
well motivated.

In our work, we found that some graph-based image segmentation algorithms
work best when the dissimilarities measured between spectral vectors are somewhat
evenly spread out in their observed range, e.g. uniformly distributed. For various
reasons, the effective distributions of dissimilarities obtained with some of the dis-
cussed measures can be more problematic to them than the low dynamic range,
discretized Ly distances obtained from trichromatic images, which these algorithms
were designed for (we will visit this topic again in Section 4.2.2, Section 4.3.2). To
improve results, we may employ histogram equalization [Gonz 08, Chapter 3]. It
is a simple, yet effective technique to obtain a uniform distribution via transforma-
tion from any continuous probability density function (PDF). Given a vector of all
measured dissimilarities w, we obtain histogram-equalized weights w* via

W' = / pel@)dw, (2.16)
0

where p,, is the PDF of all measurements and the right hand side of the equation
is the respective cumulative distribution function. In our implementation, we
approximate Eq. 2.16 via a cumulative histogram with 20 000 bins covering the
range [min w, max w].

2.5 Challenges

Our perspective on hyperspectral images stems from the computer vision discipline.
In most computer vision algorithms operating on RGB data, color features play a
minor role in relation to non-color features like shape or texture, as the informa-
tion contained in a single r, g, b triplet is limited. For example, as noted in the
beginning of this chapter, while skin detection can be performed reliably on multi-
spectral data [Ange 01, Huyn 10a], it is an unsolved problem on RGB images when
accounting for all the skin types under different illuminations, shadows, cluttered
backgrounds and makeup [Kaku 07, Khan 12]. Especially cumbersome for classifi-
cation algorithms are differences in illumination that cause the color measurement
to be biased toward the color of the light source. This is why color constancy is an
important topic in computer vision [Geve 12, Part III]. In hyperspectral analysis, we
see paradigms that differ from color image analysis: Spatial context is of limited use,
while on the other hand the information available per-pixel is rich and more reliable.
Most hyperspectral methods in classification or object detection tasks work on single
pixels as compared to larger image regions or even the whole image. Spatial context
can be an assisting clue and features were proposed that incorporate the local pixel
neighborhood. However we need to be aware that with multispectral sensors, we
often see spatial resolution compromised for the sake of spectral resolution.

Furthermore, we may name two key characteristics of hyperspectral data: a high
correlation between adjacent bands [Lee 93], and a comparably low signal-to-noise
(SNR) ratio.
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(a) 400nm (b) 687 nm (¢) 2202 nm

Figure 2.8: Three bands of Indian Pines image with enhanced contrast for better
visibility.

(a) 420nm (b) 560 nm (c) 720 nm

Figure 2.9: Three bands of cropped Harvard d3 image with enhanced contrast for
better visibility. The full image is depicted in true color in Figure 2.6d.

Hyperspectral images observe more noise when compared to monochromatic
or RGB images as the higher spectral resolution reduces the amount of light that
falls into the sensor per image band, necessitating longer integration times. An
additional effect is a typically reduced sensitivity of sensors that capture the visible
light spectrum up to near-infrared in the marginal parts of the captured spectrum.
In general, the SNR is band-dependent. Figures 2.8 and 2.9 depict three bands of a
hyperspectral remote-sensing image, and a multispectral indoor image, respectively.
They show the variety of noise the respective bands contain.

The often high correlation between bands stems from a high spectral resolution
paired with smooth reflectance curves. Whatever the redundancy, the high spectral
resolution is needed in many specific applications where material reflectances of
interest are accentuated only in a small part of the spectrum [Cucc 11].

To illustrate the inter-band correlation that is present in multispectral and hy-
perspectral images, [Tsag 05, Mano 08], we compute the sample Pearson correlation
coefficient

Cov(b,, b
Pde = ( d e)

- 7 (2.17)
VVar(b,) Var(b,)

where b, is a vector containing the intensities of the dth image band (x4, x € X).
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Figure 2.10: Inter-band correlation coefficient maps of Diirer 1 image.
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Figure 2.11: Inter-band correlation coefficient maps of D.C. Mall image.

Figure 2.10 shows correlation coefficient maps of the Diirer 1 image. The
labeled wavelengths of 445 nm, 535 nm and 575 nm are the empirically determined
peak sensitivities of the three different sets of cones in the human eye [Gonz 08,
Chapter 6]. The human eye is insensitive to wavelengths beyond 700 nm, which is
the far end of the red light spectrum. In Figure 2.10a, we find a high inter-band
correlation across a wide range of bands that cover the red to near-infrared range.
Also high is the inter-band correlation in the blue to orange color range. Now
compare this to Figure 2.10b, the correlation coefficient map of the normalized
feature space as defined in Eq. 2.2. We conclude that a huge portion of the inter-band
correlation is based on the overall brightness of the painted colors, and therefore
average pixel intensity. After normalizing for the vector magnitude, the correlation
coefficient map becomes more organized.
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We observe a similar pattern with the D.C. Mall image, as seen in Figure 2.11b.
In the normalized representation, Figure 2.11b, we see several wavelength ranges
that share a high correlation, yet these groups of bands are clearly distinct from each
other in what information they represent. These block structures are discussed in
literature and can be exploited [Jia 99, Tsag 05]. The three major groups visible here
are visible light, near-infrared and mid-infrared. The distinct groups of correlated
bands in the infrared range stem from the effect of absorbers in the atmosphere,
including H,O and COs.

A typical approach to handle the combination of highly-correlated, yet noisy data
is dimensionality reduction. The feature space is transformed in such a way as to
significantly reduce its dimensionality by preserving the most relevant information
while removing redundancy and noise. A second approach is to reduce the complex-
ity either by establishing relationships of the data points in the image through the
means of spatial layout, or by clustering in the high-dimensional feature space.

In the following chapters, we will exemplify: (a) how automated analysis can
be assisted by a combination of these approaches when using a manifold learning
method as a precursor to high-dimensional clustering; (b) how manual inspection
can be assisted by an interactive visualization workflow that combines both original,
high-dimensional data as well as culled or computed low-dimensional data.



Chapter 3

Dimensionality Reduction

Several factors make it hard to work with the image data in its original dimension-
ality. One is the empty space phenomenon, responsible for the so-called curse of
dimensionality [Beye 99, Lee 07, Chapter 1]. The corners of a high-dimensional
hypercube essentially become spikes. Given a sphere with equal center to the hy-
percube, and the sphere’s diameter equaling the hypercube’s side length, almost
all the available volume in the hypercube accumulates on the hypercube’s many
spikes, outside the sphere. Also, in high dimensions, the discrimination power of
a metric vanishes, as the distribution of norms in a given distribution of points
tends to concentrate. Another factor is the computational burden. For example, the
simple operation of computing the dissimilarity between two pixels observes a sig-
nificant increase in memory access as well as machine instructions when comparing
hyperspectral to RGB input.

To address these issues, dimensionality reduction is often applied in literature
as a pre-processing step for feature extraction. In this chapter, we will first give
a brief overview over both linear and non-linear techniques before going into
more detail on Kohonen’s self-organizing map (SOM), essentially a fast-to-compute
discretized manifold learning method. We then discuss how we enhanced and
generalized the SOM for our applications. We introduce a new probabilistic method
for manifold learning, which is closely related to the SOM but formulated based
on the Expectation-Maximization framework. To conclude, several aspects of these
methods are discussed based on our experiments.

3.1 Related Work

The main distinction in dimensionality reduction methods is between linear and
non-linear transformations. Considerably fast to compute and well-understood
methods exist for linear feature space transformations that lead to the most sig-
nificant information being concentrated in a low-dimensional flat. However, they
are limited in preserving non-orthogonal relationships. The defining differences
between two generally similar spectral responses in a scene are easily lost in such a
transformation [Cher 03]. Non-linear methods operate with different constraints,
or none at all, which makes them able to perform better in regards of preserving

27



28 Chapter 3. Dimensionality Reduction

and exposing dissimilarities between spectra. On the other hand, these are typically
known to be computationally expensive to the point of becoming unfeasible for the
number of data points present in an image. A good compromise is needed between
speed and capability when choosing a method.

3.1.1 Linear Transformations

Linear dimensionality reduction is defined by a linear projection of the input data to
a lower dimensional feature space. Principal Component Analysis (PCA) is the most
prevalent of these algorithms and we will refer to it again in Chapter 5.

Principal Component Analysis

The PCA, also known as Karhunen-Loeve-Transform, is a very well understood and
broadly applied linear method in dimensionality reduction, lossy data compres-
sion, feature extraction, and data visualization [Bish 06, Chapter 12]. It is very
prominent also in multispectral analysis as a feature extraction method for classi-
fication [Fauv 09], and for visualization [Jaco 05]. The key idea behind PCA is to
find a rotation in the hyperspace R"P that captures the maximum spread of the
data samples in the principal axes. Based on this rotation, data is projected onto a
lower dimensional space R"?, known as the principal subspace, by only preserving
the first np vector coefficients. Bishop derives several PCA formulations [Bish 06,
Chapter 12], here we illustrate the formulation based on maximizing the projected
data variance.

Consider the case where np = 1. The direction of this one-dimensional space is
defined by u;, which is a unit vector by choice. Each data point x is projected onto
a scalar value u¥x. The goal is to maximize the variance of the projected data. The
mean of the projected data is computed from the sample mean, urlrf. In the same
fashion, the variance of the projected data is

1 &
. (urfxi - u??)z = u¥5u1 , (3.1)
X3

where S is the covariance matrix of the input sample set X, given by
1 &
S=— —x) (% - X)". 3.2
- ;uz %)(xi ~ %) (32)

The projected variance u$5u1 is now maximized with respect to u; under the

condition that u; is a unit vector, i. e. u$u1 = 1. We obtain

uy = argumax u$5u1 +A1(1 - u¥u1) , (3.3)
1

where A; is a Lagrange multiplier, which we use to reformulate the constrained
maximization as an unconstrained one. The first derivative with respect to u; yields

a stationary point at
Su1 = /\1141 , (3-4)
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which implies that #; is an eigenvector of S. It also implies that the variance of the
projected data is given by
u¥Su1 = Al . (3-5)

To conclude, the solution to PCA with np = 1 is given by the eigenvector that
corresponds to the largest eigenvalue of the original data’s covariance matrix. This
process can be repeated under the constraint that u; 1 u;,V;j < i. In fact, the np
projection vectors are the eigenvectors corresponding to the largest np eigenvalues
of S.

Other Methods

Two methods that are closely related to PCA and also used for dimensionality reduc-
tion on hyperspectral data are Linear Discriminant Analysis (LDA) [Band 09] and
Projection Pursuit (PP) [Jime 99]. LDA uses class-labeled data samples to optimize
class separability. The widely used Fisher criterion is based on maximizing the
distance among the means of the classes while minimizing the intra-class variances.
Projection Pursuit is based on a projection index, which is an objective function
that can be based on class-labeled data [Jime 99]. However, also unsupervised
variants of PP were applied on hyperspectral data. Iffaraguerri and Chang employ
the information divergence between the distribution of projected data and the Gaus-
sian distribution as a projection index [Ifar 00]. The rationale is that a bimodal
distribution, i. e. a projection that separates clusters, yields a high divergence with
normally distributed data. The PCA itself can also be cast into PP by setting the
projection index as the projected data variance.

The Independent Component Analysis (ICA) is a well-understood algorithm
for finding a linear mixture in the data that is also known as blind source separa-
tion [Lenn 01, Wang 06b]. In contrast to PCA, which leads to uncorrelated compo-
nents, ICA leads to statistically independent components through a non-orthogonal
projection. The independence criterion assumes that each component represents one
of several statistically independent non-Gaussian source signals, which are linearly
combined in the observed signal. ICA is related to PP, more explicitly to the method
by Iffaraguerri and Chang, as it is able to compute projections which lead to the
least gaussian-distributed projected data. The model of ICA is

x =As, (3.6)

where x is a vector of observed signals (e. g. a multispectral pixel), A is a matrix of
mixing coefficients, and s is a vector of independent source signals. This formulation
is particularly interesting from the perspective of spectral unmixing in hyperspectral
analysis. In spectral unmixing, each pixel x is seen as a linear mixture of several
material prototypes, or endmembers, stored as columns in A. In this interpretation,
s is then the vector of abundances in a model with no noise term [Wang 06b]. It
should be noted that ICA is considerably slower to compute on hyperspectral data
than PCA [Robi05a] and by itself, ICA does not provide a strategy to select most
relevant components for forming a low dimensional feature space [Cui 09]. Based
on its premise, a low number of independent components only captures specific
parameters of the high-dimensional distribution.
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Finally, band selection is a popular method for reducing dimensionality in hyper-
spectral analysis. A selection of bands is preserved that maximizes the information
for the task at hand while minimizing interference from unrelated sources. Prior
knowledge is often employed to simplify the problem, e.g. physics-based band selec-
tion, or the use of labeled data or known spectral signatures [Yang 11, Guo 06]. Du
and Yang propose a method for unsupervised band selection that follows a common
scheme: Selection of an initial pair of bands, followed by iteratively adding more
bands based on a dissimilarity measure [Du 08]. Keshava proposes an algorithm
that uses the spectral angle between spectra for finding the initial band pair and
adding successive bands [Kesh 04]. Other measures used to find most informative
bands are variance calculated through PCA [Chan 99], entropy [Bajc 04], or mutual
information [Wang 06a].

3.1.2 Non-linear Transformations

Several commonly used non-linear transformations are based on their linear coun-
terparts, but formulated using the kernel trick [Bish 06, Chapter 6]. The original
feature space is elevated to a higher-dimensional space using a transformation ¢(x).
Data that is not linearly separable in np becomes linearly separable through this
mapping. Likewise, if the right transformation ¢(-) is found, it could express the
relationship of two vectors x, y within the manifold they are believed to lie on. This
is done through a kernel function

K(x, y) = (p(x), ¢(y)) , 3.7)

which is the inner product and therefore a symmetric function of its arguments in
R"p, The kernel trick now lies in the observation that for many methods, only the
inner product of two variables x, y is needed. We can express it through «(-, -), so
no need arises to explicitly evaluate the mapping ¢(-).

A prominent kernel for Support Vector Machine (SVM) classification is the
Gaussian kernel, [Bish 06, Chapter 6],

o (3.8)

K(x, y) = exp (——”x — yllz) ,

also known as the Radial Basis Function kernel, hinting at its radial symme-
try [Camp 05]. It is designed to well-isolate Gaussian-distributed positive samples.
It has been shown that the kernel trick can be used for almost all linear feature
extraction methods, which includes Kernel PCA [Scho 02, Chapter 14], Kernel
LDA [Scho 02, Chapter 15] and Kernel Projection Pursuit [Dund 04]. Unfortunately,
it is typically not trivial to find the right kernel for a given problem without prior
knowledge, so Kernel PCA and other kernelized methods may not yield good results
for unseen data when using an off-the-shelf kernel. For example, when choosing
the Gaussian kernel, its width 02 has to be tuned correctly to fit the data prop-
erly [Fauv 07, Chapter 1].

Other methods exist that capture nonlinear relations between different segments
in the spectra. Lee provides a comprehensive overview of distance-preserving and
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topology-preserving non-linear dimensionality reduction methodologies [Lee 07].
The optimal isometric mapping (ISOMAP) is an algorithm that was specifically
used on hyperspectral data for visualization [Tene 00, Bach 06]. It seeks a manifold
coordinate system that preserves geodesic distances in feature space. To do so, a
neighborhood graph is constructed between samples either through Parzen window-
ing or k-nearest neighbors, using a pseudometric for edge-weighting (e. g. Ly or SA).
The distance between two samples x and y is then defined as the shortest path in the
graph. Multidimensional Scaling (MDS) is then applied to find lower-dimensional
coordinates, which works based on the pairwise distances of all samples. Approx-
imations need to take place to make ISOMAP computationally feasible for larger
images due to its O (nx?) memory and computation [Bach 06].

3.1.3 Self-organizing Map

The Self-organizing Map (SOM) was proposed in 1982 by Kohonen [Koho 82]. It
is a single-layer neural network that converts the nonlinear statistical relationship
between high-dimensional data into simpler geometric relationships [Koho 01].

In other words, a SOM provides a topological representation of the distribution
of the underlying data, i.e. its manifold. It consists of a set of model vectors M,
which are arranged in a fixed low-dimensional topology. Model vectors are also often
referred to as neurons and represent vectors in the original data space. Considering
hyperspectral data samples x € R"?, we obtain a model vector m € R"P.

The SOM concept is based on the principle that for each input vector x, we can
find one distinct best-matching unit (BMU) m . with index

¢® = argmin d(x, my), (3.9)
k

where d(-, -) is the Euclidean distance. In our experiments we did not observe any
advantage by changing the distance function, e. g. to the spectral angle. The SOM is
useful if for each input vector from the training data a BMU in close resemblance is
found. Yet, model vectors should also be well-organized in a sense that they share a
close relation with their local neighborhood in the SOM topology. This is important
as the SOM topology is key to the dimensionality reduction.

Topology

Each model vector m; comes with a lo-
cation r% e Z"r which has a one-to-
one correspondence with k. Locations

are a key ingredient to the training pro-
cess and relevant in most use-cases of
the SOM, as the relationship between

model vectors is deﬁpgd through loca- topology model vectors
tion, essentially describing the layout of
the learned manifold.
Typically, a 1-D integer lattice (2-connected) or 2-D grid is chosen for the model

vector layout. In the 2-D case, a square lattice (4-connected) and a hexagonal lattice
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Figure 3.1: Common SOM topologies

(6-connected) are practical choices. The latter is useful when the SOM itself ought
to be visualized. In our work we often rely on a less-common 3-D arrangement,
which is a 6-connected 3-D lattice forming a cube [Jord 11, Jord 13a], and we
also experimented with a tesseract (8-connected 4-D lattice). In Figure 3.1, four
commonly used topologies are illustrated. In Figure 3.2, the training results of three
SOMs on the same input data are visualized. For this visualization, all SOMs are
mapped into a 2-D shape and colors are obtained by sRGB(m), which computes a
true-color representation of a spectra (see Eq. 5.4 on page 124), the same method
that is also used to visualize the input data.

A 1-D SOM provides a scalar index that may be used for global ordering [Toiv 03].
However, a 1-D lattice can be insufficient to adequately model the distribution found
in a hyperspectral image, as exemplified later in Section 4.1.1. The third dimension
on the other hand often enables the SOM to learn a more accurate topology on
hyperspectral data when compared to a 2-D SOM.

Next to the underlying structure, the size of a SOM is an important choice. In
its traditional use as a visualization tool, a SOM is typically rather small. Liu etal.
evaluate SOMs of sizes 2 X 2 to 8 X 8 for feature extraction on time series [Liu 06].
Vesanto and Alhoniemi evaluate clustering of SOMs with sizes ranging from 16 X 13
to 24 X 19 [Vesa0Oa]. Wijayasekara etal. use a 6 X 6 X 6 cube topology for a
3-D visualization [Wija 11]. However, larger SOMs are used effectively in other
domains [Skup 13]. Our applications also desire a larger SOM, which typically holds
about 1)1 = 1000 model vectors. We will show in our experimental evaluation that
we achieve fast training of a SOM of such a size. In general there is no reason to
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Figure 3.2: Visualization of SOMs after training on the Flowers image. Three SOMs
were trained in the shapes of square, cube, and tesseract.

emphasize on one dimension over the other, so we employ a single side length in all

dimensions. We denote it as .
n;\/f = \/nM P (310)

where ny is the dimensionality of the chosen topology.

Training

The SOM training process is unsupervised and uses ng unlabeled input samples.
Typically, these come from the image to be processed. In certain scenarios, it is
also worthwhile to train a SOM on a specific set of input spectra (which might be
extracted from a collection of images) and then use it on several images.

At first, model vectors are initialized randomly,

my ~ U,,(0,1), (3.11)

where U, (0, 1) is the standard uniform distribution extended to R"P. In our
experience, variation of the initialization process is irrelevant, as model vectors are
overwritten in the first few iterations.

Then, in each iteration 1 < s < ng, s € Z, we randomly draw a sample x. We
first determine the BMU m_ of input x given Eq. 3.9. Then, the BMU is updated
by shifting it towards the new sample. Yet, the update should also affect model
vectors in the SOM topology neighborhood of m.. This is the key to establishing the
topological consistency in the SOM. We therefore update all model vectors as

m; = my +hep(s) - (x —my), (3.12)

where h, i(s) defines the influence of x on a model vector my, given the current
BMU m.. The influence is typically only dependent on a model vector’s relationship
with the BMU within the SOM topology, i.e. their coordinate distance. It is therefore
commonly referred to as the neighborhood function. While, in theory, with each new
sample we update all model vectors, the neighborhood function should confine the
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effect of the update to a region around the BMU within the map. Kohonen [Koho 01]
suggests to use the Gaussian kernel (Eq. 3.8),

0 - 0

he (s) = a(s) - exp (—
where (), ¥&) are locations of neurons ¢ and k, respectively. The learning rate a(s)
and kernel width o(s) are parameterizing the learning as explained below. Note
that we use the Euclidean distance in the SOM topology, however, other distance
functions may be used. One example would be a wrap-around distance simulating a
torus to eliminate border effects [Kian 97].

Training Phases

For the SOM training to be effective both globally and locally, the learning process
is modified per-iteration through the learning-rate factor a(s) and kernel width
o(s). The first describes the influence on all affected neurons, while the latter
describes the sphere of influence in the SOM topology. Both functions a(s), o(s)
are monotonically decreasing, in the same spirit of the “cooling” schedule known
from metaheuristic optimization algorithms, e.g. simulated annealing or particle
swarm optimization, where the temperature or the particle velocities are decreas-
ing [Talb 09, Chapters 2, 3].

With this design, the training process can be seen as a combination of two phases
with a seamless transition in-between. In the orientation phase, the global ordering
of the SOM is determined. Model vectors find a general coverage of the manifold in
feature space. Each new input sample has a broad influence, affecting the majority
of SOM units. In the refinement phase, the influence of samples is reduced to
local regions in the topology. This phase improves the individual representation of
input samples and provides sharper separation of clusters in the data distribution.
Eventually, a(ng), o(ng) lead to only the BMU being updated.

Figure 3.3 illustrates the training process of a SOM fed with samples from
a multispectral image of the CAVE dataset [Yasu 10]. The SOM is trained with
nyp = 32 X 32 and snapshots of the SOM during training are depicted via SRGB(my).
In the illustration it can be clearly seen that the SOM determines its global layout
in the early stages of the orientation phase, while more subtle differentiations in
the original distribution are best reflected after the later stages of the refinement
phase. The initial map and first few training iterations are visualized in Appendix D
on page 169.

3.2 Enhanced Self-Organizing Map

The SOM is very versatile in its primary application domain: a visualization tool
for cluster analysis. It has a history as well of being employed for other uses, e.g.
for classification, with adaptations carried out on the algorithm [Frit 94, Raub 02,
Gopp 95, Kian 97, Lee 06]. This matches our experience that it can be a rewarding
venture to extend applications of the SOM while carefully adapting it. In this
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Figure 3.3: Visualization of SOM training progress on Egyptian Statue image. Both
input image and SOM are rendered in true color.

section we introduce our own modifications to the SOM training, lookup, and
implementation. Our modified algorithms are put to use in specific scenarios of
hyperspectral image analysis and visualization [Jord 11, Jord 13a]. However, they
are not bound to these applications.

3.2.1 Efficient Computation

In general, manifold learning is a computationally heavy task. However, quick
learning is important for algorithms that learn the embedded manifold individually
on the image data at hands. The SOM is a particularly efficient algorithm, as training
takes O (nxnyr) time. The low complexity is due to using a discrete model, seen
by the influence of n); on the complexity class. The basic concept of finding a
considerably small set of model vectors implies that the SOM provides a heavily
quantized representation of the data. In most of our applications, we try to reduce
this effect. A low number of neurons has especially adverse effects when operating
with a higher-dimensional SOM topology, e.g. 3-D or 4-D. This is why, as compared
to literature, we use considerably larger SOMs. This affects training times in two
ways.

One, the number of distance computations in R"P to determine the BMU linearly
increases with n);. Software profiling reveals that distance calculation takes up
the most significant share in processor time during training. Due to the high
dimensionality, it is worthwhile to employ vector instructions, also known as Single
Instruction, Multiple Data (SIMD) for distance computation. These instructions are
applied on several data points simultaneously by the processor. When computing the
distance ||x — y||2 using floating-point representations, we can group the coefficients
of x, y into packs of four for each, and execute instructions on a pair of packs at
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Figure 3.4: Visualization of SOM training progress for choices of h. ; on the image
depicted in Figure 3.3a. Maps are rendered in true color.

once as compared to a single coefficient pair. In early experiments, this gained a
more than three-fold reduction in computation time for spectra with np = 31.

Two, with a larger SOM come increased kernel sizes, as an appropriate choice
of ¢(0) is necessary to allow for a global organization of the map. As part of the
update step, h. x(s) needs to be evaluated for every location #*) that is possibly
affected. An early optimization is to start the update at #(©) and then traverse the
topology in a breadth-first fashion until the heuristic abortion criterion h. x(s) < 0.01
is met. The calculation of h. x(s) includes evaluating the exponential function
(see Eq. 3.13). It cannot be effectively pre-computed as the parameter o(s) is
iteration-dependent. However we note that we use a radially symmetric kernel. We
can exploit this symmetry in combination with the regular lattice arrangement of
neurons. In the 2-D case, groups of four graph nodes each share the same distance
to the BMU ||r(©) — #(Y)||5, which implies they also share h. x(s). In the 3-D case,
we obtain groups of eight graph nodes each that share this property. Therefore,
we evaluate the neighborhood influence function once, then update four, or eight,
nodes, respectively.

Finally, we note that choosing a uniform kernel can lead to an additional speedup.
For this, we change the neighborhood influence to

hek(s) = a(s) - [[|[r'@ = 9|, < 0(s)] , (3.14)

where [-] denotes the Iverson bracket. The Iverson bracket [P] is 1 when the
Boolean condition P is true, 0 otherwise [Knut 92]. This kernel is straightforward to
optimize. The region of influence where h. x(s) < 0.01 can be directly computed,
and subsequently all nodes in that region can be updated at once. However, we
need to test for the effect this change has on algorithmic performance. Figure 3.4
compares the behavior in training for both neighborhood functions on the Egyptian
Statue image depicted in Figure 3.3a.

With the efficient training at hand, we can differ considerably from literature in
our choice of nj; and realize the SOM shapes that our algorithms demand. Training
times will be experimentally investigated in Section 3.4.1.
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3.2.2 Ranked BMU Lookup

In most applications, the SOM is a visualization tool. Attributes of the model vectors
themselves are presented, e.g. the unified distance matrix that contains the distances
from each model vector to all of its neighbors [Koua 03]. It helps to visually identify
clusters in the data.

When analyzing the data with the SOM, each input sample is assigned to a BMU
given Eq. 3.9. In training this is an important property to ensure that the SOM
finds an order. In the lookup phase, however, it reveals the major weakness of the
SOM, which is its strong quantization of the input space based on the relative small
number of model vectors n). The quantization puts a constraint on the quality of
algorithms that use the SOM as input for distance calculation and dimensionality
reduction [Gopp 95]. For example, a moderately sized 3-D map of np; = 64 can only
distinguish ”5\4 = 4 discrete values in each output dimension [Gorr 12]. In our own
work, we train a considerably faster 3-D SOM with n); = 1000, yet it only provides
n), = 10 discrete values per dimension.

We reduce the effect of quantized output by employing a different look-up
method [Jord 13a]. The idea is to incorporate more of the information available
in the SOM, rather than from only one neuron. It goes hand-in-hand with the
employment of a larger map size than typically used.

Instead of using a single best-matching unit, we develop a set of best-matching
units (BMUs) as in [Sjob 09]. Furthermore, we order the BMUs according to the
L, distance and assign a set of pre-determined weights to the ordered set. We coin
this method as ranked BMU lookup. Rank-based weights are crucial. While a simple
unweighted combination would only smooth the result, it is not reliable to use the
L, distances directly as weights [Beye 99]. In the high-dimensional space, distances
would appear very close to each other and the weights would not discern well. We
define rank weights instead, to ensure both a majority contribution by the first BMU
and significant contributions by the additional BMUs.

Consider a vector of BMU indices

ne
c® = argminz d(x, my;) , (3.15)

where n¢ is the number of desired BMUs. For each pixel x, we calculate a represen-

tative location v’ as
ne

()
r = Z w;j - r(cf ) , (3.16)
j=1
given weights w;. This provides a weighted average over locations of the nc BMUs.

Note that while #(*) is discrete, #’ is not. It describes the position in the learned
topology that best represents x. We propose two definitions for the weight vector w
based on 7 and the condition

Vi, j <nc:d(x,me) <d(x,me,,), (3.17)

which expresses that the BMUs are sorted according to distance to the query vector.
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Gaussian Curve

An intuitive source for rank weights is the Gaussian curve,

2
]
P = e -——1, 3.18
1 Tl Xp( 202) N
whereas 0 = ”C3_1 is chosen such that the nc weights contain 95% of the area under

the curve.

Geometric Progression

A less obvious choice stems from exponential ranking selection in Genetic and
Evolutionary Algorithms, which was also employed expediently in Particle Swarm
Optimization [Blic 95, Jord 08]. It is the geometric progression,

= 2wj+1 7

w;j
ne
ij _ 1, (3.19)
=1

which states that the weight for rank j is always twice as high as the weight for
subsequent rank j + 1. It has two useful properties regarding the choice of n¢: One,
wy > 0.5 for all choices of nc. Two, weights shrink exponentially. Effectively, any
choice of nc > 10 will result in only insignificant variation in w. This makes the
rank weighting effectively parameterless.

Figure 3.5 shows the rank weights resulting from the two strategies side-by-side.
In the case of the Gaussian curve, weights fall flat for large 7, while in the case
of the geometric progression, they stay sharp and the influence of low-rank BMUs
diminishes.

Note that the lookup of a set of best-matching units as compared to a single
BMU in a traditional SOM poses no significant additional burden in computation.
It can be efficiently implemented with a heap data structure [Tama 99], and the
number of (expensive) distance computations stays the same. As compared to a
direct weighting scheme, rank weights have the advantage of being pre-computed.

3.2.3 Semi-supervised Training

Due to the stochastic nature of the training process, subsequent training runs will
result in a significantly changed organization between the trained SOMs, even if
trained on the same data. This can be attributed to varying initializations of the
random number generator selecting input samples. However, this behavior does
not necessarily imply that the learned structure is arbitrary. Instead, the majority
of differences between subsequent training runs can be described as an improper
rotation in the topology space. In some scenarios, it is desired to obtain a consistent
orientation of the topology such as that certain spectra can be expected at the same
position in several SOMs.
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Figure 3.5: Comparison of rank-weighting strategies for three and ten representa-
tives, respectively.

Another issue is the representation of data in the SOM. Due to the random
selection of samples from the input, the representation of each data point depends
on its relative frequency in the training data. It might be desired to guarantee the
representation of certain spectra that occur relatively rarely, but are important for a
given application.

We propose a semi-supervised training algorithm that can take into account
known, labeled spectra. The training is then divided into two stages, resembling the
two training phases outlined in Section 3.1.3: First, in the orientation phase, labeled
spectra are fed. Second, in the refinement phase, unlabeled spectra are fed.

Supervised Orientation Phase

In the supervised orientation phase, for a given set of n; labels £, we seek to
associate a certain position in the SOM topology to each label. Spectra of such a
label should then concentrate around this position associated with the label. When
designating a location for each label or class, it should not hinder the SOM’s ability
to properly project relations in the high-dimensional feature space onto the fixed
topology. For example, in a linear SOM, a fixed anchor for class A at position O,
B at position 0.5 and C at position 1 would only be proper if the cluster of B lies
between the clusters of A and C. However, consider a square lattice and classes A,
B, C at the corners (1, 0), (0,0), and (0, 1), respectively. In this scenario, the SOM
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neurons in the lattice area opposite to B (around (1, 1)) are able to reproduce a
transition between the clusters of A and C. It turns out that such a construction is
always possible if the dimensionality of the SOM is chosen to be at least log n;. We
then designate a corner of the map for each label. In the case of up to eight labels,
we train a cubic SOM, whereas if up to 16 labels are known, we train a SOM of
tesseract shape.

A naive approach to influencing the SOM organization in such a way could be to
alter the initialization (see Eq. 3.11). However, due to the strong learning coefficients
and large radii of influence in the first training steps, the effect of initialization is
diminished. Instead, we control the orientation phase. We introduce a magnetism
into the BMU determination,

¢ = argmin w;(*®) d(x, my), (3.20)
k

where [ is the known label of x and w;(r) is a weight function based on the distance
of r to the corner assigned to [, e. g.

4
w(r) = \/? exp ((rj—r)'(r; - 1)) , (3.21)
R
where r; is a binary vector given by the numeral conversion of / to base 2. This
expresses a strong incentive for model vectors close to a label-assigned corner of the
lattice to represent pixels of that label. A second form we investigate is

1 |[¥; — 7||o < 0.5
= ) 3.22
wi(r) {1000 otherwise (3.22)

which expresses a strong incentive for model vectors in a label-assigned orthant (e. g.
quadrant, octant) of the lattice to represent pixels of that label.

Unsupervised Refinement Phase

In the refinement phase we proceed alike the traditional SOM. Random samples
from the input data are fed. These samples are unlabeled. They enable the SOM to
further establish relations within the input distribution and learn a manifold that
spans naturally over all observed classes.

We obtain a map with two powerful properties: One, the orientation and layout of
the topology is deterministic for all classes that were defined in the orientation phase.
The position of a BMU for these classes therefore becomes canonical even in multiple
trained SOMs. Two, a balanced representation is achieved for all said classes. A class
that is under-represented in the training input is boosted in representation through
the supervised orientation phase and may gain considerably in recognizability.

3.3 Probabilistic Manifold Learning

A common critique of SOM-based algorithms for classification or manifold learning
is that no general proof exists for convergence [Cott 16], or that the SOM training
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indeed leads to a topology that resembles the original distribution well enough.
Rather, the fitness of the SOM for these applications is determined empirically.

We explore an alternative view on the manifold learning task that closely resem-
bles some core concepts of a SOM, yet is based on a well-understood probabilistic
model. Using a set of parameter vectors, we describe a graph whose vertices corre-
spond to a mapping of the image spectra onto a feature space. The parameters are
produced by a generative model, inferred from the image data using the Expectation
Maximization (EM) algorithm [Bish 06, Chapter 9]. The theory in this section was
developed jointly with Antonio Robles-Kelly [Jord 14].

In our model, we have three components. One, the observable spectra. We
express them through the graph Gy = (X, Ep) with nodes X comprised of input
samples x; € R"0. The edges &y then represent the connectivity between spectra.
Theoretically, €y, is given by a local neighborhood relation on the manifold sup-
porting the input spectra. The previously discussed ISOMAP algorithm attempts to
determine &y, directly, but is slow to compute as finding neighborhood relations is a
hard problem.

Two, a second graph Gg = (R, Ep) that is linked to Gu;. In contrast to Gy, it
is constructed and has a fixed topology that is independent of the image data. We
will establish a random field on this graph that follows the Gibbs distribution. The
joint probability in such a Gibbs Field can be expressed by the product of clique
potentials [Bish 06, Chapter 8]. A clique is any induced subgraph of a graph that is
complete.

Three, a set of parameters Z, with &, € R"P. These parameters need to be
estimated. The two graphs Gy, Go are realized in disjoint manifolds, M € R"P
and Q € R"r, respectively. The metrics on the two manifolds can be used to define
the affinities between vertices within each graph. Parameters E lie on M, but are
connected to Gg. Through them, G will help us derive the topology of the manifold
M.

We start by defining a link between the vertex-sets for Gy and Gg,

rj= Z [1"]' ~ x|l (xk), (3.23)

xkeX

where I'(-) is a mapping function such that I' : R"> — R"R and [-] denotes the
Iverson bracket, i.e. [r; ~ x] is unity if r; is adjacent to x and zero otherwise. This
adjacency is not directly known. See Figure 3.6a for an illustration of this concept.

We now view the vertices of Gg as random variables and Gg as a Gibbs field.
Consider the set of cliques C,, containing vertex r; (depicted in Figure 3.6a, where
Gg is a 4-connected lattice). The conditional probability of r; can be written as a
(weighted) product of pairwise potentials,

1
P(rilCr) = — ] fatrj ra), (3.24)
Q r]'ECy]-

where Zg is the partition function and fo(r}, r;) is the potential function between
the vertices r; and r;. The potential function fg(r;, r;) can be effectively viewed
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(a) graph relationship (b) parameter vectors

Figure 3.6: lllustration of dual-graph concept. The relationship between nodes of
the distinct graphs covering the two manifolds in (a) is relaxed using the parameter
vectors in (b).

as the edge weight between r; and r;. This will later provide a means to perform
a maximum-likelihood estimation (MLE) on the vertex-set X in G)s based on the
vertices R in Gg. This process can be constrained using the metrics on manifolds
M and Q. In Eq. 3.23, each vertex r; is expressed as a sum over the product
[r; ~ x¢]['(x). For an unknown correspondence r; ~ xi, Eq. 3.23 can be relaxed
using the parameter set Z which has a bijection to the vertex set R. Effectively, £ j

represents the j component of a mixture. With the prior 1j we obtain
rj= Z njx(xk, cfj) , (3.25)
xkeX

where «(-) is a kernel function. This relaxation process is illustrated in Figure 3.6;
in Figure 3.6b, the vertices in Gg correspond to parameter vectors &; which are
supported by the vertex set X. By substituting Eq. 3.25 into Eq. 3.24, we obtain

1

P(ri|Cri/X) = z l_[ fQ (Z T]]’K(.')Ck, é])/ 1'1') ’ (326)
ri€Cy, xr€X

which implies that by using the cliques in G along with vertex sets X and R, we can

obtain a MLE of parameters Z based on our choice of kernel and potential function.

3.3.1 Parameter Learning

The potential function fg(-) is defined in the probability space corresponding to R,
i. e. the graph Gg, whereas the kernel «(-) and parameter vectors &; are supported
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by the graph Gj,;. After recovering = via MLE, we can map the vertices of Gy, onto
the manifold Q based on the topology of Gy.

As the vertex set of G is a Gibbs Field, it follows a Gibbs distribution. We employ
the potential function

1
folrj, 1) = ) aijexp (_T dm(xk,i,-)z) , (3.27)

xkE/\’

where dy(-)? is the squared geodesic distance on manifold M, aj,; are pairwise
mixture weights, and the temperature T controls the sharpness of the distribution.
This gives us the likelihood

1 1
P(rilCy,, X) = > 1_[ Z ;i exp (—f dm(x, ‘Sj)z) : (3.28)

r;€Cy, xeX

We view the parameters = as a set of variables to be estimated and each mixture
weight «a; ; as the posterior probabilities that the vertex r; belongs to the i compo-
nent of the mixture. This mixture model can be tackled by the EM algorithm. EM is
used to recover maximum likelihood solutions to problems involving hidden data. It
is an iterative algorithm, where in each iteration s, both the E-step (for expectation,
or the estimation of posterior probabilities) and the M-step (for maximization of the
expected log-likelihood) is performed. In the M-step, we maximize the expected
log-likelihood with respect to the parameter vectors,

£+ . (3.29)

In the E-step, we estimate the posterior probabilities given the likelihood in

Eq. 3.28,
2
Ti Z a; : exp ( (xk/ 55’5)) )
xkeX
(s+1) _ _ "< (3.30)
b 1 )\
ZTZ Z jexp|—7dm (xk, &;
] xreX
erCl-

where 7; is the posterior for each of the clique sets in the graph, given by

ZrkECl (S)

(S) (3.31)

T =
Z rieR 0(
rr€C;
Effectively, this describes an unsupervised learning approach where the topology
of graph Gq constraints the interference process through its clique sets, and the
parameters &; govern the kernel function «(-).
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Energy Functions

If we revisit the potential function in Eq. 3.27, we note that it corresponds to a Gibbs
measure. This accounts for a Boltzmann distribution [Kind 80], whose energy is the
squared geodesic distance d;(-)%. This can be easily seen when we rewrite Eq. 3.27
as

1
fo(rj,ri) =ai; Z exp (_T E.sj(xk)) , (3.32)

xeX

where E,;j(xk) = dM(xk,.Sj)2 is the energy of x; with respect to Ly and «;; is
a function of vertex pair r;, r;. Furthermore, in Eq. 3.27 (for instance), it is
straightforward to set the mixture weight a;; = 7;1;, resulting in fo(rj,r;) =
ninjx(xg, .S]-) such that

Kk(xk, &) = exp (—% dp(xk, 5;)2) : (3.33)

This treatment is consistent with that commonly given to priors in Bayesian
inference on multivariate mixtures [MclLa 08] and opens up the possibility of using
other kernels such as a uniform kernel or robust estimators [Hube 81].

3.3.2 Relationship to SOM

We now discuss how this approach is related to the SOM concept. Consider the case
where the weights a; ; do not need to be estimated but can be computed from the
vertex set X. In this case, the interference process is reminiscent of a SOM. Consider
a sampling process in M and set

1
ajj=[rj~plh (f dQ(ri,rj)z) , (3.34)

where h(:) is a real-valued positive function and dg(-) is the geodesic distance on Q,
which can be computed through the constructed Gg. As before, T is the temperature
of the system and [r; ~ p] is unity for the vertex r; corresponding to the parameter
variable &; whose distance to x is minimal, i. e. the best-matching unit p, and zero
otherwise.

Now consider the case where the energy function Eg, (xx) is constant. Then in
the sampling process, for each input sample xi, the update strategy in Eq. 3.30
.SE.SH) towards the vector ES) (corresponding to vertex p in Gg) which is

closest to the sample x;. The resulting scheme is also consistent with the notion
that, following the “cooling” schedule, the influence of the geodesic distance upon
the update is decreasing. A decrease in the neighborhood influence of the SOM, o (s)
in Eq. 3.13, can be replicated by reducing the number of adjacent neighbors, and
therefore the size of each vector’s clique set, in subsequent iterations s. Likewise the
learning rate a(s) in Eq. 3.13 corresponds to temperature T in Eq. 3.34.

will draw

It is noteworthy that Generative Topographic Mapping (GTM) by Bishop etal. is
a probabilistic manifold learning algorithm that can also be seen as a probabilistic
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version of the SOM [Bish 98, Bish 06, Chapter 12]. In contrast to the SOM, in which
the vectors from the high-dimensional space are projected into a discretized, low
dimensional space, in GTM, the data in the high-dimensional space is generated
from the low-dimensional nodes. GTM describes the data probability distribution
in the high-dimensional space using a mixture of Gaussians embedded in the high-
dimensional manifold. Each Gaussian is generated by non-linear transformations
from the grid nodes in the latent space. The SOM and our proposed method operate
on a set of model vectors m or parameters & instead, whereas other than in the SOM,
the parameters & are kernel variables. In practice, the results on real world data can
be quite different between SOM and GTM [Cott 16]. In our early experiments for a
single application, we obtained quite similar results with GTM and SOM, however,
the GTM took twice as long to compute at that time.

3.4 Experimental Results

In this section we show the viability of the SOM for the task of dimensionality
reduction and manifold representation, as well as the performance gains achieved
by our adaptations of the SOM.

Section 3.4.1 — 3.4.3 measure computational performance and general qual-
ity of the generated maps. In these experiments, a SOM is trained first out of
competition to remove data loading effects. Then, ten SOMs are trained with an
individually seeded random number generator to show any variability caused by
random initialization and sample drawing. Reported wall clock execution times
refer to running the algorithm in question on an Intel Core i5-6600 CPU with four
cores. All algorithms are implemented in C+ +.

In Section 3.4.4, we will use classification as an example for possible performance
improvements induced by our semi-supervised training and ranked BMU lookup
techniques.

3.4.1 Computational Performance in Training

In this thesis, we will present several algorithms that aid interactive analysis of an
unseen multispectral or hyperspectral image. Training a new SOM on the image
is a mandatory first step of these algorithms. This is why a quick training process
is of high importance. We evaluate the computational performance gains effected
by the changes detailed in Section 3.2.1. For this, we compare four configurations,
denoted as naive, naive-sse, optimized, and uniform. The naive algorithm
is our initial reference implementation, which includes the breadth-first traversal
to prune neighborhood updates early. Our first adaptation, accelerating the com-
putation of distances via vector instructions, is referred to as naive-sse. A new
implementation that includes the fast distance computation and exploits the radial
symmetry of h. ; results in the algorithm optimized. Finally, in uniform, the Gauss
kernel is replaced by a uniform kernel (see Eq. 3.14).

We chose the images Fake and Real Peppers and Indian Pines for this test, as their
respective band count represents two commonly found spectral resolutions (np = 31
in the visible range, and np = 200 in the visible to infrared range, respectively).
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Figure 3.7: Mean training times with standard deviation as error bars for different
SOM algorithms.

A higher band count leads to longer training times due to more expensive vector
comparisons. To test for the influence of topological complexity, we test both a
square and a cube topology, with n); = 1024, and n); = 1000, respectively. On both
images, we feed ng = 50 000 samples during training.

Figure 3.7 depicts the training times measured for the various configurations
tested on both images and topologies. We can see that the performance gain of
optimized distance computation is higher with a larger number of bands. When
this testing was done first in 2012, the difference between naive and naive-ssm
was considerably stronger also for a lower band number. Either the optimization
capabilities of a newer compiler, or the newer processor architecture reduce this
effect. For both images, the strongest gain in performance is achieved by our new
optimized kernel implementation. Replacing the Gauss kernel with a uniform kernel
leads to the fastest algorithm and the time spent for training falls well below five
seconds for both images and topologies, without a negative effect on training quality
(see page 47). The new implementation also deals considerably better with the
higher-dimensional cube topology, which in comparison to the square topology
penalizes our training by about 20 to 35 % in the case of a uniform kernel.

We stress the efficiency of our implementation as it is important to note the
viability of the SOM for an interactive setting and for speedup of other algorithms.
Generally, SOMs are reported to be far slower to train. For example, in 2000, Vesanto
and Alhoniemi, authors of the SOM Toolbox for Matlab [Vesa 00b], reported training
times of 34 minutes (Matlab), and 22 minutes (SOM_PAK, [Koho 96]) for np = 30,
ny = 1000, and ng = 30 000.

3.4.2 Mapping Quality and Complexity

In this set of experiments we empirically determine parameter sets for the SOM that
provide a reasonable trade-off between computational complexity and quality of
the trained SOM. For consistent measurements, we apply a constant scale factor to
the spectral vectors x, such that all x4 fall in the interval [0, 1]. We contrast two
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quality measures with training time. The average quantization error (AQE) is used
in literature to evaluate the quality of representation that the SOM model vectors
provide for the input distribution [Liu 06, Polz 04]. It is given as

1
AQE=—— ) v —mls, (3.35)

where m. is the best-matching unit (see Eq. 3.9). We also measure the maximum
absolute quantization error (MQE),

MQE = max(||x — m.||2) . (3.36)
xeX

We deem MQE to be a helpful measure in combination with AQE, as it makes
outliers visible which could indicate that the SOM is not fully representing the input
distribution. An example of such a case in hyperspectral images could be specular
highlights, which only account for a low percentage of overall image pixels. The
error introduced by not well-representing a cluster formed by specular highlight
pixels might be diminished by the overwhelming number of unaffected image pixels
in AQE.

Training Sample Size

In the first experiment, we determine the most practical amount of training samples
ns for our domain. The test set consists of the images Fake and Real Peppers and
Indian Pines, as well as two additional images D.C. Mall and Diirer 1. We train SOMs
of both a 16 X 16 square lattice and a 13 X 13 X 13 cube lattice, whereas the latter
contains close to nine times more model vectors than the former. The algorithm
coined optimized is used for training. The number of training samples is varied
between 250 and 128 000, doubled in each test. Note that learning rate and kernel
width are scaled in concern with map geometry such as each training run is complete
from orientation to refinement (see Appendix C on page 167).

Figure 3.8 depicts the results for the Fake and Real Peppers image. As expected,
training times grow linearly with the number of iterations ng. We also deduce that,
when ng is chosen to be reasonably high, a larger map size does not necessitate
a longer training. The AQE only marginally improves starting at ng = 16000,
while the MQE continues to profit from longer training times. For both it is noted
that the quantization error shrinks only logarithmically with an increase of ng.
From Figure 3.9 we can deduce that the same findings hold true for images with
a considerably larger number of bands (557, and 200, respectively), captured by
different sensor models and band filters with respect to A. This shows the consistency
of the SOM training for multispectral and hyperspectral data.

Taking all tested images into account, we consider a choice of ng = 50000 as
a good compromise between sample representation and training times. The full
results on all four images can be found in Appendix D (page 170).

Neighborhood Function

We now consider how the choice of h. y may affect the mapping quality. We compare
the widely used Gaussian kernel (see Eq. 3.13) with the uniform kernel (see Eq. 3.14).
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Figure 3.9: Quantization error for different SOM parameters on additional images,
using a cuboid topology. ns is plotted on a logarithmic scale.

For this, we compare the SOMs from the previous test trained with 64 000 iterations
(which were trained using a Gaussian kernel) with their respective counterparts,
where the only parameter changed is the kernel.

Figure 3.10 depicts the resulting quantization errors for both topologies. We
observe that the change in kernel has no adverse effect on the representation quality
of the map. In some cases, we even find a slight improvement. This fits our
expectation that we can reduce training times by using a simpler kernel without
compromising algorithmic performance. In all following experiments throughout
this thesis, we will employ the uniform kernel in SOM training.

Map Size and Shape

In our applications of the SOM we are particularly interested in maps of large sizes
and up to four dimensions. To test the effect of topology size and shape, we construct
15 maps, five each with a square, cube, and tesseract topology, and the count of
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Figure 3.11: Quantization error for different SOM shapes and sizes. ny, is plotted
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model vectors varying between ~ 250 and 4096. The respective sizes for each
dimensionality differ slightly so they can be constructed with a fixed side length 7.
For example, a square with 7, = 32 roughly corresponds to a cube with n}, = 10
and a tesseract with n}, = 6.

Figure 3.11 depicts the average quantization errors for maps of various sizes and
shapes. MQE was omitted for clarity. The quantization error improves with a larger
number of model vectors, which is expected. However, similar to the previously
observed effect of increasing the size of the training set, increasing the size of the
map only leads to a logarithmic improvement of the MQE. We see two effects of the
SOM’s dimensionality on the quality of the quantization. One, the tesseract lattice
with ny; = 256 fails to represent the data well, which is explained by its very limited
length n}, = 4 in each dimension. Two, a square SOM performs slightly better than
its higher-dimensional counterparts for the Fake and Real Peppers image, which is not
the case with other images (see two additional plots in Appendix D on page 171).
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nm Peppers Indian Pines  D.C. Mall Diirer 1
Training 256 | 0.23 = 0.00 0.82 = 0.00 0.78 = 0.01 2.12 *= 0.00
1024 | 0.79 = 0.01 3.05 £ 0.01 2.85=0.01 8.01 =0.01
Lookup 256 | 0.48 = 0.03 0.16 = 0.01 2.56 + 0.18 17.25 *= 1.09
1024 | 1.88 = 0.14 0.58 = 0.04 8.01 = 0.04 55.14 = 0.27

Table 3.1: SOM training and lookup times in seconds on the four test images. Fake
and Real Peppers is shortened to Peppers. Indian Pines bears a low spatial, but high
spectral resolution, while Diirer 1 bears very high spatial and spectral resolutions.

Training and Lookup Times

After training the SOM on an image for inspection, often a lookup is needed for
each pixel in a further step of our algorithms employing the SOM. At this point, we
give a hint at the relation between training time and lookup time. While training
complexity is a function of nyng, lookup complexity is a function of nynx. An
important factor in the speed of SOM training is that ng is not dependent on the
image size nx. On the other hand, in contrast to training, the lookup can be highly
parallelized (using four cores in the test setup). The effect of these factors can be
observed in Table 3.1. It lists the wall clock execution times for both tasks for a 2-D
lattice of sizes 16 X 16 and 32 X 32 each. For all pixels, one single-BMU lookup is
performed. When comparing the numbers between different images, we see the
effect of nx on the lookup, but not on the training. We also observe that image
dimensionality plays an important role for both, as seen first in Figure 3.7. For
large images, lookup takes considerably longer than training on the same image. As
expected, both training and lookup times grow linearly with the size of the map.

The experiments regarding quantization errors and computational complexity
reveal that the SOM is stable and versatile when it comes to parameter setting.
For the variety of images we tested, the number of samples needed for training
does not depend on the specific image. Neither does it depend on the size of
the map or its dimensionality, as long as the sample set is representative of the
input data. We are also free to choose the neighborhood function solely based on
computational performance. Effectively, we can choose size and dimensionality
based on application alone. In some applications, apart from concerns regarding the
computational performance of the SOM or of an algorithm utilizing it, a specifically
sparse representation of the distribution might be seeked for, calling for the training
of a smaller map. In others, a larger map can help with reducing the effect of
quantization and, if needed, further improve representation of the image pixels.
Appendix C (page 167) provides a set of SOM configurations for various sizes and
topologies that were used for these tests and will find further use throughout this
thesis.
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Figure 3.12: Topographic error for different SOM parameters on the four test
images. ng and ny, are plotted on a logarithmic scale.

3.4.3 Distance and Topology Preservation

For testing the local consistency in the SOM topology, the topographic error (TE)
is proposed in literature [Liu 06, Polz 04]. It measures the portion of pixels where
BMU and second best-matching unit are not adjacent. It is given as

e = L5 |5 -l

xeX

>1

o0

, (3.37)

where ¢ is given by Eq. 3.15, and the number of desired BMUs n¢ = 2.

Figure 3.12 shows the TE as measured in the previous experiments on training
time and map size. In our experiments, the TE appears not to be a very telling
measure. Other than in the measurements of AQE and MQE, it behaves differently
for different images. It is counterintuitive that it may even increase for a SOM with
longer training. Our explanation for this observation is that when the SOM learns
more detailed differentiations between input samples from the original distribution,
their representation in the map topology may grow. It is not straightforward to
define how discriminant the SOM ought to be in the sense that some of this growth
can be attributed to the map reflecting variations caused by noise. This phenomenon
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Figure 3.13: Data distributions obtained for Indian Pines image.

will be revisited in Section 4.1.2. We qualitatively evaluate the topology preservation
instead. For this, we compare the distributions of X and M in the high-dimensional
feature space. To do so, we use the spectral distribution plots introduced in Sec-
tion 5.3. We give a brief explanation of the plots here, which are based on the
concept of Parallel Coordinates [Inse 90].

Spectral Distribution Plots

An array of np parallel vertical lines rep-
resents the np spectral bands. The y-

coordinate on the dth axis corresponds
to a spectrum’s value at band 4. To dis-
play the spectral vector of a pixel x, a .
polyline is drawn with its vertices lying . ><

on the corresponding vertical axes. The ~— —
resulting display follows the layout of T~
a plot where the x-axis would denote L o
wavelength, and the y-axis denotes in- Ao d

tensity. Alpha blending is used for a com-
bined display of all data samples.
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Figure 3.14: Data distributions obtained for Fake and Real Peppers image.

Figure 3.13 compares the spectral distribution of the Indian Pines image with the
distribution of the SOM model vectors. A 3-D SOM with #n,; = 1000 was trained on
the image for this display. When comparing the distributions, we see that the SOM
model vectors form a sparse representation of the original distribution. However,
one aspect notable in close inspection is that the SOM, due to the nature of its
training, is slightly smoothing out the outer edges of the distribution, therefore given
the impression of a slight shrink. This effect might be most notable in the range
1500 nm to 1900 nm. It is an explanation of the MQE measuring significantly higher
than the AQE. In Figure 3.14, the same comparison is made for the Fake and Real
Peppers image, however, in this case, we trained a SOM on the spectral gradient
of the image. As will be illustrated in Section 5.5.3, for this image, the spectral
gradient describes the materials in the scene considerably better than the original
feature space, due to its geometry invariance. We can see in Figure 3.14 that this
description stays intact in the SOM representation of the distribution.

Distance Preservation

A good topology preservation in the SOM implies a good distance preservation,
which is a likewise favorable property. Distances are preserved through the mapping
I': R" — R"®k using a SOM,

I'(x)=17", (3.38)
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Figure 3.15: Scatter-plot histograms for pairwise distances ||x — y||2, [[T(x) — ['(y)||2.

where the representative location 7’ is given by Eq. 3.16, with nc = 5 and w given
by Eq. 3.19 (see pages 37, 38). In this experiment, we use a cuboid SOM, so nr = 3.
The underlying assumption is that, as the model vectors of the SOM are ordered in
the map according to the topology of the learned manifold, a distance in the map is
a low dimensional approximation, or preservation, of a distance on the manifold.

To evaluate this property, for each pixel x in the image, 40 other pixels y are
randomly selected. For each of those, we calculate the distance pair ||x — y||2
and |[T'(x) — I'(y)||o. Figure 3.15 shows scatter-plot histograms for the pairwise
relationships on three images representing multispectral lab scene, multispectral
natural scene, and hyperspectral remote sensing capture. The plots reveal that small
distances exhibit a high correlation for the three images. Larger distances diverge
from a strictly linear relationship. This is an expected result, as the Euclidean metric
may fail to approximate non-local distances within the underlying manifold. In this
case, the pairwise distances increase.

3.4.4 Ranked BMU Lookup and Semi-supervised Training

We test our assumptions that ranked BMU lookup and semi-supervised training
improve the performance for SOM-based analysis with a classification task. The
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Figure 3.16: Maps of class labels for SOM neurons after training on Indian Pines
image with four classes from Figure 2.5. Black neurons vote for no class.

Indian Pines remote sensing image comes with 16 classes for which ground-truth
labels are available, as depicted in Figure 2.5 (page 13). Of the 220 available bands,
200 were kept as described in Section 2.1.3 and transformed via N(x) according
to Eq. 2.2. We perform a ten-fold cross validation where in each fold, 10 % of
the samples in each class are used for testing. Training is done on the other 90 %
of samples in the supervised orientation phase, and the rest of the image in the
unsupervised refinement phase. The weight functions w; controlling the magnetism
in the supervised orientation phase are obtained via Eq. 3.22. In the case of
unsupervised training, the image data is used without labels.

After training, we go through all training samples S to determine which neuron
in the SOM represents each sample. During the classification, each neuron m will
vote for the classes of the samples it represents. This means, it may vote for several
classes,

o) = ) W =KL =1], (3.39)
xeS

where ¢ is obtained by Eq. 3.9 and L(x) is the class label of training sample x.
v®) is a vector that holds the number of votes per class label for the neuron at index
k. The prediction for each test sample y is

a(y) = arg max vgk), k=c®, (3.40)
!

which is the class label that obtains most votes from the best-matching unit.

For illustration purposes, we first perform the classification with four classes and
a 2-D SOM. The four classes are selected due to their prominence in the ground truth
labeling with many available samples: Soybean min till-2455, Corn no till-1428,
Woods—-1265, Corn min till-830. Yet we see a high discrepancy in available samples,
with approx. three times more training samples being available for Soybean min till
than for Corn min till. We train one SOM unsupervised, another semi-supervised.
Due to the cross-validation, we obtain ten SOMs in each case. Figure 3.16 shows the
SOM topologies, colored by the class label obtained through a(my) (Eq. 3.40) for
each neuron m; at its location r¥). We observe that in the unsupervised case, SOM
orientation changes between runs, but the shape of the classes in the SOM is quite
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similar. It is also evident, that many neurons do not represent any labeled samples at
all. This is expected, given the various other materials present in the scene that are
represented by these neurons. We get a different picture in the semi-supervised case:
Here, the classes are mostly represented by neurons being located in their dedicated
quadrant of the SOM topology. Furthermore, the representation of these classes is
more even, and only a small number of neurons does not represent samples from
these classes. It shows that the supervised orientation phase works as expected.
We now also incorporate ranked BMU lookup in the prediction step. We reason
that higher accuracy can result from a richer understanding of how a sample is
represented in the map. The ranked BMU prediction for each test sample y is
ne
a'(y) = argfnax Z wjvl(kf) Jk=c¥), (3.41)
j=1

which is the class label that obtains most votes from all best-matching units (recall
Eq. 3.15), whereas the contribution of each unit is weighted in a similar vein as in
Eq. 3.16. w is obtained via Eq. 3.19. We effectively obtain a classifier in the spirit of
k Nearest Neighbors (kNN), whereas SOM units compactly represent the original
samples.

For the classification task on all 16 classes, we benchmark several variants
to determine the impact of each algorithmic change. The baseline is a simple
unsupervised SOM with a tesseract topology and n}, = 6. We also test a bigger
SOM with n}, = 8. The single-BMU lookup (Eq. 3.40) is contrasted with multi-BMU
lookup (Eq. 3.41) and a varying number of BMUs 7. Furthermore, we test the effect
of our rank weights against a flat weighting, V;j : w; = 1. Finally, all configurations
are also tested with semi-supervised training.

Table 3.2 lists overall accuracy (OA) and average accuracy (AA) of all tested
variants. While OA is the percentage of correctly classified pixels, AA is the mean
of class-specific accuracies. AA is typically lower on this test image due to the high
discrepancy of available samples between classes. For each row in the table, a bullet
point denotes the BMU lookup configuration (whereas nc = 1 denotes single-BMU
lookup) and check marks denote configuration variants to the baseline configuration.
Most notable in the results is that on this particular task, our efforts to improve
the SOM performance work best when combined: A notably bigger map, feasible
due to our efficient version of the algorithm, gives the best results. Yet, size alone
does not beat the combination of ranked BMU lookup and supervised training. A
high value of nc leads to the best results in the field when used with the rank
weights, and plays a particular role in improving the AA. However, it can show a
detrimental effect when used in a flat kNN scheme, leading to the worst results in
the field in combination with a smaller SOM. The confusion matrices for the baseline
configuration with n¢c = 1 and the best-performing configuration can be found in
Appendix D on pages 172-173.

In this experiment we showed a proof-of-concept for both the feasibility of our
custom SOM-based classification method outlined in these experiments, as well as
for the positive effect of our novel SOM algorithms in training and lookup. Note
that these preliminary results are not generally competitive with the huge body of
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70.6 %
73.5%
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74.8 %
74.8%
75.4%
75.4%
75.4%
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72.0%
73.8%
78.0%
81.3%

Table 3.2: Overall accuracy in classification on Indian Pines image. Measured are
overall accuracy (OA) and average accuracy (AA). Methods are ordered by OA.
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existing, considerably tuned methods based on kernelized SVM classifiers [Moun 11].
Tarabalka et al. report an overall accuracy of 78.76 % (AA: 69.66 %) for 16 classes in
a comparison with other methods that incorporate spatial features [Tara 09]. They
use only 10 % of samples for training. Camps-Valls and Bruzzone report an overall
accuracy of 94.44 % for nine classes [Camp 05], stripping seven classes from the test
due to low number of ground-truth samples.

3.5 Discussion

In this chapter, we discussed how dimensionality reduction is a powerful, and
often necessary, pre-processing step to combat the issues we face when analyzing
hyperspectral data in the original, high dimensional feature space. Various methods
for dimensionality reduction are established practice, e. g. PCA that provides a fast,
easy to implement and understand, linear projection. However, it is hard to find
a method that can preserve non-linear relationships in the data manifold, yet is
computationally efficient enough for interactive analysis of a hyperspectral image.

The Self-organizing Map is a proven versatile tool that performs a fast, quantized
manifold learning for efficient dimensionality reduction. In our experiments, we
showed the reliability of the SOM when applied on both multispectral and hyper-
spectral input. We then took a step further in improving the SOM’s performance both
in terms of computational efficiency and in algorithmic output. Our ranked BMU
lookup and semi-supervised training are shown to significantly boost performance
on an example classification task. We also introduced a new probabilistic manifold
learning approach that closely resembles the SOM, but is formulated through the
interaction of the observed data samples with a random field.

We argue that many multispectral and hyperspectral analysis tasks can benefit
from manifold learning. The SOM and our probabilistic interpretation within the
EM framework are only two approaches to tackle this need and serve as a proof-of-
concept. In the remainder of this thesis we will see several applications that benefit
from this technique. Figure 3.17 depicts four algorithmic results where our custom
SOM manifold learning was applied to the the multispectral image Flowers, and the
corresponding sections where they will be introduced and discussed in detail.
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(a) Edge Detection, (b) Supervised Segmentation,
Section 4.1 Section 4.3

(c) False-color Visualization, (d) Fuzzy Clustering,
Section 5.2 Section 4.2

Figure 3.17: Example applications of hyperspectral SOM on the Flowers image
depicted in Figure 3.2 (see page 33).
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Chapter 4

Image Analysis

In this work, we develop a new software framework for interactive analysis of
multispectral and hyperspectral data. While visualization techniques provide for
a fruitful qualitative analysis of the data, algorithms that analyze the image data
provide quantitative input to the user. Both go hand in hand, e. g. quantitative
cluster analysis can provide affiliation of image pixels to certain clusters, which is
then picked up by the visualization algorithm to present a comparative display. On
the other hand, visualization is often needed to assess the plausibility or quality of
an analysis method when ground-truth information is unavailable.

In this chapter, we discuss three of the most-relevant image processing problems
in many hyperspectral applications. The term edge detection describes the task of
finding local discontinuities in image brightness, which are an important feature for
scene understanding. They may help to find borders of objects in a scene, or points of
interests (e. g., corners) which are relevant for key point-based algorithms. However,
in an image with multiple components, brightness is often not a sufficient criterion
to find relevant edges, a problem that magnifies when going into hyperspectral data.
We will immerse ourselves in this topic and introduce a new solution to this problem
in the first section.

Scene understanding can also be initiated from the opposite direction. Based
on the richness of a multispectral pixel, global clustering algorithms may disregard
any knowledge about the spatial layout of the image. Here, clusters in the spectral
distributions are identified, which eventually leads to a segmentation of the whole
image at once. An efficient computation of such a clustering is typically based on
prior knowledge, e. g. the number of clusters or parameters of their shape. More
versatile algorithms can be too computationally expensive for an interactive setting.
In the second section of this chapter, we concentrate on such methods and propose
more efficient variants.

The third image processing problem we discuss is related to both clustering
and edge detection. Supervised segmentation works with the spatial layout of the
image and a set of user-provided pixels for which the correct assignment is known.
The algorithm then finds all missing assignments by deriving a locally consistent
segmentation. As, to the best of our knowledge, there is no existing supervised
segmentation method designed for the hyperspectral domain, we choose an existing
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algorithm that we find most suitable for our task and adapt it to multispectral and
hyperspectral images.

4.1 Edge Detection

Edge detection is a well-understood preprocessing step for computer vision applica-
tions. For example, the Canny operator dates back to 1986 [Cann 86], but is still
widely in use. Canny and other common methods are based on the concept of a gra-
dient in the spatial domain and by themselves are limited to monochromatic images.
Adapting them to multispectral or hyperspectral images, where each pixel holds a
high-dimensional spectral vector is a difficult problem. A common methodology is to
depart from the concept of an image gradient and instead employ vector order statis-
tics. Two established methods for hyperspectral edge detection are based on vector
ordering: The Robust Color Morphological Gradient (RCMG) [Evan 06], which was
designed for color images, but can be extended to the hyperspectral domain, and the
method by Toivanen et al. [Toiv 03], which was designed for hyperspectral images.

In this section, we will first give an overview of related work with a focus on
a hyperspectral Laplace filter, RCMG as the current state-of-the-art for color edge
detection, and the method of Toivanen et al. which is a precursor to our work. We
will then introduce a new manifold-learning based pseudometric for edge detection
that can be used in combination with RCMG. We show how it overcomes the major
weaknesses of established methods.

4.1.1 Related Work

A monochromatic image can be seen as a discrete two-dimensional image function
I(l,m) that, for each pixel coordinate [, m, returns a non-negative value x(; ),
the pixel intensity. Edge detection is then often performed by analyzing the first
order or second order derivatives of this function. In our case, I(/, m) returns
a spectral vector x(; ;). Extending second order methods for this case results in
complex algorithms [Di Z 86, Cuma 91, Bakk 02]. Also, such gradient-based methods
may fail to detect edges in the case of opposing gradients present in different
spectral bands [Drew 94, Trah 93]. Bakker and Schmidt substitute the discrete
derivation with a spectral dissimilarity measure [Bakk 02]. The discrete Laplace
operator computes the sum of second order derivatives and is suitable for edge
detection [Gonz 08, Chapter 3]. It is expressed by the Laplace filter kernel. However,
the isotropy of the Laplace filter kernel can be improved using

o 10 [1t o 1] [1 2 1
L=2[1 -4 1|+|0 -4 0o|=|2 -12 2|, 4.1
o 1 0l |1 0o 1| |1 2 1

which is a weighted combination of the Laplace filter kernel with its diagonal coun-
terpart. Bakker and Schmidt call this the omnidirectional Laplace operator [Bakk 02].
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To apply this filter on spectral vectors, it is replicated with a sum of pairwise dissimi-

larities,
1
L(l,m) = E(d(x(z—Lm—n, X(1,my) + 2d(X(1 m-1), X(1,m))

+ d(x(11,m-1), X(1,m)) + 2d(X(=1,m), X(1,m))
4.2)

+ 2d(x@41,m), X(1,m) + AX-1,m11), X(1,m))

+ 2d(x(1 a1y, X(1,m)) + AX (141, m41) x(l,m))) ,

where for d(:, -), Bakker and Schmidt employ the spectral angle (SA, Eq. 2.11). We
may use other measures for d(-, -) according to our needs. Recall popular measures
from Section 2.4 (pp. 20-23). The quality of the output then fully depends on the
chosen measure’s ability to capture relevant discontinuities, which is often limited.
Note that this method only provides a magnitude, but not the direction of an edge.

Vector Ordering and RCMG

Another popular approach to edge detection for images of multiple bands is vector
order statistics [Trah 93]. Such ordering-based methods determine edge probability
by analyzing the order of all pixels in the local neighborhood. An ordering method
that is most used in edge detection and filtering of multispectral images is reduced
or aggregate ordering (R-ordering) [Barn 76]. Here, spectra are ordered based on
distance calculations, e. g. the aggregate distance between the spectrum and all other
observed spectra, or other spectra observed within a defined neighborhood [Trah 93].
It has been shown that like gradient-based methods, R-ordering edge detection is
also prone to missing edges [Toiv 03]. Pixels holding different values may be mapped
to the same scalar.

The Robust Color Morphological Gradient (RCMG) by Evans and Lin might be
seen as the latest successor for R-ordering-based gradient calculation, and combines
R-ordering with a structuring element as follows [Evan 06]. The classic morphologi-
cal gradient operator for grayscale images is the difference between a dilation and
an erosion [Rive 93], and can be expressed as

v(f) = max (f(x)) - min (f)

=max (f(x) - f(y)) Vx,y € G,

where G is a structuring element. The Color Morphological Gradient (CMG) is then
given as

(4.3)

CMG = max (d(x, y)) , (4.4)
x,yeS

where S is the set of all pixels in G and d(-, -) may be the Euclidean distance, but
see below. The RCMG is an extension to CMG that is supposed to be more robust to
outliers. For this, Evans and Lin employ a clever scheme to determine a number of
pixel pairs to be iteratively removed from the set, each consisting of the two pixels
that are furthest apart [Evan 06]. We obtain

RCMG = max }(d(x, v)) , (4.5)

x,ye{S
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where R is the set of removed pairs. It has been shown that RCMG and slight
variations of it perform well for color image edge detection [Nezh 11, Mitt 12].
RCMG was designed with RGB pixels in mind, but can easily be extended for
higher-dimensional vectors [Tara 10].

While the RCMG algorithm can be formulated using the Euclidean distance, the
authors state that L, might be an inferior metric on the RGB color space. Algorithms
working with color in images often operate in other, perceptionally motivated
colorspaces [Coma 02]. Evans and Liu instead opt for a change in metric. They
employ a pseudometric introduced by Androutsos etal. [Andr 99] that combines the
Spectral Angle with the Euclidean norm as

2 (x,y) ))( IIx—yIIz)
SALy(x, =1-1|1-— L P 1- —), 4.6
2(x, y) ( — cos (”x”2 ol W (4.6)

where the normalization of the magnitude component is designed for three-band,
8-bit pixels. While theoretically, this term might be adapted to the respective band
count of hyperspectral input, note that Euclidean distances tend to diminish in
high-dimensional spaces, and its effect on SAL; would lose significance. As was
noted on page 21, we typically observe a comparable or better performance with
the Chebyshev distance, so for hyperspectral input, we replace SAL; with

2 () )) ( I - ynm)
SAL(x, =1—-|1-— y__xJ7 1—-——], 4.7
(. y) ( _— (||x||2 Tyl T (4.7)

where Ihax denotes the maximum observable intensity in a band and depends on
the imaging sensor (typical values range between 28 and 214).

A perceived weakness of RCMG is the reliance on a structuring element for
defining a strictly local ordering. Based on image region, the same pair of pixels
x and y may trigger a different response. Also, as is the case with the replicated
Laplace filter, RCMG output depends on the ability of SAL, to highlight relevant
discontinuities.

SOM-based Ordering

Toivanen et al. employ a Self-Organizing Map (SOM) to generate a global order-
ing of spectral vectors [Toiv03]. The SOM algorithm used in their work matches
our explanation in Section 3.1.3. With a global ordering, a one-to-one correspon-
dence between pixel values and scalars is guaranteed. The edge probability is only
determined by the adjacent pixels, invariant to regional characteristics.

For the ordering, location scalars r € N or vectors r € N2 are used, obtained by a
1-D SOM (2-connected topology) or 2-D SOM (4-connected topology), respectively.
While the former provides a natural way of obtaining a linear order, the latter is
better suited for larger SOMs that strive to cover more the complex relationships
often found in the input data. This method solves problems present in previous
approaches, however it is highly dependent on a good global ordering. As such an
ordering is hard, if not impossible to find for complex scenes, it suffers from edge
artifacts. We now discuss this observation in more detail for both cases.
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a

(a) image in true color (b) rank map R

Figure 4.1: Rank map obtained by 1-D SOM ordering on Fake and Real Beers image.

The 1-dimensional Case The order of spectral vectors can be easily generated if
neurons of a SOM with size 7, are ordered by a scalar location index 1 < r¢ < np.
We obtain a monochromatic image for edge detection as follows. For each pixel x
of the input image, we determine m,, its best-matching unit (BMU) in the SOM
(Eq. 3.9, page 31). Its map location r() is directly used as an intensity value in the
rank map R. The edge detector works on R which is expected to provide a strong
gradient between pixels of significantly different spectral responses.

The quality of the obtained ordering depends on the SOM organization. In
a well-organized SOM you see smooth transitions between spectra of adjoining
neurons as well as a good global clustering of similar spectra. This means that
slightly different shades of the same material observed in the scene are expected to
be represented by neurons close to each other. In the 1-dimensional SOM, this is
violated for images depicting more complex scenes. Each model vector can only be
part of two neighborhoods that express a specific proximity relationship in the input
data space. For more complex clusters of data in the input space, some proximity
relationships are distorted or lost; vectors from one cluster will end up in several
distinct locations of the SOM. This can result in edges introduced between pixels
that are part of such a cluster. Figure 4.1 shows the Fake and Real Beer image from
the CAVE dataset next to the rank image obtained by a 1-dimensional SOM. The
SOM with n); = 64 neurons was trained with 100 000 random samples from the
image. As seen in the figure, it does not relate well the different reflectance effects
in the scene. The rank map has outliers dominating other rank transitions. The
strongest edges to be detected are false.

Due to this aforementioned limitation, the 1-dimensional SOM is not advisable
in a larger scale regarding its number of neurons ny;. In principle, it would be
reasonable to train a SOM with larger nj; to cover variation in the spectra in more
detail and enable a more fine-grained edge detection. However, in the case of a 1-D
SOM, a better coverage of detail changes in the image is traded with higher risk of
false edges based on amplified location discrepancy.
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oy T

(a) Peano 3x3 and 9x9 (b) Hilbert 2x2 and 16x16

Figure 4.2: First order and higher orders of space-filling curves. The 4th order
Hilbert curve of size 16x16 is used to generate the rank map in Figure 4.3b.

(a) image in true color (b) rank map R from 2-D SOM

Figure 4.3: 2-D SOM ordering on Glass Tiles image. See Figure 4.8 on page 73 for
edge detection result.

The 2-dimensional Case The problem of the 1-dimensional SOM described in
the previous section lead to the choice of a higher dimensional topology. For spectral
vector ordering, this introduces the need for a linearization on the 2-dimensional
lattice. Toivanen etal. solve this task with space filling curves [Saga 94].

The Hilbert curve and Peano curve describe a recursive rule for traversing a 2-
dimensional lattice of size 2 x 2%, and 3 x 3“, respectively (2 € N). These curves are
designed to provide a close linear index for each pair of 2-dimensional coordinates
which would also be close according to their Euclidean distance. The drawback of
this method lies in the portion of coordinates where this relationship analogy to the
Euclidean distance is violated. Due to the recursive nature of the space filling curve,
as illustrated in Figure 4.2, neurons that are adjacent in the SOM can end up with a
difference in the linear index of over %n M- Therefore, the topological organization
of the SOM is not well covered by the resulting order and associated intensity values
that are used for edge detection. This problem is significant, as can best be seen
when the method is applied on another image from the same dataset, as depicted in
Figure 4.3. To produce this result, a SOM with n,; = 256 was trained. The rank map
shows inconsistent ranks for similar pixels, in some cases with huge gaps between
the ranks. As a result, the edge detector cannot avoid false edge artifacts without
losing valuable edge information.
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Statistical Edge Detection

The Saliency-based Edge Detection in Multispectral Images (SEDMI) by Dinh et al.
follows a different approach than the previously discussed methods as it uses global
statistics as an edge indicator [Dinh 11]. First, a feature space for edge detection is
constructed. The new feature space has dimensionality np and in each component
contains the spatial gradient magnitude measured at a pixel. On this feature space,
ensemble clustering is performed. The combined use of a variation in clustering
methods or parameters is expected to result in capturing a variety of structures
in the data distribution that might be missed by a single clustering without prior
knowledge.

The expected cluster size of a pixel is computed as the mean size of all clusters
that contain said pixel and were obtained through different clusterings. This value
is directly employed as a measure for edge strength, while directional information
is not available. The rationale behind this concept is that edges are rare (or, as the
authors put it, “salient”) events in an image. Therefore a small expected cluster size
is translated to a high probability of the pixel being located on an edge in the image.

The ensemble clustering approach of SEDMI is problematic in terms of compu-
tational performance. The authors work around this problem by clustering only
a small subset of the feature vectors and using a nearest-neighbor regression for
estimating edge strength for the remaining pixels. The execution time of a Matlab
implementations made available by the authors is still considerably high. Note that
an alternative approach to this concept may be realized using a SOM. For each
model vector, the amount of pixels represented by it can be easily computed. Then,
following the conjecture of Dinh et al., this representation factor would translate to
the edge strength.

4.1.2 Data-driven Pseudometric

The SOM is a useful tool for reducing the high dimensionality of a hyperspectral im-
age in a data-driven fashion. As discussed in Chapter 3, It provides a low-dimensional
topological representation of the contained spectra and their relationship. Instead of
relying on the linearization of Toivanen et al., in our method we avoid the ordering
of spectral vectors. Recall from Eq. 4.1 and Eq. 4.2 that an edge detection filter can
be replicated using a high-dimensional dissimilarity measure. We can exploit the
topological information of the SOM to produce such a measure. We gave an early
example of such in Eq. 3.38. We will now define two new pseudometrics for spectra
that are based on this concept. Furthermore, we formulate a 3 X 3 Sobel operator
for both. Given a discrete two-dimensional image function I(/, m), Sobel is a linear
filter for detecting edges in either horizontal or vertical direction,

1 0 -1 1 2 1
Sy=12 0 -2, Sy=|10 0 O}, (4.8)
1 0 -1 -1 -2 -1

which computes the first derivative along each axis, but includes a smoothing step
before differentiation to reduce noise and obtain better continuity in the edge
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Figure 4.4: lllustration of Sobel operator performed on SOM;. In both (a) and (b),
the image grid is shown on the left and the SOM is shown on the right.

input [Gonz 08, Chapter 10]. The combination of Sy and Sy then provides both
edge magnitude and direction. This is input to the popular Canny edge detector
which applies hysteresis thresholding for edge thinning [Cann 86].

Conventional BMU Lookup

The data-driven pseudometric SOM; is given as

SOM; (x, y) = ‘ R G

‘2 , 4.9)

which, in accordance to the neighborhood function (see Eq. 3.13), computes the
Euclidean distance between the BMU locations of x and y in the SOM topology.
It is easy to show that SOM; is a pseudometric, as the use of the Ly norm on the
SOM lattice fulfills the conditions in Eq. 2.6 (see page 21). However, Eq. 2.7 is
not fulfilled as x and y both might share the same m.. In this case we expect any
variation between the two pixels to originate from noise or numerical inaccuracies.

In the case of a 1-D map, this yields the same behavior as the method by
Toivanen etal. [Toiv03]. It differs for a 2-dimensional topology, where now the
topological relationship of neurons is the sole origin of SOM;. Besides avoiding
artifacts introduced by a linearization, this approach bears two significant advantages
that make it a generalization of the previous method. First, in the 2-D case we can
lift the restrictions on SOM size that were imposed by the space filling curves. SOM
size can now be arbitrary instead of being bound to a power of 4 or 9. Second, the
SOM topology can be of higher dimensionality.

We now proceed to combine SOM; with the Canny edge detector, which takes the
first derivatives of the image as input. Therefore, we create horizontal and vertical
differential maps Gy and Gy. Note that the method by Bakker and Schmidt (Eq. 4.2
on page 63) relies on the fact that there is only one negative component in the
Laplace operator L (Eq. 4.1), which is not the case for the Sobel operators (Eq. 4.8).
As dicussed, Sobel combines smoothing with differentiation. For the smoothing
step, we may linearly combine locations on the SOM for both the negative and
positive part of the filter separately. Then, the differentiation is carried out on the
two compounds. Figure 4.4 illustrates this concept.
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Each pixel x in the image is assigned to its match m. (Eq. 3.9 on page 31).

We then denote () for the pixel at I, m as r(; ,,). Four locations (left, right, top,
bottom) based on the spatial neighborhood of each pixel are computed,

r(1-1,m=1) + 2P-1,m) + *(1-1,m+1)) /

T(41,m=1) + 2P 141,m) + F(141,m+1))

)
)
(4.10)
)
)

o
(
(Fa-1,m-1) + 2P (L m-1) + P(+1,m-1))
(

-Mi—l-Ml—'-Mr—‘-lk

P(1-1,m+1) + 201 ma1) + F(141,m+1)

Finally, the differential maps Gy and Gy are created via

Gu(l,m) = sgn (llrp ll2 = lIrkl2)
Gv(l, m) = sgn (llryll2 — lrll2) ||

where sgn(-) is the signum function. The described differential maps, in combination,
can be used for both edge magnitude and direction.

This method works with a sharp query into the SOM. It was first published
in [Jord 11]. In the experimental results we will see how the use of SOM; avoids
most of the artifacts that are present in edge maps obtained by Toivanen’s ordering.
However, we find that in some cases, edge magnitudes appear imbalanced regarding
the respective perceived discontinuities in the image. Analysis of this effect leads us
to a second pseudometric, SOM,, which is based on a broader query.

I _r*R”Z 4 (411)

Multi-BMU Lookup

The distance of two nodes in the SOM is governed by two properties in the map:
First, whether the nodes represent spectra from the same cluster (e.g. a material
present in the scene) or two different clusters. As we learned in Chapter 3, clusters in
the spectral distribution will find their designated connected areas in the map. This
is the distinction that should result in an edge. Second, how big the representation
of a cluster is in the map. Based on variety within a cluster (e. g. influence of noise
in darker versus brighter areas of the image) and the amount of pixels that belong
to each cluster, the amount of model vectors used by the SOM to represent a cluster
varies. However, a bigger representation of a cluster should typically not result in
an edge. Figure 4.5 illustrates how the influence of cluster size may be a problem
for the edge detection through SOM;. In the figure, a synthetic example for the
SOM representation of two clusters is shown, whereas clusters are represented by
15 nodes, and 31 nodes, respectively. When comparing two spectra from these
clusters, the distance of their respective BMUs in the map is affected by the cluster
representation. For clarity, this illustration neglects the fact that a well-trained SOM
exhibits smooth transitions between clusters.

While the calculation of SOM; relies on a single BMU of each spectral vector
only, in Section 3.2.2 we discussed how we can obtain richer information from the
SOM by extending the BMU lookup. Through the lookup of multiple BMUs, we now
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Figure 4.5: Illustration of a SOM; weakness. Two clusters represented in the SOM
are depicted by a brown background. In (a), we would expect a small distance
for both comparisons. Likewise, in (b), we would expect a high distance for both
comparisons.

define a pseudometric SOM;, which is less affected by cluster size. To compute the
dissimilarity for pixels x, y, we first obtain two sets of map locations Ry, R, where

. @),
R, = REY) = {r(% ) ‘ c; ) ¢ c<x)} ) (4.12)

and ¢ is obtained by Eq. 3.15 (see page 37). The computation has a parameter
nc, which is the length of ¢, or the number of BMUs to look up for each vector. For
the similarity of R, and Ry, we use the so-called Earth Mover’s Distance (EMD).
In computer vision, EMD was first used by Rubner etal. to compute a perceptual
distance between images by comparing their color signatures [Rubn 98]. Earlier
works exist that use constraint variants of this distance [Ruzo 01]. The most preva-
lent application of EMD is histogram comparison. The EMD can be used to find a
distance between two finite-sample distributions of same size, in our case coordinate
sets. Intuitively, we compute the minimum amount of individual shifting needed on
coordinates from one set to match the coordinates of the other set. The distance is
posed as a minimization problem as follows. Coordinates from each set can be paired
and then the sum of pair distances computed. The optimal pairing needs to be found
w. . t. the sum of pair distances. This problem is modeled in graph theory using a
bi-partite graph with weighted edges. A modified Hungarian Method [Khul 99] finds

a minimum-weight perfect matching in O (n?: log nc). Faster approximations exist,

bringing complexity down to linear time [Shir 08], however due to a low number of
nc typically employed, we do not further investigate them.
The pseudometric SOMy is then given as

SOMz(x, y) = EMD(Ry, Ry) , (4.13)

which, in the same vein as SOM;, is a pseudometric as EMD is a metric.

Figure 4.6 illustrates how the distribution of additional BMUs in the respective
originating clusters evens out the variance in cluster size. When the EMD between
both groups is computed, we will see a significantly higher value for the edge cases
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Figure 4.6: lllustration of SOM, behavior. Two clusters represented in the SOM
are depicted by a brown background. Additionally to the first BMU, we see four
secondary BMUs in a lighter shade. Secondary BMUs might overlap. In (a), we
would expect a small distance for both comparisons. Likewise, in (b), we would
expect a high distance for both comparisons.

than for the non-edge cases. In the latter case, parts of the BMUs from the two
groups often overlap. We will show how it applies to real data in our experiments.

To combine SOM; with the Canny edge detector, we replicate the Sobel filter
analogously to SOM;. In this case, in the smoothing step, we can combine the
BMUs of all three pixels corresponding to each side of the differentiation (illustrated
in Figure 4.4). We query for n. = %nc, and n; = %n& for the outer pixels, and
center pixel, respectively and obtain a multiset through concatenation. A multiset,
or bag, allows multiple instances of its elements. The four multisets based on the

neighborhood of each pixel are,
R} = { Ru-1,m-11 7+ Ra-1,m-1)n. »
72(l—1,m),1 yeeey R(l—l,m),Zn’C ’ (414)
Ru-1,m+1)1 - Ru-1,meryn. (5

and Ry, R}, Ry likewise. The differential maps Gy and Gy are created via

Gl m) = sgn (17{1_y llo = l1r{y, ) EMD(R], Ry

(4.15)
Gyl m) = sgn (117, p)lls = Ir(, 1 l2) EMD(R}, Ry)
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Figure 4.7: Canny edge detector results on Indian Pines image used for evaluation
in [Toivo3s]. (b) is taken from the original publication, (c) was produced by our
implementation of the SOM ordering, (d) was produced by the SOM; Sobel method
using the same SOM training parameters.

where rEl ) is the representative location of the pixel at [, m given by Eq. 3.16 and

Eq. 3.19.

4.1.3 Experimental Results

In our evaluation of the proposed methods, we provide a qualitative comparison
on multispectral and hyperspectral data against the state of the art. Unfortunately,
we are not aware of any available ground-truth data for this task in this domain.
However, in our comparison we can visually reveal strengths and weaknesses of
each method on a range of images. When not stated otherwise, all edge detection
results are printed such that white represents the lowest value (no edge) and black
represents the highest value (strong edge) in each individual map. For better
visibility, the 0.01 % highest values were masked out before defining the range for
the intensity normalization.
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Figure 4.8: Canny edge detector results on Glass Tiles image.

Methods based on the Self-organizing Map

We first compare SOM; with the method of Toivanen et al., denoted as SOM ordering,
which is a precursor to our method in using a SOM for edge detection. Recall that
the SOM ordering is first established on a 1-D or 2-D SOM before applying the Canny
edge detector.

Figure 4.7 depicts a result published by Toivanen etal. on the Indian Pines remote
sensing image next to our result using the SOM;-based Sobel map. One can observe
that SOM; helps to better discern the edges present in the image, most visible at the
track on the top. Also, the rectangular structures are better reflected. Figure 4.8
shows the results of both methods on the multispectral image depicted in Figure 4.3a.
Based on the flawed ordering seen in Figure 4.3b, strong edges are obtained between
pixels of similar spectra. The edge detector cannot prevent false edges without losing
valuable edge information. A problem that does not occur with SOM;.

The Egyptian Statue image is an especially hard case for this task, as it contains
structure that is either well illuminated or obscured in shadow areas of the scene.
It depicts a bust of Nofretete next to a stuffed toy. We investigate the performance
of Canny with both inputs from the SOM ordering and SOM; in Figure 4.9. Results
are shown for two manually and individually selected Canny hysteresis threshold
settings. As can be seen in the second row, the SOM manages to preserve structure
that is in shadow and only perceptible in a small amount of spectral bands (marked
in red). With the 1-D SOM, the contour of the shadowed throat is lost while smooth
transitions in the face still lead to edges. A similar effect is visible with the 2-D
SOM using a space filling curve. Contrary, the SOM; measure manages to expose
characteristics of face, hat and toy while maintaining a low noise level. Find another
result, on the Fake and Real Food image, in Appendix D on page 174.

Toivanen et al. found that on their two remote sensing images (one of which is
shown in Figure 4.7), both 1-D SOM and 2-D SOM give comparable results [Toiv 03].
Our experiments reveal that when compared on a larger set of images, the 1-D
SOM typically performs worse and the 2-D SOM ordering suffers from linearization
artifacts. As a result, our proposed method achieves better edge detection on the
tested images.
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Figure 4.9: Canny edge detector results on Egyptian Statue image. Canny parameter
criteria: A) best object contour preservation; B) minimum fine-grained noise
introduced by object/background texture. Marked in red are object parts that are
not visible in the true-color display. See Figure D.9 on page 178 for a helpful
visualization of the image.
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Figure 4.10: Laplace output for several choices of nc on Egyptian Statue image.
Results are shown on a cropped region for better visibility. nc = 1 corresponds to
SOM;.

We proceed with an examination on how SOM; and SOM relate performance-
wise. Our expectation is that the latter pseudometric leads to a well-balanced edge
map where the former suffers from the effect of different cluster representations in
the map. For the desired effect, we have to determine a generally suitable number of
BMUs to lookup n¢. We use the Laplace edge filter (see Eq. 4.2), setting d = SOM,
with different choices for nc. Note that the case nc = 1 directly corresponds to
SOM;. While in the previous tests, we operated on a SOM of size ny; = 256 for
better comparability with the method by Toivanen et al., we now train a 2-D SOM of
our preferred size of n); = 1024 model vectors.

Figure 4.10 depicts results on a detail of the Egyptian Statue image from Fig-
ure 4.9a. Note the difficulty of the task, given the bad illumination in the scene for
most parts of the detail. We observe that while the result for nc = 1 is already quite
decent, it still includes some artifact edges and the edge magnitudes sometimes
appear not well-balanced, which includes exposing noise in the background. When
increasing the number of looked up BMUs, we see three effects. First, the artifact
edges disappear. Second, edges concentrate more on material separation than illu-
mination effects, visible in the left side of the statue face. Third, we see an overall
reduction in noise. The edge maps stabilize for higher numbers of . Some true
edges slowly start to fade out. This is expected, as a high count of BMUs inevitably
leads to non-relevant BMUs being chosen when a cluster is represented by less BMUs,
effectively adding a random baseline for both pixels in each measurement.
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As a result of this comparison, we fix nc = 25 for all further testing. Note that
we can expect a good choice of 7 to be independent of the input data, but rather
only affected by the size of the SOM.

The results presented so far indicate that by utilizing a SOM, we can obtain a
high-quality data-driven dissimilarity measure that provides sensible input for an
edge detector. Furthermore, we will now show how our measure competes against
established, heuristic measures in edge detection on a wider range of images.

Hyperspectral similarity measures

The Laplace filter is a good instrument for evaluating the behavior of SOM; and
SOM;, in comparison to established hyperspectral similarity measures, namely L,
SA, SID, and the measure introduced for RCMG, SAL.

Figure 4.11 shows edge maps computed on the D.C. Mall remote sensing image.
While the general edge response is satisfactory, a weakness of Lo, SA, SALs, and SID
on this image is the overly strong response on shiny roofs present in the scene, which
diminishes other edges in the image that could be considered equally important.
SID is worst in this regard. The new measures SOM; and SOM; provide the most
balanced output for this image. SOM; shows noise artifacts, visible in the water
area on the left bottom of the image, which are not present with SOMs.

Figure 4.12 shows edge maps computed on the d3 image from the Harvard
dataset, depicted in Figure 2.6d on page 15. We chose this image as it depicts a
scene in a natural environment and contains objects of different materials and shape
stacked on each other, resulting in a variety of edge detection challenges. In the
result for Ly we see the strong effect of mean intensity on the Euclidean distance.
Specular highlights induce strong edge responses, e. g. on the red plastic bottle on
the bottom shelf (marked in red). In contrast, the black cables in front of gray book
pages on the middle shelf (also marked in red) elicit a very weak edge response.
Other than one might expect, SA performs very poorly for edge detection on this
image. The measure mostly covers the noise in the image, which is more dominant
on the vector angles in darker regions, leading to dark regions being misinterpreted
as edges, while real edges in the scene give almost no response. The combined
measure SAL. adds edges that are also present in Ly, but generally also fails to
clearly separate discontinuities in the scene from homogeneous (when disregarding
the noise) areas. SID has the property that zero vectors cannot be compared, which
results in a small amount of white pixels spread over the image. Apart from this
defect, which may affect some algorithms more than others, SID is also very prone
to the noise in darker regions. Even more so than with SA and SAL., we can
recognize a vertical stripe pattern in sensor noise on the SID output, most visible
in the area marked in red. Finally, SOM; and SOM; both provide reasonable edge
maps on this image. SOM; beats SOM; in certain areas of the image, visible e. g. on
the semi-transparent plastic bottle on the lower shelf (as referenced before when
discussing L) and is less prone to noise in dark, homogeneous areas.
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Figure 4.11: Laplace edge detector results on D.C. Mall image (see Fig. 2.6e, page 15).
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Figure 4.12: Laplace edge detector results on d3 image from the Harvard dataset
(see Figure 2.6d, page 15). Red markers are referred to in the text.
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Figure 4.13: RCMG edge detector results on D.C. Mall image (see Fig. 2.6¢e, page 15).
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Figure 4.14: RCMG results on d3 image from the Harvard dataset (see Figure 2.6d,
page 15).
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Robust Color Morphological Gradient

In this test, it is determined whether the hyperspectral extension of RCMG can
deliver the same high performance that RCMG is know for on color images [Mitt 12].
Note that we do not evaluate RCMG against our method, but rather combine them:
Both SOM; and SOM can be efficiently used as input to the RCMG algorithm. We
run RCMG on them alongside Lo, SA, SID, and SAL, as in the previous test.

Figure 4.13 shows RCMG edge maps computed on the D.C. Mall remote sensing
image. We see that the results do not differ much from the Laplace results for this
image. Edges appear more pronounced in the RCMG images. This also slightly
amplifies the noise in the SOM; output we had discussed before.

Figure 4.14 shows RCMG edge maps computed on the d3 image. When compar-
ing with the Laplace edge filter results in Figure 4.12, we make several observations.
The outlier removal manages to remove problematic values from the SID input.
However, as with SA and SAL., noisy regions overshadow the response at discon-
tinuities in the scene. In SAL., the edge output does improve when compared to
the Laplace result, however edges that are clearly missing in Figure 4.14a are also
missing in Figure 4.14d. The best result is achieved by SOM,, followed by SOM;.
We observe that RCMG enhances the overall contrast of edges when compared to
the Laplace filter applied on the same measures.

While RCMG can provide a greatly enhanced gradient map, it is not able to
overcome the inherent weaknesses of its input. In the case of Ly, we miss low-
intensity details, or changes that are only found in a few bands. In the case of SA,
noise in low-intensity regions is greatly amplified and leads to false edges. The
output of RCMG is determined by the input metric: it is the maximum pairwise
distance in a subset of neighboring pixels. Therefore, the distances are neither
amplified for regions where the overall intensity output is weak, nor reduced in
regions that are overall noisy. We see that computing the pairwise distances with
our learning-based pseudometric significantly improves the RCMG performance.

SEDMI and Binary Edge Maps

SEDMI is interesting for comparison as it is a recent edge detection method designed
specifically for hyperspectral images. For SEDMI, results are published for visual
comparison on the Scene 5 lab image by Foster [Dinh 11]. Figure 4.15 depicts the
result reported by Dinh et al. alongside our RCMG results on Ly and SOM,. Similar
to our previous observations, other measures did not prove beneficial as input to
RCMG on this image. We see that for this image, RCMG shows a weak response on
some important edges, but retains others. The SEDMI output shows particularly
thick edges, which equals a loss of resolution. Similarly thick edges can be produced
with RCMG using a larger structuring element. In general, apart from computational
complexity, SEDMI provides competitive results. A drawback of the method seems
to be the noise present on many of the homogeneous surfaces in the image. In
particular, we notice the face of the toy figure to the top right.

As a final experiment, we use the Sobel operator defined in Eq. 4.15 as input
to the Canny edge detector, which provides binary edge maps. As the SOM, Sobel
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Figure 4.15: SEDMI and RCMG results on the Foster lab image.

operator allows only multiples of four in the choice of n¢, we set nc = 24 instead
of nc = 25 as in the previous tests. In Figure 4.16 we compare the result with the
one reported by Dinh et al., where the authors created a binary map with an edge
thinning method and hand-picked a threshold parameter [Dinh 11]. Likewise, we
hand-pick the hysteresis parameters of Canny to find a good compromise between
missed edges and noise in the edge map. We observe that SOM,, as expected,
retains more details in dark regions of the image. For example, the basketball is
clearly separated against the background in Figure 4.16b, which is not the case in
Figure 4.16a, but clearly visible in Figure 4.15a. Instead, SEDMI shows some edges
within the same object, introduced by geometry, that are not present in the SOM,
output. As SEDMI does not provide edge direction for the edge thinning operation,
its binarization is also prone to double edge artifacts.
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Figure 4.16: Binary edge detection results on the Foster lab image.

It has been shown that existing edge detection algorithms, based on the well-
known metrics and dissimilarity measures often applied on hyperspectral data, fail
to provide a consistent performance over a range of images from different settings.
Our measures outperform them based on the fact that they are data-driven: rather
than on the high-dimensional feature space as a whole, edges are found on the

manifold that contains the spectra observed in the image, learned through the SOM.
More results can be found in Appendix D on page 175.

4.2 Clustering

While edge detection can provide a spatial understanding of a captured scene, image
segmentation allows to not only discern spectra at boundary regions, but also to
identify regions of interest in the scene. Clustering is a means to segmentation
that provides a structured view of the data by identifying clusters in the high-
dimensional distribution and linking observed spectra to their respective cluster
(hard assignment) or several clusters (soft assignment). Next to the distance or

similarity of spectra, spatial relationships of pixels can also be of use in identifying
clusters.

In the hyperspectral domain, clustering can help with finding material prototypes
contained in the scene, or with identifying specific reflectance effects. For exam-
ple, surfaces can be compactly clustered by their reflectance behavior if capturing
parameters and data descriptors are appropriately chosen. Thus, areas of diffuse
reflection, specular highlights, and shadows each form individual clusters of feature
vectors. The distance between these clusters (and thus their distinguishability) may
vary across surface materials. In general, surface materials are better discerned in
the case of diffuse reflection than in the case of specular highlights or shadows.
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In this section we discuss methods to find a partitioning of a multispectral or
hyperspectral image in an unsupervised manner. In general, finding the appropriate
clusters in the high-dimensional space without prior knowledge can be challenging.
We will put most emphasis on the mean shift algorithm and its variants [Coma 02],
as it is one of the more flexible clustering approaches. We can obtain high-quality
segmentation results in several multispectral scenarios. However, mean shift is
computationally demanding for higher spatial and spectral resolutions. We tackle this
problem by finding means to reduce complexity without reducing the dimensionality
of the input data. We also take a particular look at methods to exploit the self-
organizing map for clustering and propose a new algorithm for clustering based on
the topological information contained in the SOM.

4.2.1 Related Work

Two general criteria that form the basis of most algorithms are the maximization of
intra-cluster similarity and minimization of inter-cluster similarity. Several directions
exist to find a segmentation of the image that best fulfills these criteria, of which we
mention the three most prominent ones.

Partitioning algorithms find a partition of the image, typically iteratively, based
on an objective function. Most prominent is the k-means algorithm that forms
partitions over a fixed number of centroids [Lloy 82]. Model-based partitioning
maximizes the likelihood of the samples using a parametrized model, e. g. a mixture
of multi-variate Gaussians, which can be solved using the expectation-maximization
algorithm. For these algorithms to succeed, the data needs to fit the model, which in
the case of k-means is hyperspherical clusters.

Hierarchical algorithms decompose the problem in a bottom-up (agglomerative)
or top-down (divisive) fashion. In most cases, a level in the hierarchy needs to be
chosen to obtain a final segmentation result. Prominent in hierarchical clustering
are methods based on graph theory. The method by Felzenszwalb and Huttenlocher
is agglomerative, i.e. it starts with a cluster for each sample [Felz04]. In each
level of the hierarchy, clusters are merged based on aforementioned intra-class and
inter-class similarity criteria. An example of a divisive algorithm, also graph-based,
is Normalized Cuts by Shi and Malik [Shi97]. They find a bipartition of the graph
via eigenvalue calculation. Then, the two obtained segments are recursively split
via a stability criterion. Both methods rely on edge weights based on pairwise
similarity. A divisive hierarchical algorithm based on optimization is found in
deterministic annealing [Rose 98]. Huynh and Robles-Kelly apply deterministic
annealing to multispectral image clustering, namely material clustering [Huyn 10b].
The algorithm is supposed to converge faster than its precursor, simulated annealing,
and be less sensitive to initialization as k-means. It minimizes a cost function for
finding (material) prototypes for the data, whereas the annealing temperature T
weighs the level of randomness of pixel-prototype association. Initially, T is high
and a single prototype is optimized. When T is lowered, the system splits prototypes,
whereas at a constant temperature, the algorithm converges to a thermal equilibrium.
The algorithm can be terminated when the desired amount of prototypes were found
and converged.
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Density-based algorithms consider regions of high density in the feature space as
clusters. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm finds clusters through the connectivity of samples [Este 96]. For this, the
density around each point is defined by the number of samples that fall inside a
hypersphere centered at the point. The point is considered an interior point if a
minimum number of samples are located in the hypersphere. Interior points that are
linked through a chain of overlapping hyperspheres form a cluster. Unfortunately,
DBSCAN is not well suited for high-dimensional data [Xu05]. The mean shift
algorithm is conceptually based on kernel density estimation [Coma 02]. Starting at
each sample point, it iteratively seeks for the next mode in the sample distribution.
Then, clusters are formed by all points that share a mode. It has been shown to
be effective in high dimensions [Geor 03]. A general advantage of density-based
methods is that they neither rely on a specific data model, nor on spatial relationships
of pixels.

We will now go into more detail on three algorithms for scene segmentation,
representing these three directions, including superpixel segmentation (agglomera-
tive hierarchical), k-means (partitioning), and mode seeking (density-based), before
discussing existing SOM-based clustering algorithms.

Superpixels

Superpixel is a term recently coined in the field of computer vision. It describes a set
of pixels that are spatially connected and share high similarity, replacing the rigid
structure of the pixel grid of an image. A wide range of segmentation methods fall
into the superpixel category, most prominently several graph-based algorithms as
well as gradient-ascend methods. Achanta etal. [Acha 12] discuss and compare a
comprehensive selection of these algorithms.

The method by Felzenszwalb and Huttenlocher (FH04) is a good representa-
tive example of this algorithmic family [Felz 04]. The algorithm operates on a
4-connected or 8-connected graph that represents each pixel x; as a node v; € V.
Edges ¢;; are weighted based on pixel dissimilarity, w;; = d(x;,x;). The graph is
then partitioned starting with one partition, or superpixel, per node. Superpixels
are iteratively merged such that the final segmentation fulfills two properties: Edges
between two vertices in the same component should have relatively low weights,
while edges between to vertices in different components should have higher weights.

For this, the internal difference 61nt(L) of each component £ C V is defined as
the largest weight in the minimum spanning tree (MST) of the component. The MST
is a subset of all edges between vertices in £ such that no edge can be removed
without disconnecting one or more vertices from the others, and no edge can be
replaced by another edge without increasing the sum of edge weights. The joint
minimum internal difference of two components is defined as

Omint(L1, L2) = min (6Int(-£1) +7(L1), dme(L2) + T(ﬁz)) , (4.16)

where the threshold function 7 is discussed below.
The difference between two adjacent components Op;f(L1, L2) is the minimum
weight w;; of any edge connecting two vertices v; € £; and v; € L. This measure
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might be seen as limited, only taking the smallest edge weight between the compo-
nents into account. It was chosen for the sake of deriving a computationally efficient
algorithm. The pairwise comparison predicate D(L1, £2) then decides whether two
adjacent components are merged,

D(L1, L2) = [5Mmt(£1,£2) > Opif(L1, L2)] - (4.17)

In other words, two adjacent components are merged if any of their internal dif-
ferences is larger than the difference between the components. If however, their
internal differences are smaller, a boundary between the components is assumed.
However, internal differences are offset by the threshold function

c

(L) = 1z

(4.18)

where c is a constant parameter, whereas a larger c causes a preference for larger
components. The threshold function also tells us that stronger evidence for a
boundary is required for small components, i.e. merging is favored for smaller
components. Another parameter of the algorithm is m, the enforced minimum
size of L. For m = 1, arbitrarily small components may be included in the final
segmentation, if they differ considerably from their neighboring components.

As a shared property between all superpixel segmentations, this technique is
based on the spatial layout of the scene. In our application, which is typically
clustering for material or specific reflectance effects, we strive for independence from
the spatial layout to some degree. Two objects of same material in positions remote
to each other in the scene are expected to fall into the same segment. Superpixels do
not fit this premise. We later introduce means to exploit the method by Felzenszwalb
and Huttenlocher for such a scenario in Section 4.2.2 and Section 4.2.3.

k-Means

An efficient clustering algorithm that does not take spatial relationships into account
is k-means, a term that is simultaneously used for the problem to solve and the
prominent algorithm that solves it. The k-means problem is to find nk disjoint sets
of input samples, whereas the mean of each set is optimal in terms of its Euclidean
distance to all samples in the set, serving as its prototype. The most prominent
algorithm solving this problem was proposed by Lloyd [Lloy 82]. It provides a local
search solution to the problem that is known for its fast convergence and is a simple,
hard-assigment variant of Expectation Maximization clustering [Bish 06, Chapter 9].

Several methods exist to initialize the set of cluster centers M, | M| = ng based
on the input samples x;. A very basic approach is to randomly pick ng input
samples. Arthur and Vassilvitskii offer a more sophisticated initialization, coining
their algorithm k-means++ [Arth 07]. They also select cluster centers randomly;,
however with a probability function that takes the distance of sample points to
previously selected cluster centers into account. After initialization, the following
steps are carried out iteratively.
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In the E-step, each sample is assigned to one cluster center by setting the expec-
tation of weight w;; to

Elwjil = |j = min [lp - xill2| , (4.19)

where [-] is the Iverson bracket. Then, in the M-step, cluster centers are re-computed
as the average of all samples expected to be part of each cluster,

X2 Elwjilx
B TS Bl

These steps are repeated until convergence. Then, we can assign the label /; to
each sample as

(4.20)

l; = argminllyj —xi|l2 . (4.21)
]

The computational complexity of the algorithm is a moderate O (ngnx). Typically,

a rather low ng is chosen and only a small number of iterations is needed for
convergence. Therefore, k-means is fast to compute. With larger ng, e.g. for
obtaining an under-segmentation as a pre-processing step, the speed advantage of
k-means diminishes. The solution found is highly dependent on the initialization of
cluster centers [Arth 07]. A common workaround is to re-run the algorithm several
times with different initializations. Then, the compactness measure is used to select

the final solution,
nx

CX, M) =D llxi =y lla, (4.22)
i=1
which is the objective function solved by k-means. The compactness can be used
as a general measure for clustering quality [Vesa 00a], however it is biased. The
measure (and therefore k-means) is based on the assumption of spherically shaped
clusters with a common diameter, e. g. isotropic Gaussian-distributed clusters. This
is often not true for remote sensing images.

The number of clusters needs to be known beforehand. This makes ng important
prior knowledge that may not be available. In remote sensing, the similar ISODATA
algorithm finds use, which incorporates splitting and merging of clusters [Lill 14,
Chapter 7]. These operations are triggered by simple thresholds on the amount of
data points associated to a cluster, the distance between cluster centers, and the
variance within a cluster [Ball 65]. The thresholds are parameters which also need
to be carefully chosen.

Mean Shift

The mean shift algorithm is a well-understood and popular clustering method that
is in theory applicable to high-dimensional data, such as multispectral pixel vec-
tors [Coma 02]. It was first presented in 1975 by Fukunaga and Hostetler [Fuku 75].
Mean shift is a density gradient estimator. It finds the modes of the multivariate
distribution underlying a feature space with a kernel estimator. In our case, the
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feature space consists of the ny spectral vectors x; of length np. The clustering is
obtained by associating each pixel with a mode.

Mean shift is based on the concept of Kernel Density Estimation (KDE) [Coma 02].
KDE estimates the probability density function as a mixture of the observed samples
x;. For each point x in R"?, the Parzen-window estimate is given as

. 13 1 (x—x
f(x):azhwk( T ) (4.23)

i=1 1

where the window function x(-) is a kernel. It has compact support and satisfies
/Rd k(x) = 1, x(x) > 0, and x(x) = x(—x). We can now restrict ourselves to a
radially symmetric kernel with a 1-D profile k(-): x(x) = cxk({x, x)), whereas cy is
a normalization factor. Without loss of generality, we can investigate the case of
h; = h. By employing the profile notation, the KDE can then be formulated as

nx
X — X
fula) = nx h”D Z k (H h ‘2) ' (4.24)
We continue with the density gradient estimate,
v 2k nx e ’x—xi“ (4.25)
fn(x) = W;(x - x;) ( 7 2) , .

which forms the basis of the mean shift filter, as explained below. We introduce the
kernel y(x) = cgg({x,x)). The profile of y, g(-), is defined as g(x) = —k’(x). The
density gradient estimate using y is

)

i % xig ([1=721,) (4.26)
) malre) )

1

- 2c - X —Xj
V fin () ZnXh—nI;Jrz Z(xi —-x)g (H n l’
i=1

We observe that the first term of Eq. 4.26 is proportional to fh,y(x). The second
term is the mean shift vector,

Y4 xig (||x;xi||2) 15 Yfi)
= —X=Z —_,
s (lsEl) 2 o

where ¢ = i—i It corresponds to a shift to the center of mass in the current win-
dow, weighted by g¢(-). This shift is performed iteratively until convergence, i.e.
my,, (x®)) = x6+1 — x() for each iteration s. Mean shift converges at a stationary

point of fh,,(,

4.27)

my,, (x(s)) =0= Vi, (x(s)) =0, (4.28)
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due to Eq. 4.27. To conclude, starting at x(1), we perform a gradient ascend that
converges at a mode of the distribution. Two choices are popular for the kernel «
with corresponding y. « is called the shadow of y [Coma 02]. One, the Epanechnikov

kernel,
1-t, te[o,1) 1, te[o,1)
k(t) = t) = 2
®) {o, is1 0 S0 {0, F>1 (4.29)

and two, the Gaussian kernel,
k(t)y=e 2, g(t)=e 2, (4.30)

where t = (x, x).

It is a common simplification to see the mean shift operation as shifting a kernel
in feature space. However, the kernels are defined around the sample points and
evaluated from a shifting coordinate, best illustrated in Eq. 4.23. A bandwidth
can be chosen per-sample. The bandwidth controls the resolution of the estimate.
It is a crucial parameter of the algorithm that has been investigated in several
studies [Coma 03, Wu 07, Huan 08].

Mean shift has key advantages over most other methods. First, other than graph-
based segmentation algorithms, clustering can happen in a feature space that is
agnostic to pixel coordinates. No topological clues are needed and a segment can
consist of several disconnected areas within the image that share a high pixel-wise
consistency. For RGB images, pixel coordinates are typically incorporated into the
feature space as the color vectors alone do not provide enough information for a
global segmentation, but this is not the case for multispectral or hyperspectral data.
Second, it has also the important property that no prior information is needed, e.g.
a desired number of clusters. Third, mean shift is not bound to a data model, e.g.
the data stemming from a specific distributions, or clusters of specific shape or size.

In principle, these properties make mean shift a good choice for clustering of an
unseen multispectral or hyperspectral image to aid the user in further exploration
without prior knowledge. The major drawback of mean shift however is its compu-
tational complexity of O (nx?), where nx is the number of data points, or pixels. A
quadratic growth in complexity is in fact problematic when analyzing image data of
moderately high spatial resolution. In the case of mean shift, it leads to computation
times of several hours for a high-resolution image, let alone a multispectral one. In
practice, mean shift computation on a whole image of typical spatial and spectral
resolution is only feasible through approximations, which we will detail below.

Fast-adaptive Mean Shift

In 2003, Georgescu etal. [Geor 03] introduced the fast adaptive mean shift (FAMS)
algorithm which significantly improves computational efficiency by employing
locality-sensitive hashing (LSH). In FAMS, the mean shift vector at location y
in feature space is defined as
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y

_y,
y

where h; is the bandwidth and g is the profile of the Epanechnikov kernel [Geor 03].
The algorithm consists of three steps:

Bandwidth Selection. Unlike the original mean shift, FAMS selects an h; for
each data point determining its radius of influence. Adaptive bandwidths are a
crucial step in making the method generalizable, as a common rule for bandwidth
selection is not trivial to find. Denoting the ng-nearest neighbor of x; as x; ,,., h; is
defined as

1 y—x;
Z:;Xl h(nD+2)xig (H 7
. (4.31)

my =
y an 1 Yy—Xi
i=1 h(nD+2) 8 hi
i

hi = ||x; — x,-,nK||1 , (4.32)

Using the L1 norm is considered suitable with regard to the characteristics of the
LSH data structure explained below. The value ng needs to be large enough to
include a detectable change in density. According to [Geor 03], the selection of
parameter ng is not critical to FAMS, however we need to consider it in Sec. 4.2.2.
In general, ng may be used as a control for the coarseness of the clustering.

Mean shift. mg(y) is started at each data point and iteratively progresses until
it converges, as explained above.

Mode Pruning. In the previous step we obtained a corresponding mode for each
data point x; originating from scene point p;. In the pruning step, common modes of
several pixels are identified and merged [Coma 02]. The segmentation consists of a
cluster association [; for each pixel, such that all pixels in a cluster share a common
mode p.

The speedup in FAMS through locality sensitive hashing lies in a reduced com-
plexity by only considering a small subset of the nx sample points in Eq. 4.31. LSH
provides a hash that approximately finds the set of nearest neighbors for a data point.
The LSH structure itself is tuned according to the image data. The operations for
building and querying the LSH are computationally efficient, especially in relation
to the distance calculations performed after each LSH query. The downsides of LSH
are tunable parameters K, L that need to be selected, that nearest-neighbor searches
can only be performed in L, and that the query results are only approximate. Using
LSH can therefore degrade segmentation quality. Next to returning a subset of points
in each step, the LSH structure also caches the final mode obtained in previous
shifts for each query hash. This further reduces execution time by early trajectory
termination.

Other Shift-based Algorithms

The introduction of LSH to the algorithm by Georgescu et al. leads to a significant
speedup of the mean shift computation. However, on-demand calculation within an
interactive usage scenario is still not viable. Recent methods aim at further reducing
execution times. The quick shift algorithm by Vedaldi and Soatto can not overcome
the O(N?) complexity [Veda 08]. While variants of the so-called hierarchical mean
shift do not tackle the theoretical computation time boundary [Surk 11, Surk 12],
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(a) true color (b) K=30,L=19 (c) K=29,L =20 (d) K=29,L=19

Figure 4.17: Median shift results on Lemons image. Median shift was run with
slight variation in parameters K and L for the locality-sensitive hashing.

they start with smaller search kernels, which in practice reduces the number of
data points to be considered in each shift step. Then, they iteratively restart the
method with the obtained modes from the previous step as data points. A global
segmentation is reached after two to four steps. However, reducing the kernel size
becomes increasingly impractical with the high dimensionality of multispectral or
hyperspectral vectors.

Freedman and Kisilev propose a fast mean shift variant that employs a sampling
step before running mean shift [Free 10]. Therefore, the algorithm only has to be
performed on a considerably smaller, random subset of X. Their method however
depends on a specific selection of a common bandwidth /. It does not apply to the
use of adaptive bandwidths, which in our experience is a crucial ingredient of FAMS
for hyperspectral image segmentation.

Median shift by Shapira etal. exploits the LSH aspect of FAMS by taking sta-
tistical properties of the LSH as a cue for finding modes in the feature-space den-
sity [Shap 09]. While it achieves a significant speed-up, it tends to under-segment
the data: modes of less well-represented parts of the scene are not identified and
these regions may be falsely attributed to poorly related larger segments. In our
experimentation, it was also found that median shift is unstable in regard to the
LSH parametrization. Figure 4.17 depicts segmentations obtained with median shift.
Small variations in the parameters K and L to the hash generation lead to different
partitioning of both lemons and the background.

Shetty and Ahuja proposed the probabilistic shift method, which is based on the
detection of isotropic density neighborhoods [Shet 10]. The method addresses the
problem of bandwidth selection. Instead of following a local increase in density, the
size of an isotropic neighborhood around each point is detected and subsequently
used to shift points towards the most influential regions of high isotropy. However we
found the method fails to detect larger isotropic neighborhoods in a high-dimensional
feature space. Figure 4.18 shows a plot of average influence neighborhood size,
corresponding to the size of an isotropic neighborhood, on several images from
the CAVE dataset. To show the effect of dimensionality, spectra were reduced in
dimensionality with a linear filter.
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Figure 4.18: Influence neighborhoods of probabilistic shift on a series of images,
where spectra were reduced in dimensionality to obtain lesser bands.

SOM-based Clustering

As we learned, the SOM may be used as a versatile tool for various image processing
applications. Most often however, it is used as a tool to visualize the data distri-
bution by displaying the map as a so-called U-matrix [Vesa 00b, Ults 03]. In this
representation, one can expect clusters in the data to be visually recognizable. Thus,
a SOM may also be an interesting tool for unsupervised detection of clusters.

In a single stage approach, the SOM’s vector quantization may be seen as a
clustering and for this purpose, a SOM is trained with n; nodes, whereas n; is
the number of desired clusters [Mao 96, Wu 04]. This disregards the topological
relationship learned by the SOM. As the vector quantization results of a SOM and
k-means are often seen as equivalent in literature when k = np; [Bac 05], similar
results may be obtained by the k-means algorithm. Two-stage approaches train a
SOM first, then use it for input to a clustering algorithm. The method of choice is
often k-means and typically does not take topology into account. Many algorithms
put assumptions on the shape of clusters, which are required to be of either hyper-
spherical or hyper-ellipsoidal shape, and require the number of clusters to be known
a priori [Wu 04, Jian 04, Dong 05, Orti 13]. Next to k-means, Vesanto etal. propose
a hierarchical clustering on the model vectors, which is based on a criterion for
inter-cluster distance, also ignoring map topology [Vesa 00a]. The benefit of the
SOM stage in this scenario, when discussed from the perspective of hyperspectral
image analysis, is questionable as k-means clustering without such a preprocessing
step is computationally efficient enough to be run directly on the input data. Note
that the vector quantization alone does not provide a means for clustering methods
to operate in a lower dimensional space, i.e. on the data manifold. Instead they
only work on a sparsified representation of the data distribution.

Tasdemir et al. apply agglomerative hierarchical clustering on the SOM based
on the concept of the Topographic Error (see Eq. 3.37 on page 51) [Tasd 11]. The
connectivity of a pair of neurons m; and m; is defined by the sum of pixels x for
which my is the best matching unit and m; is the second-best matching unit, or vice-
versa. In each iteration, the pair of most similar clusters according to the pairwise
connectivity of their respective members is then merged. Merging commences until
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only one cluster is left; the level in the hierarchy used for the final clustering (i. e.
the number of clusters) needs then to be known a priori or determined based on
general statistics [Tasd 11]. Note that this clustering also ignores the topology of
the SOM, although it could be incorporated by restricting the set of cluster pairs
allowed to merge.

A clustering algorithm that takes map topology into account was proposed by
Wu and Chow [Wu 04]. It also performs agglomerative hierarchical clustering of
the model vectors. Topology plays a role as only clusters that contain neighboring
neurons can be merged. Merge criterions are based on a cluster validity index
which takes both a cluster’s compactness (similar to Eq. 4.22) and separation from
other clusters into account. The index is computed based on all input samples
that, through their corresponding BMU, belong to each cluster. Before clustering
is performed, the method needs an extensive pre-processing routine that prunes
feature vectors and neurons according to heuristic criteria to be less affected by
noise and outliers in the data [Wu 04].

4.2.2 Mean Shift on Superpixels

As discussed, we consider the mean shift clustering approach to be a good fit
for the challenge of finding clusters in hyperspectral data. It is effective in high
dimensions [Geor 03] and does not put constraints on the shape or size of clusters
to be found. However, the high spectral resolution and increasingly high spatial
resolution of hyperspectral images renders direct calculation of mean shift, or the
more efficient FAMS, unsuitable for interactive analysis. One solution to the problem
is a significant reduction in the input data. We expect all pixels from a small,
homogeneous image region to fall into the same FAMS cluster. Instead of finding
a cluster for each pixel, we could bundle the effort for all pixels in such a small
homogeneous region. Superpixel segmentation helps us to identify such regions.
This work was first published in [Jord 13b].

While our method is agnostic to the superpixel segmentation method used,
we chose the algorithm by Felzenszwalb and Huttenlocher (FHO4) as detailed in
Section 4.2.1. FHO04 was shown to be effective in the domain of hyperspectral
endmember detection [Thom 10]. It has several advantageous properties that are
particularly well-suited for our application. It is crucial for us that boundaries in the
image are not missed and superpixels stay confined within a homogeneous region
with high intra-similarity. FHO04 achieves the highest boundary recall in a benchmark
of several superpixel methods on the Berkeley Dataset [Acha 12, Arbe 11]. Other
superpixel methods often fulfill different properties, e.g. higher regularity in shape or
size, that are of no concern to us. Also, FHO4 has a time complexity of O(nx log nx).
In the aforementioned benchmark, it ranks second in computation speed. This
makes it an ideal choice for our interactive setting. The parameter ¢ manipulates the
degree to which the difference between two superpixels must be greater than their
internal differences to favor a split. We configure FH04 to serve as a pre-processing
step in clustering by setting a low ¢ value, which decreases the average superpixel
size.
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Hyperspectral Superpixels

A key component of graph-based algorithms like FHO4 is the setting of w; ;, the
weight of each edge in the graph. In the original implementation, w; ; = |x; — x|,
where x; is the intensity value of a grayscale pixel. For RGB images, the authors
run the algorithm on each band separately [Felz 04]. A weighted Euclidean distance
was proposed for four band RGB+NIR images [Cui 10]. Both adaptations are not
applicable to high-dimensional multispectral images.

A reasonable solution is to employ similarity measures specifically designed for
spectral data. Recall the discussion of established spectral matching measures in
Section 2.4.2 (page 21). The Spectral Angle (SA) and the Spectral Information
Divergence (SID) are believed to best discriminate different materials based on their
characteristic spectra. SA has already been used in conjunction with FH04 on remote
sensing data [Thom 10]. We will evaluate several similarity measures including SA
and SID for another graph-based segmentation algorithm in Section 4.3.3. For this
algorithm, we evaluate SA (Eq. 2.11) and SID (Eq. 2.12).

The ratio between weights is used when deciding whether to merge superpixels.
We empirically found that the highly non-uniform distribution of SID on our test
images poses a problem. Therefore, we apply histogram equalization on the edge
weights as explained in Section 2.4.2 (page 23). As a side effect, this procedure
produces integer values, effectively reducing FHO04 complexity [Felz 04]. Since
histogram equalization improves the results for SA as well, we make it a fixed part
of the algorithm.

Superpixel Mean Shift

We propose two new algorithms which combine multispectral superpixels with FAMS.
The idea behind both methods is to significantly reduce the amount of input data, yet
to maintain sufficient detail for obtaining a good segmentation quality. Depending
on how this is done, remarkable speed-ups can be achieved.

Per-superpixel Mean Shift (PSPMS) In this variant, we sacrifice spatial detail
for execution speed. Superpixels §;, j < ng are computed on the original image. The
feature space however is unchanged, i.e. it may consist of the nx spectral vectors
x or of their representation in another feature space, e.g. the spectral gradient.
For each S; we compute the centroid s; of all data points x; € S;. An adaptive
bandwidth is selected for each pixel x. However, instead of starting the mean shift
procedure at each x;, we start it at each s;. In all other aspects, PSPMS runs like
FAMS. As a last step, the cluster assignment /; of S; is back-projected to all x; € S;.
We obtain a full segmentation.

In our experiments we observe a fivefold to tenfold speed increase as compared
to FAMS. Algorithmic complexity is only reduced by a constant factor, as the adaptive
bandwidth selection still has a complexity of O(nx?). The mean shift procedure
however is considerably more time consuming than bandwidth computation due
to its iterative nature, and that is reduced to O(ns?). Segmentation results of
this variant best mimic FAMS behavior, as the superpixels only affect the spatial
resolution, but not the feature space.
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Figure 4.19: lllustration of PSPMS on Feathers image. Superpixels in (c) are com-
puted from edge weights exemplified in (b) (weights in y-direction not shown).
Using (c) for starting points results in the global clustering seen in (d).

Full Superpixel Mean Shift (FSPMS) In this variant, we fully leverage the super-
pixel data representation. The centroids s, j < ns form the feature space. Adaptive
bandwidths are computed per superpixel. Then, from each s; the mean shift is
performed. Cluster assignments are back-projected to the pixels after mode pruning.
To achieve good results, we need to alter the algorithm in bandwidth selection and
mean shift steps.

Bandwidth Selection. The bandwidth for each data point is chosen so that ng
nearest neighbors lie within its bounds. Georgescu et al. reason that the choice of ng
is not critical for the performance of the algorithm [Geor 03]. However, the adaptive
bandwidths are directly related to ng. If the feature space is sparsely populated, ng
has a strong effect on bandwidth size. As a result, data points influence a higher
number of shift trajectories, leading to fewer distinct modes. While typical input
images have 2'8 pixels (in our test images) or more, a superpixel segmentation on
these images produces between 2!! and 2!4 superpixels. Therefore a ny suitable
for FAMS or PSPMS is not suitable anymore for FSPMS and would yield a broad
under-segmentation. From our experiments we derive an effective rule for the
choice of nx: ng = p - 4/ns, whereas ng is the number of input samples, in our
case, superpixels. The linear factor p is a tunable parameter that influences the
coarseness of the segmentation. Georgescu etal. also suggest to take the feature
space dimensionality into account when choosing ng.

Mean shift. The key idea behind the mean shift algorithm is the estimation
of the density gradient. Our new feature space is based on the rationale that the
superpixels provide a good sparse representation of the image’s distribution. This is
only the case when each superpixel both represents a homogeneous region in the
image, and has the same weight as the points that are represented by it. Therefore,
we weight the bandwidth of each superpixel centroid by the superpixel size.

The main advantage of this variant is that complexity is reduced to O(nx log nx +
ns2). This makes the method viable for interactive applications, where a result
should be obtained within a few seconds.

Figure 4.19 illustrates the operation and results of PSPMS on an example im-
age. From the input image, SID edge weights are calculated including histogram
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equalization. FHO4 is run with parameter ¢ = 0.25 to obtain a rather coarse early
segmentation. PSPMS is then run with superpixels as input.

In the superpixel-based acceleration of FAMS, a viable compromise is found
between computational complexity and spatial resolution of the resulting segmenta-
tion. However, this works best for images with a considerably high spatial resolution
in relation to the depicted objects. While spatial features are steadily gaining more
traction in the field of remote sensing, e.g. for improving classification perfor-
mance [Fauv 13], or for reducing complexity in spectral unmixing [Shi 14], the
effective use of superpixels is still limited in many exemplary images from this
domain. The same limitation can be found in images depicting natural scenes, e.g.
from the Foster dataset.

4.2.3 SOM-based Clustering

Due to the aforementioned cutback of the sparsification in the spatial domain,
we now propose two methods that use a Self-organizing Map for efficient global
clustering. In the first approach, we incorporate the SOM into the FAMS algorithm.
Our goal is to match or approximate the solutions given by FAMS when applied on
the same input image. In the second approach, we establish a clustering method
based on the topological relationship of neurons in the map.

SOM-aided Mean Shift

The FAMS algorithm reduces the complexity of the shift operation by approximating
the nearest-neighbor search. Effectively, the hashing of each data point and subse-
quent early trajectory termination based on the hash leads to a quantization of the
feature space. This shows that it is viable to reduce starting points of the algorithms
by exploiting knowledge about the mode associated with another data point in close
proximity. In a similar spirit, Freedman and Kisilev reduce complexity by reducing
the sample set altogether [Free 10]. While their random selection of samples is tied
to a fixed bandwidth choice, a more representative smaller set of samples might be
capable of representing the data distribution well-enough without such constraints.
As was seen by example of the median shift, the LSH structure itself likely is not fit
to robustly generate such a representation.

We investigate a different take at reducing the input to mean shift in the feature
space. As explained in Section 4.2.1, mean shift is a density gradient estimator. In
Chapter 3 we discussed manifold learning methods to find a sparse representation
of the sample distribution. The self-organizing map in particular was shown to
well-capture the original data distribution in a quantized way. We suggest to apply
mean shift on said sparse representation to reduce complexity. Recall the definition
of the mean shift vector from Eq. 4.31,
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where X is the set of all available samples, in our case all pixels. We can represent
each pixel x by its best-matching unit, m.. The mean shift vector is then given as

2 (:;ﬁz) kg(”y_ k 2)
m(y) = ny, (Hy my ) Y
2

k 1 h(nD+2)
where ny, is the amount of pixels in X represented by my, that is, m is the BMU of
said pixels. The bandwidth &y is regularly computed in the bandwidth selection step
of FAMS, using M as data points.

Effectively, each pixel is approximated by its BMU. To find the mode for x, we
start the mean shift operation at m.. The result is then shared between all pixels
represented by m.. This reduces the complexity of the algorithm, including SOM
training and BMU lookup, to O (nxnp + nm?). Locality-sensitive hashing which
is typically a part of FAMS becomes unnecessary for efficient computation. It is
not employed to avoid the additional inaccuracy it would impose. This method is
denoted as mssom in our experiments.

(4.34)

SOM Topology Segmentation

We note that the previous approach exploits the capability of the SOM to find
a representative set of model vectors to describe the original data distribution.
However, it does not exploit the topological information the SOM provides on the
distribution. We can formulate two assumptions on the topology preservation in
the SOM. One, we can assume that neurons my; and m; are close in the feature
space if their locations #¥) and r(!) are in close proximity with each other in the map.
This means that the geodesic distance between #©) and () is well-approximated
by the Euclidean distance. Two, a cluster in the high-dimensional distribution is
represented by a cluster in the SOV, i. e. a connected component in the map.

Based on these properties, we apply the method by Felzenszwalb and Hutten-
locher on the SOM. The graph (V, &) is defined by the SOM lattice. The edge
weight between neurons my and m; is given by ||mj; — m;||>. Initially, each neuron
mj represents a component, corresponding to a single stage SOM clustering. Then,
the second stage consists of iteratively merging components based on the pairwise
comparison predicate given by Eq. 4.17 (page 86). To account for neurons that
represent the transition between two clusters in the SOM, we enforce a minimum
component size of 0.02n,;. Otherwise, transitional model vectors would often form
distinct clusters that do not represent a specific material or object in the scene.

Then, the cluster label | of each x is set to the label of m., whereas m. is the
BMU for x. We obtain a segmentation that has connected components in the SOM,
but is global in the image domain. As the clustering is performed on model vectors,
its time complexity is O (np1 log nyr), i. e. constant in nx. The upper bound in overall
time complexity of O (nxny) is caused by the final pixel labeling (which can be
highly parallelized).

As was noted in the related work, Wu and Chow incorporate map topology in a
hierarchical clustering scheme that is based on statistics for inter-cluster and intra-
cluster density [Wu 04]. Our method has several advantages over Wu and Chow.
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First, our clustering is performed independently of the image data. Measures for
merging clusters are derived solely on the SOM model vectors. This is advantageous
in computational complexity as well as algorithmic complexity. Second, Wu and
Chow only use the topology for a general selection of which components can
be merged. In our method, the direct relationship of neurons at the border of
two clusters is used to measure the difference between components. Third, our
method does not rely on any preprocessing or heuristics for removing neurons from
consideration. Instead, it is by design robust towards outliers and noise. This method
is denoted as somtopo in our experiments.

Fuzzy Clustering

Both our methods calculate a SOM in a two-stage approach to clustering, where the
image segmentation is achieved by mapping cluster assignments [, back to pixels
associated with my. This association is defined by Eq. 3.9. However, as discussed
in Section 3.2.2, we can gather more information about a pixel with a multi-BMU
lookup. This also holds in the case of clustering.

Consider a pixel x that contains a mixture of several prototype spectra contained
in the scene. Such pixels are likely to occur in remote sensing images with a low
spatial resolution. They are also found in the case of inter-reflectance, i. e. irradiance
on an object caused by the reflection of another object, or at the border between two
objects. The BMU array of these pixels typically contains BMUs from several clusters.
We can find these clusters and approximate their contribution to the mixture through
rank weighting.

The contribution of the cluster with label / to x is then seen as

Z[lck =1]-wy, (4.35)

k=1

where wy is obtained via Eq. 3.18 or Eq. 3.19 (see page 38) and ZZ; wi = 1.

4.2.4 Experimental Results

When evaluating segmentation algorithms on multispectral and hyperspectral im-
ages, we face the same challenges as in the case of edge detection. Ground-truth
data is not publicly available for any dataset of our domain to date. Creating such
data is hard: The mere definition of which boundaries in an image are relevant or
not, or likewise, which clusters should be split into two, is often subjective. The
Berkeley Segmentation Data Set is a great example for such a benchmark for color
images, which also shows the necessary amount of work [Arbe 11]. Each image is
annotated by several subjects, resulting in different levels of detail for the marked
contours.

Unsupervised quantitative measures were proposed for clustering evaluation
when ground-truth segmentations are lacking. We mentioned earlier the compact-
ness measure C computed by Eq. 4.22 on page 87. It has the shortcoming of
assuming hyperspherical clusters that share a diameter. Several other proposed
measures work only for monochromatic images [Chab 06]. Zhang et al. propose an
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entropy-based measure [Zhan 04]. Computation of entropy needs to be done band-
wise, is generally problematic for a higher dynamic range and even less applicable
to the continuous normalized or spectral gradient feature spaces. Corcoran etal.
introduce a measure for object-based analysis of remote sensing images [Corc 10].
It is inspired by the human vision system, designed for segmentation in the spatial
domain, and not applicable to a global clustering. Other measures that were applied
in the hyperspectral domain rely on the compactness, with an additional penalty on
the number of segments to counter the effect that over-segmentation profits from
the compactness measure [Zhan 12]. In short, we are restricted in capabilities of
quantitative evaluation and in most cases will rely on qualitative evaluation and
general statistics.

In some of the experiments, our focus lies in how the results of tested algorithms
differ from FAMS output. We use three statistics in judging the segmentations in this
regard. First is the number of obtained segments. In general, the segmentations
of FAMS provide enough detail without adverse over-segmentation. We expect to
obtain a similar number of segments as with FAMS. Second is the compactness C as
mentioned above. While it can be a misleading measure of segmentation quality, it
should be comparable across methods in our case, and we report it relative to FAMS.
Third is the Rand index [Rand 71]. It measures the similarity between two data
clusterings. For the set of pixels X we have corresponding sets of reference labels K
(computed via FAMS) and obtained labels £, respectively. For each pair of pixels x;,
xj, we have corresponding labels /;, I; and k;, k;. The Rand index is given by

D> =1 ki =kl + [k # 1, ki # k)]
XiEX x]‘EX
i#]
R = , (4.36)
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2]
which is the fraction of disjoint pixel pairs for which £ agrees with K. Perfectly
matching clusterings achieve R = 1. On images from the CAVE dataset, we mask
pure, non-shadowed background pixels from the computation of R, as they often
constitute a major part of the image, are particularly noisy and could undermine the
informative value of the Rand index.

We depict clustering results as color maps, whereas each label [ is assigned a
distinct color. Colors are randomly selected in the hue-saturation-value (HSV) color
space. We divide the hue range equidistantly according to the number of clusters,
while saturation and value components are set to 100 %. Black may be used as an
additional color. In some cases, for better discrimination, we also add a random
variety to the value component. Note that this is not done when spectral plots
are shown, as the parallel coordinate plotting relies on a transparency component,
which works best with a fixed value component. For more details see Section 5.3.1.

Our implementation of the proposed mean shift-based methods is a heavily
modified version of MultiSFAMS [Ange 05]. We added support for higher-resolution

images, parallelization of the adaptive bandwidth calculation, and Single Instruction,
Multiple Data (SIMD) acceleration for vector distance computations. We avoided
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Figure 4.20: Feature space comparison for clustering on Pompoms image. Please
refer to page 52 for an explanation of spectral distribution plots.

parallelizing the shift step as it interferes with early trajectory termination. Like-
wise, our implementation of FHO4 is based on the source code released by the
authors [Felz 04].

Feature Space Selection

Figure 4.20b shows a segmentation obtained by applying our FAMS version on the
Pompoms image from the CAVE dataset depicted in Figure 4.20a. At first glance,
the result does not look satisfactory. However, further investigation reveals that the
algorithm does in fact find distinguished clusters in the underlying distribution, as
can be seen in Figure 4.20d. Clusters are mostly driven by the overall magnitude of
spectral vectors. Geometric effects are very dominant in the original image feature
space, as discussed in Section 2.3. The segmentation distinguishes brightness
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Algorithm c Segments AC (1%) R Time (1s)
SG-FAMS 22.7+7.1 629.3 + 262.0
SG-FAMS* -1.0+2.7 -05+7.3 0.96 + 0.04

PSPMS 0.05 | +16.3+27.1 -1.1+3.8 096+0.03 | 113.2+39.9
0.25 | +14.8+20.2 +1.7+4.9 0.95+0.04 79.6 £32.8

FSPMS 0.05| +24+85 -25+£5.7 094+0.03 9.0+1.5
025| -3.3+£87 +3.8+11.0 0.88+0.11 59+1.1

Table 4.1: Statistical results averaged over nine test images.

variations on objects of uniform material. Different materials however are often
missed. In this example, pompoms of different colors fall in the same clusters.

To overcome this issue, we employ a different feature space, in similar fashion to
the use of the L*u*v* color space as opposed to RGB [Coma 02]. The spectral gradient
descriptor by design separates material information from reflectance content. Hence,
in order to get a mean shift segmentation that focuses on material properties we
use SG-FAMS, a spectral gradient variant of FAMS. In SG-FAMS we first compute
the spectral gradient from each pixel x (see Eq. 2.3, page 20), then use the gradient
image as input to the FAMS algorithm. An alternative for lessening the effect of
geometry is the Ly-normalized feature space (see Eq. 2.2, page 19). It is employed
by Huynh and Robles-Kelly for material clustering [Huyn 10b].

Figure 4.20c shows the segmentation obtained by SG-FAMS on the same image.
We observe a smaller amount of segments that better cover the different pompom
colors. Different materials fall into the same segment in rare cases. This is also
reflected in the spectral gradient distribution plot in Figure 4.20e.

Superpixel Meanshift

We investigate our proposal for a spatial approximation of SG-FAMS using superpix-
els, namely the per-superpixel mean shift (PSPMS) and full superpixel mean shift
(FSPMS) algorithms. Both the SA and the SID similarity measures were initially
tested for edge weights w;;. Both work well when histogram equalization is applied.
Most often, the segmentations obtained with SID are on-par or of higher quality. We,
therefore, only report results computed with SID. We present two different settings
of ¢ to judge the influence of superpixel size. We keep the FAMS parameters fixed to
p = 1 for the adaptive bandwidth selection, K = 20, L = 10 for LSH [Geor 03].

All methods were run five times on an Intel Core i7-2600 CPU with eight threads.
For ¢ = 0.25, about 2350 superpixels were obtained on each image, with a standard
deviation between images of 230. For ¢ = 0.05, about 16700 superpixels with
a standard deviation of 1180 were obtained. Table 4.1 lists the number of final
segments and execution times for each method. The high standard deviation for
FAMS execution times is explained by varying opportunities for early trajectory ter-
mination in the different images. Furthermore, it lists the difference in compactness,
AC, when compared to SG-FAMS in percent, and the Rand index with SG-FAMS as
a reference. A low value for AC, preferably negative, and a high value for R are
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(a) image in true color (b) hand-labeled objects (c) SG-FAMS, 744.9s

(e) PSPMS on (d), 82.4s

(g) superpixels, c = 0.05 (h) PSPMS on (g), 116.4s (i) FSPMS on (g), 9.1

Figure 4.21: Segmentation results on Feathers image. Execution times after image
loading are denoted next to algorithm names.

(a) SG-FAMS, 407.5s (b) PSPMS, ¢ = 0.05, 1205 (c) FSPMS, ¢ = 0.05, 8.1

Figure 4.22: Segmentation results on Flowers image (see Figure 3.2 on page 33).
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desired. The listed method SG-FAMS* is a second run of SG-FAMS with a different
random initialization for LSH. It shows the variation in these numbers that should
be expected. Individual results on the nine images are listed in Appendix D on
pages 176-177.

While FSPMS obtains a similar amount of segments as SG-FAMS, PSPMS tends to
a slight over-segmentation. The majority of the spike in segment numbers however
can be attributed to a failure in appropriately merging superpixels in the noisy
background of the Egyptian Statue image. We will discuss this image more closely
on page 104. Another image that led to a considerable discrepancy in segment
numbers is Flowers, where these segments also occur in a background region (see
Figure 4.22b). From the numbers AC and R, we see that a combination of FSPMS
with a small amount of superpixels leads to a significant degradation in how well
the SG-FAMS result is replicated. Both PSPMS and FSPMS fare well in regards of
AC and R with the smaller superpixels. The achieved speedup is quite considerable.

In Figure 4.21, the relationship between average superpixel size and PSPMS,
FSPMS results is illustrated. Figure 4.21b shows a hand-labeling from [Jord 12b]
that helps in judging the segmentation quality. We can see that superpixel size
has less effect on the result of PSPMS than FSPMS, whereas in the latter case, it
influences the overall characteristic of the segmentation. In this image, FSPMS
has the tendency to generate slightly more segments, especially in the background.
A challenging example is the Flowers image as depicted in Figure 4.22. A good
segmentation of all six flowers is hindered by shading effects. PSPMS mostly differs
from SG-FAMS in how it handles the noisy background. In general, both SG-FAMS
and derived methods have a tendency to over-segment the background. FSPMS
puts emphasis on different aspects. All methods successfully capture the flowers as
well as the leaves in the background. An example FSPMS segmentation on another
dataset can be found in Appendix D on page 178.

We observe that on our data, PSPMS provides a reasonable speed-up without
evident loss in segmentation quality. Another advantage of PSPMS over SG-FAMS
in many, but not all images is that it is more resistant to noise on the pixel level.
FSPMS segmentations are not always on par with the other methods, as some details
are missed in comparison. However, they prove functional and can easily be further
refined in an interactive setting.

SOM-based Clustering

In the same vein as in the previous test, we now consider our quantization in the
feature space, mssom as an approximating alternative to SG-FAMS, and our topology-
based SOM clustering method somtopo. In the mean-shift based methods, we use
the same rule for selection of adaptive bandwidths and otherwise parameters as in
the case of FSPMS. In the case of mssom with 7, = 1000, we set parameter p = 0.65.
For somtopo, we train 2-D SOMs and define ¢ = 0.1. This test has been carried out
on an Intel Core i5-6600 CPU with four threads.

Table 4.2 shows statistical results for these methods on the same dataset as in
the previous test. As we found that FAMS works better with a higher number of
feature vectors, we trained a larger SOM of size np = 20° as well as a regularly sized
map. The result for this variant of mssom matches the original result closely. With
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Algorithm ny | Segments AC (1%) R Time (1s)
SG-FAMS 22.7+7.1 553.5 + 350.5

mssom 8000 1.3+50 -6.0+11.1 0.93+0.04| 129.7+8.5

1000 | -8.2+6.3 -0.1+10.6 0.91 +0.05 10.5+0.2

somtopo 4096 | -6.8+7.4 0.0+13.8 0.90+0.04 13.3+0.6

1024 | -7.8+7.5 -0.5+13.1 0.90+0.05 34+0.1

Table 4.2: Statistical results averaged over nine test images.

(a) mssom, 1) = 10648 (b) mssom, 15y = 1000 (c) somtopo, 1y = 1024

Figure 4.23: Segmentation results on Flowers image. For SG-FAMS see Figure 4.22a.

np = 1000, less clusters are formed. As somtopo is not a mode-seeking algorithm,
we can expect less agreement with the SG-FAMS result in general. The obtained
numbers for C and R hint at a similar clustering quality. We also see that for this
method, a larger map comes with no general benefit. When also taking execution
time into account, somtopo appears quite strong in this comparison. Individual
results on the nine images are listed in Appendix D on pages 176-177.

Figure 4.23 shows results on the Flowers image, complementing Figure 4.22. We
can see that the mssom methods differentiate the flower on the top right, similar to
FSPMS, where SG-FAMS and somtopo only produce one segment. somtopo shows
more details on the bottom-left flower. On this image, the methods presented in
Figure 4.23 show less noisy segments in the background than SG-FAMS and also
less background segments than the superpixel methods. This is not a general rule,
in some cases we see the opposite.

In Figure 4.24, we see a failure case of SG-FAMS. See Figure 4.9a on page 74 for
a true-color display of the image, and Figure D.9 on page 178 for a more revealing
false-color visualization. The Nofretete statue can be considered under-segmented,
some areas of the image, including on objects, lead to a noisy over-segmentation and
some object parts share a cluster with background regions. The SOM-based methods
fare better here, omitting a noisy over-segmentation and preserving more details on
the stuffed toy, which also results in a significantly improved compactness. While
somtopo is not a shift-based algorithm, it has similar problems as the shift-based
methods. It performs slightly worse than mssom with a large map size, and on-par
with mssom on a similar map size (not shown here), with the benefit of a very fast
computation.
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(a) SG-FAMS (b) mssom, np; = 10648 (c) somtopo, 1) = 1024

Figure 4.24: Segmentation results on Egyptian Statue image. True color on page 74.

(a) SG-FAMS (b) mssom, 15y = 1000 (c) somtopo, 1) = 1024

Figure 4.25: Segmentation results on Fake and Real Peppers image. Marked regions
in (b) show pepper stems, as explained in the text. True color on page 15.

Figure 4.25 shows results on the Fake and Real Peppers image depicted in Fig-
ure 2.6a on page 15. The SG-FAMS segmentation shows a clean result that captures
the six different pepper materials, shadows and specular highlights in different seg-
ments. We also observe strong inter-reflections from the peppers to the left towards
the peppers in the middle, which fall into the segments of the originating materials.
Here, we display the result of the smaller SOM in Figure 4.25b to show a deficit in
its segmentation. While all peppers, fake and real, fall into their respective segments,
the stems of the real peppers share a segment with the background. Furthermore,
the green stems of the fake peppers fall in different segments than the body of the
green plastic pepper. Both effects are marked in white in Figure 4.25b; a more
detailed explanation of the image can be found in Figure 5.18 on page 145. On this
image, the behavior of somtopo is more similar to SG-FAMS. A distinction is how
the background is handled. somtopo finds more segments, which are in general
not expected, however they also reveal secondary shadows (lime green) next to the
primary shadows (strong green), disclosing that a second light source was present
when the scene was captured.

We have seen that most segmentations presented in this experiment are of
similar quality according to statistics. However, to assess clustering quality in a
stringent way, the individual segmentation results need to be studied in detail. Our
observation on this dataset is that, while not perfect, the SG-FAMS method in general
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(a) Input in true color (b) HRK [Huyn10b] (c) mssom

Figure 4.26: Material segmentation results on the Cbrufefields, Cyflower, and Ribeira
scenes from the Foster dataset.

provides a usable clustering of the high-dimensional image data. Like with FSPMS,
when providing a quantized feature space to FAMS, as is done with mssom, the
characteristics of the segmentation can change for better or worse. A larger map is
more robust in this case. It stays closer to the SG-FAMS result and we also found
less segmentation errors in visual inspection of the results. The results of somtopo
match SG-FAMS results more closely than one might expect, given the algorithmic
differences. It appears most viable for clustering in an interactive setting, due to
it being more reliable with a smaller SOM and as a result of that, its outstanding
computational performance.

Material Prototype Learning

In this study, we investigate the particular problem of finding prototypes for materials
contained in a natural scene [Jord 14]. We compare our SOM-based mean shift
method, mssom, with the method by Huynh and Robles-Kelly, which we denote as
HRK. A valid clustering and respective cluster modes, or means where modes are not
determined by the algorithm, are supposed to be found on images from the Foster
dataset. The dataset is well suited for benchmarking as it contains natural scenes
with a high spatial resolution. As HRK employ the Ly-normalized data descriptor, we
operate in this feature space for all methods in the comparison. We choose mssom
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(a) normalized spectra (b) HRK [Huyn10b] (c) mssom

Figure 4.27: Comparison of extracted prototypes for the Cbrufefields, Cyflower, and
Ribeira scenes. (a) Normalized spectral distribution; (b), (c) Material prototypes
yielded by HRK and mssom. Please refer to page 52 for an explanation of spectral
distribution plots.

over somtopo due to its advantage of finding the mode in a cluster, which resembles
the corresponding material prototype more likely than the mean of a segment.

The experimental results of [Huyn 10b] presented here were produced by Cong
Phuoc Huynh for this comparison. Due to memory constraints, he performed a 1:2
subsampling of the images (a 4-fold reduction of image size without smoothing).
HRK requires a user-determined number of clusters which was set to 20 in this
experiment. For mssom, we train a 3-D SOM of size n); = 1000. The mean shift step
is run with p = 0.6 for the adaptive bandwidth selection. Both methods were run
with the same parameter settings on all images.

Figure 4.26 shows segmentation results obtained by both methods on three im-
ages. While mssom found 13, 12, and 10 modes in the three images, respectively, the
number of clusters was set to 20 for HRK to reduce the effect of under-segmentation.
We observe that both methods are capable of discerning most relevant materials
in the scene. Nonetheless, in the middle row of Figure 4.26b, we see that HRK,
even with a higher number of clusters, suffers from under-segmentation over several
image regions. At the same time, several clusters are generated from the noisy
background of the image. In the third image, Ribeira, HRK achieves a good material
separation of the scene, but still is affected by noise on the roof of the buildings,
which cause cluster fragmentation.

Figure 4.27 depicts the material prototypes found in the respective images from
Figure 4.26a. To derive these prototypes, in the case of HRK, the mean of each
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cluster is considered as described in [Huyn 10b]. In the case of mssom, we take
advantage of the mode-seeking and the prototypes correspond to cluster modes. The
parallel coordinates plots of normalized spectral distributions in Figure 4.27a help
to visually assess the material prototypes found by HRK and mssom. We can observe
that both methods succeed in capturing the prominent materials in the scene. In
the case of HRK, some of the clusters found are more descriptive than others. A
good example is the Cyflower scene, where several prototypes delivered by HRK
correspond to noise in the data. This produces “spiky” spectra that do not follow the
intuition of smooth radiance in the spectral domain across the image.

Per the motivation of our algorithm, results similar to mssom can be obtained
with the baseline FAMS algorithm. An example is shown in Figure D.8a on page 178.
Running our parallelized FAMS implementation on these images results in an ex-
ecution time of around 10 to 11 hours per image from this dataset using an Intel
Core i7-2600 CPU. The method of Huynh and Robles-Kelly took in average about six
minutes when performed on a subsampled version of the images as discussed above.
Execution times of mssom, however, stay well below a minute, faster than the results
reported in [Jord 14] due to our optimizations as explained in Section 3.2.1.

Fuzzy Clustering

As noted in Section 4.2.3, the two-stage approach combined with a ranked BMU
lookup allows for a fuzzy clustering, where each pixel is seen as a member of several
clusters. To illustrate the use of such a clustering in multispectral image analysis, we
test it on the Superballs image, which contains an array of plastic balls of various
highly-reflective colors. The balls in the image are subject to several inter-reflections,
some of which are hardly to be seen in the true-color display.

We run mssom on the spectral gradient of the image, with 20 Gaussian-weighted
BMUs to form cluster memberships according to Eq. 4.35. In Figure 4.28, we depict
the results of hard assignment next to a visualization of soft assignment and the
pixel-wise weighting of individual clusters. The result in Figure 4.28f is interesting
by itself, as it effectively provides an index of specular reflectance for each pixel.
Note, by close inspection, how this includes specular highlights that were reflected
from other balls. Furthermore, Figure 4.28d and Figure 4.28e reveal certain inter-
reflections: Cluster 3 contains both the pink balls, and reflectances from pink or red
on blue. Likewise, cluster 4 contains both the yellow balls, and reflectances from
yellow on red, as well as red and pink on green. The cluster assignment of the inter-
reflectances depends on colors of both the originating and the receiving material,
reflecting the respective mixture. Finally, the clusters depicted in Figures 4.28g,
4.28h, 4.28i also show the regions of the balls in said clusters where either specular
highlights or inter-reflectances occur and how strongly these negatively affect the
mixture component of the respective clusters.

Our experiments reveal that unsupervised clustering of a multispectral scene
is applicable and able to provide helpful results for scene analysis. Selection of
an appropriate feature space for the application is crucial for effective clustering.
Furthermore, both mssom and somtopo are fast, reliable and versatile methods
that can be used in an interactive setting. Visual assessment of the clustering is



4.3. Supervised Segmentation 109

(d) cluster 3 (f) cluster 5

(g) cluster 6 (h) cluster 7 (i) cluster 8

Figure 4.28: Fuzzy clustering of Superballs image. The image is cropped for better
visibility.

then possible through the distribution plots discussed in more detail in Section 5.3.
We will now investigate the case where not a global clustering is desired, but the
segmentation of specific objects in a scene, which may contain spectra originating
from several clusters.

4.3 Supervised Segmentation

In an interactive analysis framework, input from the user can be a valuable prior to
segmentation tasks. As a user explores the multispectral data step-by-step, they may
want to compare the spectra of specific objects in the scene or examine reflectance
properties of a certain area in detail. Automated segmentation replaces tedious
manual labeling of this area. In Figure 4.29 we show the results of an unsupervised
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(a) image in true (b) SG-FAMS (c) User-provided (d) supervised seg-
color segmentation seed points mentation

Figure 4.29: lllustration of the difference in output between unsupervised cluster-
ing and seed-based segmentation on Fake and Real Peppers image.

segmentation on a test image using the SG-FAMS algorithm detailed in the previous
section (Figure 4.29b) next to those of a guided segmentation (Figure 4.29d) that
takes a manually created seed map (Figure 4.29c) as an additional input. The
example illustrates that in certain scenarios, the ability to guide the algorithm lets
the user obtain a segmentation that is much more helpful for a specific analysis task.
The concept of seed-based segmentation is based on incorporating user-provided
prior knowledge of the scene and the task at hands in the form of image annotations.
In the binary scenario, a foreground object is to be separated from the background.
The user input can range from a loose trace of an object contour or a bounding box
to a set of marked foreground and background pixels. Based on this information,
all other pixels are then determined as belonging to either the background or the
foreground. This concept can also be extended to multiple classes. We make it a
powerful tool within our interactive workflow that will be described in Chapter 5.

4.3.1 Related Work

In the last decade, algorithms based on graph theory have dominated the field of
supervised segmentation on both monochromatic and RGB images, after several
powerful graph-based image segmentation algorithms were introduced. In 1997,
Shi and Malik proposed the unsupervised normalized cuts algorithm [Shi97]. In
2006, Leo Grady introduced random walks to image segmentation [Grad 06]. Both
create a graph with a node for each pixel and edges between pixels in a local spatial
proximity, whereas the edge weights are based on pixel dissimilarity. While the
normalized cuts try to find a minimum cut of the graph that separates foreground
and background, Grady’s method computes the likely destinations of a random
walker. A third paradigm to graph-based image segmentation are watersheds, where
the intensity image is considered as a topographic relief [Cous 09].

In 2009, Couprie et al. introduced a framework for supervised segmentation that
incorporates several key methods based on graph theory [Coup 09, Coup 11]. Their
power watersheds integrate graph cuts [Boyk 06] with the aforementioned random
walker and watersheds in a single mathematical framework.

For this algorithm family, the input consists of three parts. First, the pixels X,
which are strictly used in a differential manner. Second, the spatial location of each
pixel. Third, two sets of pixel locations, the foreground seeds ¥ and background
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seeds B. The spatial relation of pixels is reflected in a graph structure. Each pixel x;
corresponds to a vertex v; € V. The edge set & connects vertices in a 4-connected
lattice. The edge weight w;; of an edge e;; is a function of the similarity between x;
and x; and will be examined in more detail later.

We compute an nx-element vector p, where p; is the probability for x; to belong
to the foreground or background class via

"= argmin ) wflpi—pif'+ ) wilpi? + D) wylpi=1["
P ejes v €V v; €V (4.37)

s.t.VieF :pi=1,VieB:p; =0,

where wr; and wg; denote unary weights penalizing foreground and background
affinity. Simple thresholding leads to a binary segmentation s with s; = 1 (fore-
ground pixel) if p; > %, and O (background pixel) otherwise. Based on the selection
of parameters p and g, this minimization matches the graph cuts (p positive finite,
g = 1), random walker (p positive finite, 4 = 2), or shortest paths (p and g converge
toward infinity together with the same speed) algorithms. With p = o0, g > 1, the
power watershed algorithm is obtained [Coup 11].

Established applications of this method are 2-D intensity images, RGB images, as

well as 3-D medical data. For these, Couprie et al. define the edge weights
wij = exp (=(d(xi, x)))?) , (4.38)

where g is a constant and d(-, -) is the Ly norm [Coup 09] or the Lo, norm [Coup 11].
For hyperspectral data, these choices are reasonable if a single band or the PCA of
the image is used as input. However when operating on the full spectra of the image,
a more appropriate distance function should be employed.

4.3.2 Hyperspectral Power Watersheds

We identified the edge weighting as a primary concern when adapting the Power
watershed algorithm to hyperspectral data. As discussed in Section 2.4, L,-based
distances are often limited in comparing high-dimensional spectral vectors. There-
fore, we evaluated a range of distance functions on multispectral data. This work
was first described in [Jord 12b].

Since a common goal of supervised segmentation is to discriminate specific
objects in a scene, a similarity measure that discerns materials is a fitting choice for
d(x;, x;). For this application, we examined the measures SA, NED, SID, SIDSAM;,
and SIDSAM),, as defined in Section 2.4.2 (see pages 21-23). As the difference in the
results of SIDSAM; and SIDSAM, is negligible, we only report results for SIDSAM; .

Power Watersheds with g = 2 is effectively a graph-cut algorithm where a random
walker is employed in the special case of plateaus. A plateau describes a subgraph
where all edge weights are equal, and the random walker works as a regularizer to
provide a smooth, reasonable cut through the plateau. Without the random walker,
the cut could happen on arbitrary edges, e.g. resulting in a zig-zag segment border.
In the original implementation for 8-bit monochromatic or color-triplet data, the
plateau detection could simply test for equal edge weights (stemming directly from
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intensity differences, as seen in Eq. 4.38), while in our case of non-integer weights,
a simple test for equality fails. We can solve this problem by employing a bucket-sort
algorithm [FEsti 99]. However, highly non-uniformly distributed dissimilarities e. g.
in the case of SAM and SID, do not work well with a fixed bucket size. To avoid this
problem, we can apply histogram-equalization on the edge weights as explained in
Section 2.4.2 (page 23). Note that this has neither an effect on the graph-cut or the
random walker algorithms separately. The former is only taking the order of edge
weights is taken into account, but not their ratio, while the latter is confined to the
plateau.

Data-driven measure

In Section 4.1, we showed that by using the topological distance inside a self-
organizing map, we obtain valuable differential information between adjoining
pixels. For this, the data-driven pseudometric SOM; is given in Eq. 4.9 as

SOMi (x, y) = ‘ (™) Z ()

‘2 , (4.39)

where r(¢) is the location in the map representing x. As this measure is well-suited
for edge detection, it is a natural extension to also use it in the context of graph-cut
based segmentation methods. The particular strengths of a SOM-based similarity
measure are its flexibility and its generalizability, as it adapts itself to the present
data.

Figure 4.32 on page 116 shows, for the tested similarity measures, example
gradient maps in the x-direction by computing the similarity of each pixel with the
pixel to its right. Edge weights in a 4-connected lattice are computed from this data
and the gradient in y-direction resp. to Eq. 4.38.

4.3.3 Experimental Results

To the best of our knowledge, no ground-truth segmentation is available for any
of the publicly available multispectral or hyperspectral datasets. To close this gap,
we define a comprehensive set of segmentation tasks with associated ground-truth
segmentations on the CAVE multispectral image dataset [Yasu 10]. See Table 2.2 on
page 12 for the characteristics of this dataset.

Segmentation Tasks

We chose this dataset as it is well-suited for generating ground-truth segmentations,
consisting of high-quality multispectral images that depict objects of different ma-
terials in a laboratory setting. We hand-labeled certain objects in nine images that
cover a good variety in difficulties. Labeling was performed within our software
framework, using the visualization capabilities described in Chapter 5. The hand-
labeling was done by carefully considering all spectral gradient bands of an image
in which the object under investigation is clearly separated from its surroundings.
In total we have 32 segmentation tasks.
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(a) ground truth (b) task 1 (c) task 2

—

—_—

(d) task 3 (e) task 4 (f) task 5

Figure 4.30: Segmentation tasks for Flowers image. For each task, one flower is
defined as foreground, the rest of the image as background. The image is depicted
in Figure 2.2 on page 7.

We also provide seed point input for the specific tasks: We place foreground seeds
in the form of a circle with a 5-pixel radius in the center of each object. Background
seeds are placed as hand-drawn lines on the top, left, bottom and right of each
object with a distance of 20 to 40 pixels to the object contour. The seeds mimic a
typical usage scenario.

Figure 4.30 shows ground-truth labels and seed inputs for the five tasks defined
for the Flowers image. Note that the algorithm only sees a ternary map: Black
foreground seeds, white background seeds and gray undetermined pixels. See
Figure 4.31c, Figure 4.33b, and Figure 4.29c (three tasks combined) for further ex-
amples. We provide these segmentation tasks freely accessible on the web [Jord 12a].

Benchmark

Our benchmark is two-fold: On the one hand, we compare the different edge weight-
ings L, SA, SID, SIDSAM, NED and SOM. On the other hand, we test four different
algorithms that are included in the framework of Couprie etal. First is the graph
cut based on a maximum spanning forest computation, mfs. Second is the power
watershed algorithm with g = 2, pw, that includes a random walker. The other two
algorithms are based on these, however they employ geodesic reconstruction, msfg
and pwg, respectively. Parameters of these algorithms are kept to the implementation
defaults of [Coup 11], except for the new edge weighting. For the SOM similarity,
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(a) image in true-color (b) ground truth (c) seed points

Figure 4.31: Seed input for Egyptian Statue image used to generate the results
shown in Figure 4.32.

a 32 X 32 SOM s trained. Training takes less than 5 seconds and is included in
reported execution times.

From the difference between ground-truth and segmentation result we compute
precision, p, (the probability that a machine-generated foreground pixel is a true
foreground pixel), recall, r, (the probability that a true foreground pixel is detected)
and Fq-score,

pr
p+r

F1=2 (4.40)

These quantities are suitable for our task as they do not depend on image size,
but only the number of machine-generated foreground pixels and true foreground
pixels. We use a color-coding when displaying detection performance on individual
image and task combinations as follows. White: detected true foreground pixel;
Dark green: missed true foreground pixel; Red: Background pixel misclassified as
foreground pixel. Black: background pixel, correctly classified.

Results

In Table 4.3 the average performance over all images is reported. Average execution
time (in seconds) includes training once per image for SOM. As the geodesic
reconstruction had little to no effects even on the single results, mfsg is omitted. In
Table 4.4, results per-image are presented for each similarity measure in its overall
best performing algorithm combination.

It can be observed that the power watershed algorithm performs well for our
application. The use of an edge weighting specific to our domain is important.
This is indicated by the bad performance of L, which is a good choice for RGB
images. The most successful similarity measures SA and NED perform similarly,
both qualitatively and quantitatively. They share the property of scale invariance,
but are prone to noise in dark image regions. This explains their considerably bad
performance on the Egyptian Statue image shown in Figure 4.32 (algorithmic input
shown in Figure 4.31a, 4.31c). Here, the foreground object is not well separated
from the background due to being partly self-shadowed. SA (see Figure 4.32b) and
NED respond more strongly to noise in the background than to the object boundary
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Measure Algorithm Precision Recall F1-score Time (s)
NED pwg  0.908 0.971 0.929 + 0.073 6.0
SA pw 0.896 0.978 0.928 + 0.067 6.8
SA msf  0.892  0.978 0.926 + 0.065 0.7
SA pwg 0.891 0.979 0.923 + 0.071 6.8
NED pw 0911 0.962 0.919 + 0.089 1.0
NED msf 0.907 0.962 0.917 + 0.091 1.0
SOM pwg 0.897 0.925 0.898 + 0.074 18.6
SOM pw 0.897 0.925 0.898 + 0.074 18.6
SOM msf 0.894 0.903 0.886 + 0.057 9.6
SID msf 0.846 0.973 0.867 + 0.249 2.8
SIDSAM msf 0.819 0.972 0.849 + 0.245 3.4
SID pwg 0.888 0.872 0.837 +0.210 8.5
SID pw 0.889 0.872 0.837 +0.210 8.6
SIDSAM pw 0.944 0.764 0.793 + 0.259 10.9
SIDSAM pwg 0947 0.763 0.791 + 0.266 10.7
Lo pw 0937 0.588 0.659 +0.214 8.9
Lo pwg 0.923  0.587 0.655 +0.217 8.9
Lo msf  0.927 0.538 0.598 + 0.291 0.9

Table 4.3: Average performance of measure/algorithm combinations.

Balloons/4  Statue/1 Food / 4 Lemons/2  Peppers/3
Lo 0.97+.04 0.51 0.72 + .24 0.46 + .40 0.50 + .35
SA  0.97 +.03 0.84 099+.01 099+.01 0.99+.01
SID 0.96 +.03 0.21 0.98 + .01 0.99 + .00 0.99 +.01
SIDSAM  0.96 + .03 0.21 098+.01 095+.05 0.99+.01
NED 0.97 +.03 0.77 0.98 + .01 0.99 + .00 0.99 +.01
SOM 0.98 + .01 0.91 094+.05 098+.00 0.95=+.05
Feathers /6 Flowers/5 Toys/2  Superballs/5
Lo, 082+.09 050+.29 048+.04 0.97 +.02
SA 083+.17 094+.04 094+.05 0.86+.17
SID 0.89+.06 090+.13 0.92+.02 0.96+.05
SIDSAM 0.82+.17 0.89+.13 0.94+.04 0.90+.12
NED 0.89 +.07 0.87+.15 0.94 + .05 0.96 + .03
SOM 0.83+.17 0.89+.07 0.77+.03 0.83+.13

115

Table 4.4: Average Fi-scores per edge weighting method on each image. The
number of segmentation tasks is denoted next to the image name.
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(a) Lo (b) sA

(d) SIDSAM;, (e) NED

(j) SIDSAM; (k) NED (1) soMm

Figure 4.32: Gradients according to different similarity measures in x-direction
(top) and their segmentation results (bottom) on Egyptian Statue image.
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(a) Image in true color (b) Seed points (c) sA

> H

(d) NED (e) SIDSAM (f) som

od

Figure 4.33: Example segmentation results on Stuffed Toys image, one of two tasks.

in the shadowed region. This is a case where the SOM similarity measure draws an
advantage from being trained on the specific image.

The SID measure and its combinations with SA, SIDSAM; », do not perform as
well in our experiment. While results are often on par with SA, they are not reliable,
as revealed by the high standard error. The measure poses specific problems to
power watersheds, which makes the less powerful graph cut algorithm perform
better. The SOM-based similarity did not perform best in this experiment. However,
the results show that the SOM did indeed adapt well to the application, purely based
on the data presented to it in training, while the other tested similarity measures
where specifically designed for material discrimination based on spectrum. The SOM
can be further adapted to a specific scenario by changing parameters of training
and read-out, while the other measures are fixed. Typically, the right measure needs
to be chosen based on application domain [Guti 10], while the SOM approach is
general by design.

Figure 4.33 depicts one of the most challenging tasks in the benchmark. The
foreground object is partially occluded. Here SIDSAM performs best. SA and
NED produce very similar results. The complete segmentation results are available
at [Jord 12a].

Our experiments reveal that algorithms from the power watershed family can
deliver a strong performance for multispectral segmentation. A straightforward
attempt of using the Chebyshev distance does not yield satisfactory results. However
by using other similarity measures, the method is reliable even when only few fore-
ground seeds are placed and background seeds only provide a rough, disconnected
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outline of the object. The graph-based segmentation method is remarkably robust
against imbalanced edge weights, disconnected boundaries and noisy regions, where
single pixels elicit random, strong edge weights with their neighbors. This is why, in
some cases, similarity measures that performed poorly in edge detection significantly
gain in performance when combined with this algorithm. Nevertheless, we observe
that in some cases, the SOM; measure outperforms other measures significantly. An
investigation in how SOM; would improve on SOM; for this task is subject to future
work.

4.4 Discussion

In this chapter, we visited three important fields in image processing for the analysis
of multispectral and hyperspectral images.

We first addressed the difficult problem of edge detection on images with many
bands. Most work on edge detection has been done on grayscale images, with
extensions to tristimulus data. Exceptions are a method by Toivanen etal., based on
a global ordering and prone to producing artifacts, and SEDMI, based on ensemble
clustering, which is slow to compute. We found that the high dimensionality of
hyperspectral data is a challenge for other methods, which are either based on gradi-
ents or vector ordering. These approaches highly dependent on a suitable similarity
measure. Existing measures, even when designed specifically for hyperspectral data,
fall short in some of our test images. We proposed two variants of a data-driven pseu-
dometric that is based on a self-organizing map. The second variant improves results
by a changed SOM lookup algorithm. Both pseudometrics are extended to mimic a
Sobel filter, which comes handy when applying them with the popular Canny edge
detector. In our experimental evaluation, we found that while the vector-ordering
based RCMG algorithm improves on edge detection results of the Laplacian method,
it still suffers from deficiencies of the established similarity measures. The proposed
measures deliver good results on our test images for both the Laplacian and RCMG
edge detectors. They also perform favorably when compared with SEDMI for both
continuous edge maps (RCMG) and binary edge maps (Canny).

Second, we investigated global segmentation, or clustering, of the image. Other
than what is common for regular color images, the data is clustered in the hyper-
spectral feature space without spatial context. However, we found that the use of a
derived data descriptor, e. g. Ly-normalized or spectral gradient, can be of significant
help for material-based clustering. Methods exist that can produce satisfactory
segmentations of multispectral and hyperspectral data. One prominent example
is the mean shift algorithm. However, it is slow to compute even for images of
small dimensions. We derived two methods for speedup for the FAMS algorithm,
which is a popular variant of high-dimensional mean shift. One works with an
adaptive reduction in spatial resolution. The other is based on a quantization of
the feature space derived by a SOM. Both methods allow clustering in interactive
time constraints. When reviewing work on SOM-based clustering, we realized that
as of now, the learned topology is not used most effectively. Building on recent
work in the field of superpixel segmentation, we derived the somtopo algorithm
as a new topology-based SOM clustering method. When compared to the mean
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shift variants, it has the advantage of a simpler design: It does not need bandwidth
selection or mode pruning steps, and is overall faster to compute. The experimental
results reveal that obtained segmentations are generally comparable to the output
of the baseline FAMS algorithm. The somtopo algorithm can be recommended for
an interactive setting, where fast computation is of utmost importance. During an
analysis session, the user can easily fine-tune segmentation parameters as well as
results.

We then moved to a scenario where the user defines a specific segmentation goal
by providing a set of points to be included in a segment or left out, called seeds.
Therefore, spatial content is very relevant to the segmentation, which advises the use
of a graph-based segmentation algorithm. We built our work on the mathematical
framework proposed by Couprie etal.. It includes the most prominent seed-based
methods as well as an extension under the name power watersheds. To the best of
our knowledge, no prior work exists on seed-based segmentation of multispectral
or hyperspectral images. We designed a benchmark for such algorithms based on
the publicly-available CAVE image dataset. The tasks in the benchmark mimic a
typical usage scenario, however seeds are placed purposefully scarce. Although the
tasks are generally challenging, the proposed method already produces convincing
results. In practice, users tend to provide richer seed information, which makes the
functionality even more reliable for day-to-day use.

The work carried out provides capable tools for interactive inspection of hy-
perspectral data. In Chapter 5, we discuss visualization methods that match the
automated analysis to form our software framework.
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Chapter 5

Visualization

The high dimensionality of hyperspectral data makes it inaccessible to the human
observer at first. Likewise, it is difficult to analyze high-dimensional data, or find
relevant information in it, by automated processing alone. Unsupervised algorithms
may fail to overcome the challenges that come with multispectral and hyperspectral
images. Qualitative analysis is necessary to assess the plausibility of algorithmic
results, but it can also be helpful for generating prior knowledge. Consider an
image taken for the first time for a specific application, e. g. exposing hidden or
obscured text on a palimpsest. With the right tools, we can discover a great amount
of information about said image through manual analysis that helps us in designing
an algorithmic solution to our problem. For example, we might be able to deduce
the most relevant bands for our application or how many different materials can be
found in the spectral data.

In this chapter, we first present common approaches to visualization of mul-
tispectral and hyperspectral imagery. Traditional methods include data displays
within the spatial layout of the image or commonly-used plotting tools. A popu-
lar visualization technique coined false coloring assigns a color to each pixel that
encodes most-relevant data related to the pixel. We present a new false coloring
technique that is learned in an unsupervised manner and is designed to quickly
expose disparities in the data.

We then move to interactive visualization, as opposed to the currently used static
displays. Interactivity allows us to present the data in a very rich fashion that is
complimentary to existing visualizations. It gives direct visual access to the spectral
distribution of the whole image, or specific objects in the scene, and their relation to
each other. This is even more powerful when selecting or combining different data
descriptors. As a matter of fact, certain spectra of interest can often be identified by
simple intensity thresholding in a few bands of a suitable descriptor. Our interactive
visualization can reveal this information to the user in short time.

5.1 Related Work

The simplest displays for a hyperspectral image are the grayscale representation of
single bands and the plotting of spectra. The ‘spectral lens’ by Kim et al. allows to
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9 9

(a) image band at (b) second PCA  (c) spectral gradient  (d) similarity map
680 nm component at 585nm

Figure 5.1: Various displays of Fake and Real Peppers image shown in Figure 4.29a
and Figure 5.6a. The similarity map was computed via the spectral angle between
each pixel in question and the pixel marked in red.

show a region of one band in the spatial context of another band [Kim 10]. Spectra
are often plotted for a small selection of pixels or a selected slice (a path in the
image, e.g. a linescan). Another possibility is to plot the mean and variance in
each band for a specific image region, for example to compare different labeled
areas. Histograms are also employed in this regard. Interband correlation, as seen in
Figure 2.11 on page 25, may be plotted for a labeled area to provide the statistical
variation present in a class [Bieh 02].

More sophisticated displays include scatter plots or biplots that relate selected
regions in a pair of bands [Exel 16, Bieh 02]. A similarity map may reveal related
regions in an image by displaying a heatmap of similarity measured between all
pixels and a selected pixel, or the mean vector of a selected region. Figure 5.1 depicts
such a map next to single bands from various image descriptors selected to best
discriminate the pepper on the top-left. The use of 3-D rendering is generally limited
to the domain of astronomy [Joye 03, Li08], where the vast majority of the scene
consists of negligible background that may be removed by simple thresholding, so
that a clutter-free presentation of foreground objects is possible. Other visualizations
exist that exploit additional knowledge available for an image. Labitzke etal. use
labeled segments for Radviz-based visual analysis [L.abi 13b], while Cai etal. display
an array of pie charts based on known abundances [Cai 07].

A popular and useful method of visualizing multispectral and hyperspectral data
is the generation of a color image that preserves the spatial relations in the image,
but encodes specific information in the coloring [Biou 13]. We now consider in more
detail how such color images are obtained.

5.1.1 Color mapping

While a grayscale image can present a single piece of information per-pixel, a color
image displays three data values within the r, g, b color triplet. There are four
common categories of color displays for hyperspectral image data.

Band composite Three image bands are selected and then mapped to r, g, b color
channels. This is a very common technique, however the three bands in question
are typically hand-selected. They might also be obtained by statistical measures, e.g.
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(a) band composite (b) true color (¢) PCA false color

Figure 5.2: Color visualizations of Indian Pines image. To generate (a), the bands
at 841 nm, 637 nm, and 538 nm were selected for the red, green, and blue channels,
respectively.

the entropy in each band or correlation between selected bands [Bajc 04, Tsag 05],
or the structure in a band [Demi09]. More work on general band selection was
discussed in Section 3.1.1 on page 29.

Data fusion A subset of bands is fused according to a specific criterion. Most
often, this is the human color perception, modeled by the CIE XYZ color-matching
functions [Wysz 00, Chapter 3] and referred to as true color. This method is ex-
plained in more detail in Section 5.1.2. Jacobson etal. derive from this concept
by offering different basis functions [Jaco 07]. Kotwal and Chaudhuri compute a
weighted average of all bands with data-dependent weights [Kotw 10].

Dimensionality reduction The entire spectral information is reduced to three
dimensions, which are mapped to r, g, b. Ideally, the information most relevant
to the application in question is covered in these three dimensions. We discuss
dimensionality reduction methods in Sections 5.1.3 and 5.2. Tsagaris etal. also
suggest to perform band selection before this step [Tsag 05].

Feature extraction A combination of application-specific indicators (e.g. abun-
dances of three user-selected endmembers) forms the display. For example, it
may depict the occurrence of forest types to assess forest structure in [Usti 00].
It is common to visualize indicators like the vegetation index in pseudo-color dis-
plays [Habo 04]. As these methods are typically application-dependent, they do not
fit our goals of providing a general approach to visualization.

As they are the most commonly found displays that can be computed in an
unsupervised fashion, we examine color mapping based on both human color
perception, as well as based on dimensionality reduction more closely. Figure 5.2
illustrates common color visualizations on a remote sensing image.

5.1.2 True Color

For images whose spectrum lies within the range of visible light, an intuitive natural
representation can be formed by mimicking human color perception, based on
experimentation carried out to measure the sensitivity of the human eye towards
light of different wavelengths [Wysz 00, Chapter 5]. As the definition of color is
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purely perceptional, this representation is often referred to as true color. Two types
of photoreceptor cells exist in the human eye. Rod cells provide monochromatic
vision, while Cone cells are responsible for color vision [Wysz 00, Chapter 2]. We
have a trichromatic vision based on the three different types of Cone cells in our
eyes, each with their respective response curves in relation to the wavelength of the
perceived light. Therefore, all color sensations are based on a tristimulus which can
be emulated.

The CIE 1931 colorimetric system defines three color-matching functions x(A),
Y(A), z(A) [Wysz 00, Chapter 3]. These functions describe the spectral sensitivity
of a human observer, called the CIE 1931 standard colorimetric observer. The
tristimulus values X, Y, and Z are then obtained as

830nm
X =k / Pyx(A)dA
360 nm

830 nm
Y=k / PAF(N)A, (5.1)
360 nm

830 nm
Z =k / Pyz(A)dA,
360 nm

where P, denotes the intensity observed by a pixel x at wavelength A and k is
a constant factor that we set to normalize the output intensity. In practice, the
integrations are replaced by summations over bands of equal width AA centered
at wavelength A [Wysz 00, Chapter 3]. Popular filter-based multispectral sensors
capture the incoming light with AA = 10. The X, Y, and Z values are directly used
in the CIE XYZ color space. They can be transformed to RGB given a reference white
and a gamma correction value. The sRGB space has default values for both and
is specifically designed for computer displays [Stok 96]. To transform from XYZ to
sRGB, we carry out the linear part,

3.2410 -1.5374 -0.4986)\ (X
(r,g,b)" =[-0.9692 1.8760 0.0416 |[Y |, (5.2)
0.0556 -0.2040 1.0570 /\Z

before applying the nonlinear gamma correction function

1 , (5.3)

(x) = 12.92x x < 0.00304
= 1.055x24 — 0.055 otherwise

such that the red, green, and blue color channel of a pixel representation suitable
for display are derived from r, g, b, respectively,

SRGB(x) = (y(r), y(3), 7(b))" . (5.4)

Artificial lllumination

In a true color display, for several applications, e. g. color restoration [Mori08],
analysis of paintings [Cola 06], and historical document analysis [Kim 10], scene
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Figure 5.3: Blackbody radiator at T = 5500 K, which approximates vertical daylight.

illumination is an important characteristic. As hyperspectral images provide the
complete spectral response of each pixel, illumination is easy to manipulate. In
most data capture scenarios, homogeneous scene illumination can be assumed. In
such cases, the illuminant spectrum can be removed from the data, either via direct
calculation if the light source is explicitly known, or indirectly within a spectral
normalization protocol that is applied to the raw sensor data. We can then easily
manipulate the illumination curve.

According to Eq. 2.1 (see page 19) the observed intensity I(p, A) is formed by
a combination of the illumination spectrum e(A) and geometrical and material
effects, which are independent of e(A), R(p, A) = E(p)S(p, A). If the spectrum
e(A) of the incident light is known, the normalized reflectance of a pixel becomes:
R(p,A) = I(p, A)/e(A). Multispectral images are often already normalized with
respect to illumination and sensor sensitivities, as discussed in Section 2.3.1. If so,
we can assume R(p, A) = I(p, A). In any case, a new illuminant spectrum e*(1) can
then be applied by setting I'(p, A) = R(p, 1) -€*(A). Due to the spectral sampling, the
intensity of a certain band does not contain the information of a single wavelength
but the integral over a range of wavelengths. Therefore, applying these calculations
to the image bands is only an approximation. However, these approximations can
be justified by the typically narrow filter bandwidth of multispectral sensors and the
widely-accepted observation that the spectra of most surfaces and illuminations are
smooth functions.

Several reference illuminants are available for image relighting. We model them
as black body radiators [Wysz 00, Chapter 1]. Figure 5.3 depicts the radiant exitance
curve of a blackbody radiator. Empirical measurements of the daylight spectra have
shown that outdoor light, as well as indoor illuminants closely fit the spectra of black
body radiators [Hend 63, Hend 64]. They, in turn, can be described by Planck’s law,
where the illuminant color is parametrized by the color temperature T in Kelvin.
Daylight has a color temperature between 5000 K and 6500 K, while tungsten light
bulbs have a temperature T ~ 2800K. Figure 5.4 shows an example of a natural
scene being set into two different lighting situations for the true-color display.

The application of different illuminants to the display may reveal the effect
of metamerism [Fost 06, Wysz 00, Chapter 3]. Metamers are objects of varied
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(a) daylight, T = 6500K (b) Tungsten, T = 2880K

Figure 5.4: True-color displays of Cyflower image under two different artificial
illuminants. The images were enhanced in brightness and contrast for display.

reflectance properties that yield the same color sensation. In general, however, this
effect can render true-color representations and their variants unsuitable for several
applications. This is where false coloring comes into play.

5.1.3 False Color

A false-color image neglects the natural color perception to put emphasis on dif-
ferent characteristics of the data. Very prominent in false coloring are PCA-based
methods [Jaco 05]. We recall from Section 3.1.1 (page 28) that via the PCA we
find a transform that maximizes the spread of the high-dimensional spectra over
a small number of principal components. To find the principal components in the
data, eigenvalues are computed. The eigenvectors corresponding to the three largest
eigenvalues form a linear transformation to three bands used as r, g, b values of a
color image. The component corresponding to the largest eigenvalue is thereby used
for the green channel, where human color sensitivity is highest. Due to the nature
of PCA, the per-component variance differs significantly. Therefore, an automatic
white balancing is performed for display purposes [Jaco 05].

Tyo etal. propose a transform of the three principal components to HSV col-
orspace in an opponent-color fashion [Tyo 03]. Unfortunately, the method needs
supervision for defining offsets to the second and third principal component. A
notable derivation from PCA-based methods is described by Cui et al. and also op-
erates in HSV color space [Cui09]. To maximize spectral distance preservation,
principle components form only H, S components. The V component is then cal-
culated by optimizing a Ly-based distance similarity objective. However, as was
seen in Section 4.1 and Section 4.3, the informative value of the Euclidean distance
for spectral similarity is arguable. The same objective is used in a more general
optimization method by Mignotte [Mign 12]. The independent component analysis
(ICA, Section 3.1.1 on page 29) visualization is a linear transformation similar to
PCA that seeks mutually independent components in the data [Wang 06b]. However,
for a mapping to r, g, b, the most significant channels must be chosen. No rule is
established for how to rank the significance of ICA channels [Cui 09].

Performing a linear transform and using three bases that explain most of the
variance in the data is not always the most helpful representation for discerning



5.2. False Coloring via Manifold Learning 127

(a) spectral distribution (b) labeling

(c) true color (d) PCA false color

Figure 5.5: Displays of cropped Fake and Real Peppers image. The spectral distribu-
tion, (a), is label-colored. (b) shows the respective labeling as an overlay on the
image band at 530 nm.

relevant spectra. Figure 5.5 shows a counter-example. The contrast of the green
pepper against the background in Figure 5.5d is very low. It is a direct effect of the
low object reflectance when compared to the red and yellow peppers in the image,
as can be seen in Figure 5.5a. This is unintuitive to human observers, who have a
high sensitivity for green (Figure 5.5c). We would expect the false-color display to
better distinguish the green pepper from the background.

Unsupervised false-color display solutions that can tackle this problem are based
on nonlinear dimensionality reduction techniques. However, the kernel trick, e. g.
kernel-PCA, is typically not suitable for this application. It results in significantly
more than three bands that need to be considered [Fauv 06, Fauv 09]. Most promi-
nent in this field is ISOMAP [Bach 06]. It seeks a manifold coordinate system that
preserves geodesic distances in feature space, as discussed in Section 3.1.2 on
page 30. False-color images are created based on coordinates. Unfortunately, even
after several improvements to algorithm complexity were made, including the use of
approximation, ISOMAP still takes minutes to hours to compute [Bach 06, Cui 09].
Thus, fast, unsupervised, nonlinear dimensionality reduction for generation of a
false-color display is an open problem.

5.2 False Coloring via Manifold Learning

In this section we describe how we can utilize the Self-organized Map (SOM)
manifold-learning technique described in Section 3.1.3 for the purpose of a high-
quality false-color display. As previously mentioned, a major application of the
SOM is in fact data visualization. Several well-developed SOM-based techniques
exist [Vesa 99]. These visualize the data in the layout of the neuronal network,
e. g. the U-matrix that encodes a neuron’s distance to its neighbors and helps to
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(a) true color (b) [Gorr12] (c) [Gorr12] on spectral
gradient

Figure 5.6: Visualization of Fake and Real Peppers using the method of Gorricha and
Lobo.

manually identify clusters in the data [Taka 01, Tasd 09]. If the input data has a
spatial context, a color-coding of a 1-D or 2-D SOM may be back-projected.

A mapping back to the spatial layout of a multispectral image was first proposed
by Manduca [Mand 96]. They use a 1-D SOM to produce a grayscale display. This
concept can be extended to a 3-D SOM for color-coded visualization of data in
its original spatial layout [Vill 03]. More recently, Gorricha and Lobo train a SOM
on geo-referenced data to color geographic elements, e.g. weather statistics or
economical indices for certain areas on a map [Gorr 12]. Fonville etal. compare a
3-D SOM with other data mappings for visualization of mass spectrometry imaging
data [Fonv 13]. In the spirit of said methods, we can create a false-color image in
the hyperspectral domain by finding the BMU m, for each image pixel x (Eq. 3.9).
Then, an 1, g, b triplet is created by scaling #(¢) by 1/u;,, where n), is the side length
according to Eq. 3.10 (page 33). However, this method leads to suboptimal visual
quality and achieves a significantly lower entropy than PCA false coloring, which
hints at less information being conveyed. The reason is the limited amount of model
vectors, resulting in a strongly quantized output. For example, in the configuration
of Gorricho and Lobo, only 64 different color values could be produced [Gorr 12].
Figure 5.6 shows the resulting display when applying the method on a multispectral
image.

We differ in two ways for a high-quality visualization of both multispectral and
hyperspectral images. One, we train considerably larger SOMs. Two, we apply the
ranked BMU lookup that was introduced in Section 3.2.2, as explained below. Note
that increasing the SOM size alone is not a sufficient measure. While we use SOMs
of size np; = 103, we are still far from the capabilities of an 8-bit color display. For
this, a map of significantly larger size would be needed, e. g. n); = 256°. Training
such a SOM would become infeasible both due to longer learning times and the
limited amount of available training samples.

5.2.1 Ranked BMU Lookup for False Coloring

As explained, a general drawback of the SOM dimensionality reduction is the strong
quantization of the input space based on the relative small number of model vectors
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ny. In Section 3.2.2 on page 37, we propose a solution to the quantization problem.
Recall the representative location 7’ given by Eq. 3.16 on page 37,

- (c(.x))
r’:ij-r il (5.5)
i=1

where ¢® is a vector of BMU indices, sorted according to the distance of each
BMU to the query vector x. We calculate the weight vector w using the geometric
progression in Eq. 3.19. We finally obtain

r’ r! r!

1 2 3
r=—, g=—, b=—-. (5.6)

nm Gy nm

The resulting color display is supposed to, in general, convey the most relevant
information, based on the learned manifold, without quantization artifacts. We
expect it to be able to provide significantly more insight than a true-color or linear
false-color visualization. However, due to being constrained to the spatial layout of
the image, the underlying spectra remain hidden from the user.

5.3 Spectral Distribution Plots

As was discussed in the previous sections, most methods for visualizing multispectral
or hyperspectral images, such as scatter plots or false-coloring, rely on dimensionality
reduction. While the visualization of reduced data is helpful in many applications, it
is hard to preserve subtle details. In contrast, a good visualization of the original
data helps the observer evaluate how well a dimensionality reduction method fits a
specific application. Existing approaches on depicting a multispectral image in its
entirety are limited by the spatial layout of the image. The image data is modeled
as a cube, with the z-axis corresponding to spectral bands, which are stacked on
top of each other. Use of modern volume rendering techniques can make this
representation useful in some scenarios [Li 08]. However in most cases, where there
is no sparsity in pixels of interest, a very cluttered view is obtained that reveals the
shortcomings of a simple 3-D arrangement.

One way of addressing this issue is to defer from the spatial relations in the
image, for the time-being, and concentrate instead on a graspable representation
of the spectral distribution. To do this efficiently, we employ the Parallel Coor-
dinates method as explained below [Jord 10]. Parallel coordinates visualization
was popularized by Inselberg and is a well-established technique for visualizing
high-dimensional geometry and analyzing multivariate data [Inse 90, Hein 13]. It
has been widely used, for example, in financial applications, life sciences, and geo-
graphic information systems. One can see the traditional spectral visualization as a
specific instantiation of a static parallel coordinates visualization. By building on the
more general concept, we can incorporate tools from the visualization community
for high-dimensional data presentation. Moreover, parallel coordinates are part of
an interactive visualization concept. Through interactive manipulation of the plot
and synchronized other displays, we can overcome some limitations of the 2-D color
display.



130 Chapter 5. Visualization

Parallel Coordinates

According to the parallel coordinates
concept, a np-dimensional feature space

(resulting from np spectral bands) is pro- 1+ 1+ 1+ 137 1+ 1+ 1+

jected onto a two-dimensional view as

follows. np parallel vertical lines denote ) —

the np axes, i.e. the np spectral bands. ~_—_ ;><

The y-coordinate on the dth axis corre- ~_

sponds to a spectrum’s value at band d. e

To display the spectral vector of a pixel, 0+ 0~ 0~ 0~ 0~ 0~ 0O~
Ao Ad Anp

a polyline is drawn with its vertices lying
on the corresponding vertical axes.

The resulting display follows the layout of a plot where the x-axis would denote
wavelength, and the y-axis denotes intensity. There are two important factors
that enhance the usability of a parallel coordinates plot. One, the application
of color and alpha to allow a concurrent view of large amounts of data points,
and differentiate between them. Two, interactive manipulation of the plot, e. g.
the dynamic highlighting of selected data points. Several useful extensions were
proposed for parallel coordinate plots [Hein 13]. They include the rendering of
curves instead of lines, rendering bundles of data with polygons, or density-based
parallel coordinates. In the latter case, kernel density estimation can be employed
or an implicit encoding of line density through the proximity of lines in the plot. As
parallel coordinates best reveal the relationship between two adjacent axes, axis
reordering is another prominent topic [Hein 13]. In our case, algorithms for band
selection in hyperspectral data could be paired with the plot.

5.3.1 Optimized Parallel Coordinates

Drawing a polyline for each single multispectral vector has several drawbacks: it
is time consuming; and the display may easily get cluttered in which case single
polylines may not separate well from the rest of the data. A solution to both clutter
and speed concerns is to draw fewer polylines, where a polyline can represent a
set of pixels [Hein 13]. With this distinction, polylines that represent more pixels
appear stronger.

We realize this representation by introducing a histogram in the feature space
with np evenly distributed bins in each dimension. np is user-adjustable between
2 and the dynamic range of the captured data (typically 28 to 2!4). For example,
the histogram for a 31-band multispectral image with ng = 256 would hold ng"P =
(28)3! = 2248 bins. Building a dense histogram of this size is not feasible, however
a sparse histogram can be created by using an ordinary hashing algorithm. The
key idea here is that the amount of occupied bins is bound by the spatial resolution
of the input image. For example, a spatial resolution of 512 x 512 leaves only 218
possible distinct values, effectively giving an upper bound to the amount of bins
filled in a sparse histogram, or the amount of hash-keys needed.

For each populated bin, a polyline is drawn in the parallel coordinates visualiza-
tion. The strength of the polyline is manipulated by assigning it an opacity «. It is
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determined by the relationship between the number of pixels represented by the bin,
ng, and the total number of processed pixels, ny,

a=0.01+ 0.996,1M (5.7)

flnx)’

where ¢, is a user-adjustable factor and f(:) is either a linear or a logarithmic
function. The logarithm emphasizes bins with fewer pixels. The idea is that even
a single pixel should be perceptible. The logarithm also ensures that the resulting
dynamic range of alpha values can be represented reasonably well with an 8-bit
alpha channel. With more recent graphics adapters, drawing onto a floating-point
framebulffer is typically fast enough and the user can choose f(-) to be linear. A
linear f(-) and lower value fo c, are more adequate when many data points are
shown.

5.3.2 Drawing Refinements

We incorporate several measures to further enhance the visual quality and accuracy
of the spectral distribution display [Jord 16b]. By dividing the feature space into a
fixed number of equally spaced bins, the histogram applies a non-adaptive quantiza-
tion of a spectral vector x. A possible strategy to reduce the introduced quantization
error is to employ a binning that is adapted to the observed data. A straight-forward
method is to perform a separate histogram equalization in each dimension i, which
enforces a uniform PDF of the mapped vector values x; [Gonz 08, Chapter 3]. While
it works well for big clusters of similar pixels, spectra that are sparsely represented in
the image will suffer from such an operation. It may increase the average accuracy
at a great expense in the precision of single pixel representations, which is not
desirable.

We employ an alternative strategy by adjusting how a bin is drawn to achieve
an improved general accuracy without a significant expense in the accuracy for any
single pixel. When drawing a bin, we draw the mean vector of its contents instead
of its mid-range values. This can be computed on-the-fly while adding new vectors,
with a final normalization based on the number of entries. Figure 5.7 shows an
example of the visual quality gain. We see that a broad description of the spectral
distribution is possible with a low np.

Another hindrance in visual quality is the mutual obstruction of pixel representa-
tions. In many use-cases, pixels are color-coded (see Section 5.4.1). This involves
effectively drawing several distributions on top of each other. In highly populated
intensity ranges it can lead to extensive occlusions. We significantly reduce clutter
by drawing the data in a globally shuffled order, i. e. the distributions of all labels
appear intertwined.

More sophisticated methods were proposed for clutter reduction in parallel
coordinate plots that would also apply to our case [Hein 13]. One approach is to
only render a randomly sampled subset of the data points [Elli 06]. Others are based
on drawing curves instead of lines, which removes disambiguities. Clutter can then
be reduced by bundling the curves, e. g. based on data clustering [Hein 12, Palm 14].
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(a) true-color display (b) refined drawing, np = 256

400

(c) simple binning, ng = 20 (d) refined drawing, np = 20

Figure 5.7: Spectral distribution view of cropped Feathers image with different bin
parameters. Spectra in true color.

Zhou et al. define energy terms on the control points of the curved lines for deriving
visual clusters [Zhou 08].

5.4 Graphical User Interface

In our software framework coined Gerbil we combine the aforementioned visu-
alization techniques and analysis tools. It addresses the need for an interactive
visualization framework that is both sufficiently general for a broader range of appli-
cations and more versatile than existing basic representations. In our framework,
initially introduced in 2010 [Jord 10], we follow a novel concept that enables an
entirely new workflow in exploring a multispectral image [Jord 16b]. It revolves
around presentation and exploration that makes the image data more apparent to
the user, effectively allowing a more direct interpretation of the data. The user does
not rely on, but is merely guided by, automatic processing.

Figure 5.8 depicts the main components of the graphical user interface: One, the
visualization of original spectra (Figure 5.8 (1)) and the spectral-gradient spectra
(Figure 5.8 @), both via parallel coordinates. Other available image descriptors
for such displays are the Lo-normalized spectra and spectral vectors transformed
by the PCA. Two, the spatial views (Figure 5.8 @, @), including the depiction of
single bands in each feature space, true coloring, false coloring, and an interactive
similarity map. The interaction between these elements is augmented by tools that
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Figure 5.8: Gerbil user interface. (1) Spectral distribution view, (2) spectral gradient
distribution view, (3) spatial view of a single image band with label overlays, @ label

manager, (5) false-color display.

give further guidance to the user, e. g. the feature space clustering and supervised
segmentation techniques that were introduced in Chapter 4.

5.4.1 Interactivity

An important aspect of today’s visualization approaches for multivariate data is
interactive manipulation of the presentation. A single view most often cannot
provide the full understanding that may be gained by a series of user-controlled
depictions. User input is vital to parallel coordinates in particular. We provide
several mechanisms for both transient (cursor highlights) and persistent (color
labels) interactive viewing. In the parallel coordinate plots, the user can dynamically
highlight specific data points, i.e. spectral vectors that represent pixels. These are
displayed in yellow and with full opacity as an overlay over non-highlighted spectra.
We realize this in OpenGL with layered frame buffers. Updates to the highlight only
need a redraw of highlighted spectra. While the highlight constantly follows the
keyboard and/or mouse input, the corresponding pixels are instantly highlighted
in the spatial view. While scrolling through the spectra, the spatial view always
reveals which pixels contribute to the highlighted spectra. This practice is known as
brushing and linking in the literature [Hein 13].

Two modes of operation exist for highlighting in the spectral distribution: single-
band limited and multi-band limited. The single-band limited highlight is formed by
all spectral vectors falling into bins that share a specific intensity range in one band
(see Figure 5.9a). The coarseness of this selection is therefore directly related to the
binning parameter ng. The user selects the band and intensity range via mouse-click
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(a) single-band limited (b) multi-band limited

Figure 5.9: Highlighting modes used in the spectral gradient distribution view of a
scene with two objects. In (a), one object is highlighted by a single intensity range
selection in one band. In (b), further discrimination is achieved by adding intensity
bounds in two further bands.

or cursor keys. The multi-band limited highlight provides a higher level of control in
exchange of more detailed user input. Here, in each band separate lower and upper
intensity bounds can be set (see Figure 5.9b).

Another method of highlighting exists in the spatial views. Using the mouse, the
user can direct a cursor over individual pixels. The cursor is tracked to highlight
the respective pixel under the cursor in the other displays. In each spectral distribu-
tion display (e. g. spectral gradient, PCA), the shape of the pixel in the respective
descriptor is presented as a yellow overlay.

While dynamic highlights give instant feedback, they constantly change as the
user investigates the data. It is often desired to keep a selection of pixels distin-
guished from the rest of the data, e.g. for comparison purposes. We call this pixel
set a label; each pixel can be part of at most one label. A label can be seen as
a permanent highlight. For each label, a distinct sparse histogram is created as
described in Section 5.3.1. It is then drawn in the label color. When a histogram bin
is part of the current transient highlight, the color is significantly shifted towards
yellow. When the user has selected pixels within the transient highlight, they may
add this set of pixels to a label or delete their label association. By doing so, they
can iteratively refine the labeling of the data to concentrate on specific details.
Another way to alter the labeling is to use a ‘label’ brush in the spatial view, or
use automated segmentation methods as discussed in Section 4.2 and Section 4.3.
Labelings can also be stored for later use. Label colors are automatically assigned
for best visual discrimination. A preset of label colors consists of the primary and
secondary palette, excluding yellow, which is reserved for temporary highlights. For
more than five labels, colors are selected in the HSV color space. We divide the
hue range equidistantly according to the number of labels, excluding yellow, while
saturation and value components are set to 100 %.

Labels are important because they serve as a memory in the connection between
different representations of the multispectral image such as between a single band
and the spectral distribution. A selection, or temporary highlight in one represen-
tation is instantly propagated to the others. By labeling this highlight, it becomes
permanent. The user can then continue their investigation within another data
representation that may reveal new insights within this labeling. For example, a
user may start by hand-labeling parts of a scene in the spatial view. Then, they may
restrict the spectral distribution view to this label, or use the label to initialize a
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multi-band limited highlight. In this operation, the limits on each band are set to
include all pixels contained in the label. This helps both in finding similar spectra
that are not yet included in the label and in separating several clusters within the
label by adjusting the limits. The remaining selection can then be added to another
label or form a new label.

As a result, we facilitate a workflow of inspecting an image that is not possible
with existing hyperspectral analysis frameworks. It is based on concurrent, concerted
work with both spatial and spectral displays, and allows a smooth and instantaneous
switch in attention between them. Such a step-by-step exploration enables the
user to quickly discover and grasp underlying information. In the visualization
domain this procedure is considered a valuable tool for understanding complex
data [Fuch 09].

5.5 Experimental Results

In this section, we will first evaluate the proposed false-color visualization based
on manifold learning. We then examine our parallel coordinates visualization, with
an emphasis on how a sacrifice in resolution for the sake of drawing time affects
the output quality. We conclude with a discussion of image data descriptors based
on our visualization capabilities and a small example for the proposed workflow in
examining reflectance properties of a multispectral scene.

5.5.1 False Coloring

Several criteria have been proposed for judging the quality of a false-color dis-
play [Jaco05]. An important measure is the relationship between the spectral
difference of two pixels x and y and their color difference in the display. We dis-
cussed the SOM’s distance preservation in Section 3.4.3 on page 51. Jacobson
and Gupta consider the spectral angle between spectra and the color distance in a
perceptually uniform colorspace (CIE Lab). In general it is debatable which distance
is most relevant in both spaces. They further describe the goals of a natural palette
and color symbolism, effectively that a false-color display should produce colors
similar to true color, and also in other literature, agreement of a false coloring
with the true coloring is measured [Zhu 07]. This is conflicting when metamers are
present in the scene. It also becomes less practical when the wavelength range of the
hyperspectral image diverges from the range of visible light. Other goals are edge
preservation and the discriminability of different spectra in the visualization versus
smallest effective differences. The latter describes that visual distinctions should
be no larger than needed to effectively show relative differences. The SOM-based
false coloring is expected to be reliable in the goal of edge preservation based on
our edge detection results. However, it is not expected to perform best under the
criterion of smallest effective differences, which can also be contradicting to spectral
discriminability.

In this evaluation, we will concentrate on the discriminability of different spectra.
The simplest statistic in this context is the variance of the output, which is directly
related to the image contrast. Images with higher variances have a better contrast,
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which makes visualization simple and appealing [Kotw 13]. Naturally, a high discrim-
inability also goes with a wide range of color shades used in the visualization. From
information theory, we know entropy as a measure of the information content in an
image, in our case the false-coloring display [Zhu 07, Kotw 13]. Entropy was defined
by Shannon as the lower bound on the number of bits needed to communicate the
state of a random variable [Bish 06, Chapter 1],

H(x) = = ) p(x)logy p(x), (5.8)

X

where p(x) is the probability of observing a value x. For the case of p(x) = 0 we
define p(x)log, p(x) = 0. We regard each of the r, g, b components in the false-
color display as a sample distribution. Furthermore, we work with 8 bit images and
normalize the entropy values accordingly, to obtain

H(xy)

— H(xr) _ H(xg) Wy = (5 9)
-8 ’ & g’ °T g '
Intuitively, a high entropy value for an image component (i. e. an intensity map)
means that the intensity value observed at any position in the channel is hard
to predict. This corresponds to the richness of information, resulting in a more
meaningful representation [Zhu 07]. Entropy is a better measure than variance or
contrast, which can also be misleading in qualitative evaluation. A false-coloring
method that produces a high contrast image does not necessarily convey more
information than a low-contrast counterpart, e. g. if the image consists mostly of
extreme values. A false coloring is good if, in accordance with the original data
distribution, many different color accents are produced. Note however that the
highest entropy is achieved with completely random intensities. Entropy by-itself is
not a measure of how useful the observed information is. We regard it in combination
with the results in Section 3.4.3 and a qualitative interpretation of the output.

hy

hg

Ranked BMU Lookup

First we examine the influence of the ranked BMU lookup on visualization quality.
For this, we train a SOM with n); = 1000 model vectors and apply three kinds of
lookup for coloring a pixel: One, a simple single-BMU lookup. Two, a lookup of 10
BMUs with flat weighting (effecting an unweighted average). Three, 10 BMUs with
the proposed rank weighting. We compute the entropy from the resulting false-color
images for all images from the CAVE and Foster dataset. Recall that the former
represents a controlled lab environment while the latter is comprised of natural
scenes. Remote sensing images will be considered later in the experiment when we
compare our method with PCA.

Figure 5.10 depicts the average entropy values with standard deviation for both
datasets. We observe that in the case of the single-BMU lookup, the quantization
of the SOM results in weak entropy levels, suggesting that less information is
conveyed than theoretically and practically possible for this visualization format.
The use of several BMUs provides more diversity in the displays. The ranked-BMU
lookup appears strongest in this test, achieving very high normalized entropy values,
considering the theoretical maximum of one (corresponding to eight bits).
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Figure 5.10: Entropy values obtained in the three components of SOM-based color
visualizations.

(a) single BMU (b) 10 averaged BMUs (c) 10 rank-weighted BMUs

Figure 5.11: Comparison of BMU lookup on Fake and Real Peppers image. Results
are shown for a detail of the image for better visibility. The full result of (c) is
depicted in Figure 5.14c.

These results match the impression given by a visual comparison of the false-color
outputs. Figure 5.11 shows results on a detail of the Fake and Real Peppers image,
computed from the spectral gradient of the image. As expected, the traditional
lookup of a single BMU depicted in Figure 5.11a captures different materials, specu-
lar highlights and shadows well, but suffers from quantization effects. When adding
more BMUs as in Figure 5.11b, a smooth display is obtained at the expense of signif-
icant details. For example, the shadowed areas of the pepper depicted in green are
almost lost. Finally, the proposed rank-weighting scheme displayed in Figure 5.11c
preserves most detail of all three methods in an artifact-free presentation.

Figure 5.12 shows the SOM false-coloring for an image from the Foster dataset.
In the detail, we see the strong quantization artifacts of a traditional SOM lookup
being eliminated while retaining sharp details present in the original data, which
otherwise could be hard to distinguish from artifacts.
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(a) true color (b) SOM with nc =1

(c) SOM with nc =10
Figure 5.12: Comparison of BMU lookup on Ribeira image from the Foster dataset.
(a) true color, the image detail below is marked in the full image in red. (b) and (c)

visualizations obtained by using a single BMU lookup. and a ranked BMU lookup,
respectively.

Comparison to PCA

Figure 5.13 depicts the average entropy values with standard deviation obtained by
true-color mapping, PCA false color and SOM false color. Regarding the PCA, we
see that the information contained in the three components appears unbalanced.
This is expected, as the contrast sharply declines in the secondary PCA components
(which form the red and blue channels). The entropy of a true color mapping is
typically higher than the one achieved by PCA. Note that the true color mapping
is not practical for depicting remote sensing data where relevant information is
captured outside the visible wavelength range.

We now perform a visual comparison on three example images. Our goal for
the image shown in Figure 5.14 is a visualization that overcomes metamerism and
therefore needs to significantly contrast with true color. As was seen before, the
task of material separation works best with the spectral gradient descriptor, which
we also employ here for PCA and compare it to the performance on the original
data space for SOM. We find that different materials of the peppers, three of which
are plastic, are well separated by the SOM on the spectral gradient, but also, to
a lesser extend in the original image space. You can discern plastic peppers from
organic ones by looking at the coloring of their stems. Also, reflectance effects such
as inter-reflections, specular highlights and shadowed regions are captured. The
PCA visualization fails to distinguish the yellow peppers and the separation of the
shadow on the backdrop is weak, even while operating on the spectral gradient
descriptor. Note that PCA performance is even worse when operating on the original
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Figure 5.13: Entropy values obtained in the three components of different color
visualizations.
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Figure 5.14: False-color visualizations of Fake and Real Peppers image.

spectra, as was seen in Figure 5.5 on page 127. See Appendix D on page 178 for
another example image from the CAVE dataset.

Figure 5.15a and Figure 5.15b depict the D.C. Mall remote sensing image colored
by both the PCA and the SOM method. The SOM provides a good separation of
the classes grass, tree, roof, road, trail and water. We can also read more subtle
details from the visualization, such as different roof types or different grass segments.
For this image, PCA also performs well. However, some structure is not as easy to
distinguish, and some classes lack separation (e.g. water vs. road). In general we
found that PCA often contrasts well a single class of pixels in the image (here a
rooftop in white) at the expense of a good general contrast between other classes.

Note that the SOM itself can be visualized using this method during, as well as
after, its training. For this, we combine the false-coloring with spectral distribution
plots which then depict the distribution of the model vectors, and make it visually
comparable to the distribution of the training data. These visualizations help in both
assessing the training and in fine-tuning its parameters. The figure also depicts the
SOM-colored spectral distribution view (Figure 5.15¢) as compared to the spectral
distribution of a SOM trained on the image (Figure 5.15d), as well as the ten
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(c) original distribution (d) SOM distribution (e) image PCA distribution

Figure 5.15: False-color visualization of the D.C. Mall image and parallel coordinates
visualizations computed from the data. Pixels in (b) and spectral vectors in (c), (d),
(e) are colored using the SOM visualized in (d) according to Eq. 5.6.

principal components computed by PCA (Figure 5.15e). In this case, we can see the
clear associations between colors and spectra, e. g. magenta for shiny roofs, green
for trees, and a range between yellow and cyan for pasture and soil.

Figure 5.16 depicts results for the Indian Pines remote sensing image. In this
example, PCA catches the steel tower in the upper right, but not more subtle
differences between crop classes, effectively providing no benefit over the three-
band composite in Figure 5.16a. While the SOM visualization illustrates the same
effects as the other false-colorings, it also helps distinguish several of the classes
shown in Figure 2.5 (page 13). This is illustrated by the average colors assigned to
pixels from each class, as depicted below each visualization.

Reproducability

A peculiarity of the SOM false coloring is that based on the stochastic nature of the
training process, the visualization can signficantly change in subsequent calculations,
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Figure 5.16: Color visualizations of Indian Pines image and average colors assigned
to pixels from fifteen classes. (i, Iy, hy) is denoted below each visualization.

as was discussed in Section 3.2.3 on page 38. The main cause of this phenomenon is
the rotational invariance of the SOM. This has no significant effect on the objective
quality of the visualization, however it can be considered a drawback that colors
are not predictable from one visualization to another, as is the case with true-color
or PCA visualizations. In Appendix D on page 178 we show an example of a
false-color visualization provided by a user of the software and how it relates to a
previously published visualization result. In Figure 5.18b, some color mappings also
significantly differ from Figure 5.14c, as the SOM was trained only on the depicted
detail of the image. In consequence, it learned a different manifold which does not
include spectra from other objects in the full scene.

We conclude this section with a note on the computational performance. The
false-coloring scheme proposed here is based on training a cubic SOM with ny; =
1000. We found that with the ranked BMU lookup, good results are also obtained
with considerably smaller maps, starting with sizes from ny; = 216. In this case,
entropy values are reduced by about 10 %. After training, a single readout is needed
for each pixel. The wall-clock times reported in Table 3.1 on page 50 therefore
roughly apply here as well. For example, with an Intel Core i5-6600 CPU with four
cores, false coloring of an image from the CAVE dataset can be performed with a
small SOM in under a second, with a larger SOM in under three seconds. For the
D.C. Mall image of higher spatial and spectral resolution, it takes under 3.5 seconds
with the small map, and under 11 seconds with the larger map.
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5.5.2 Efficient Parallel Coordinates

We showed spectral distribution plots throughout this thesis in qualitative discussions
of other algorithms. In this study, we shed some light on how feasible an accurate
plotting is in an interactive setting. We employ a histogram-based quantization
of spectra for faster drawing. The error introduced by this approximation can be
measured by the average root mean squared error (RMSE) as well as the maxi-
mum absolute deviation (MAD), between original vectors x; and their quantized
counterparts x;. This gives us the measure
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for the average RMSE, and
MAD = max(max(|%;; — x;4|,d < np),i < ny), (5.11)

where max(-) is the sample maximum.

We evaluate RMSE and MAD for both the naive bin center and the refined
vector mean drawing methods with varying np on several datasets from different
application domains. The number of bins per dimension np is a crucial parameter. It
lets the user choose between drawing speed, viewing quality, and accuracy. Even
a considerably low np should provide acceptable accuracy, and the speed-up by
lowering np be effective. We use a desktop machine equipped with a quad-core Intel
Core i7 CPU running at 2.80 GHz, and a GeForce GTX 550 Ti consumer graphics
card for testing the computational performance. We draw in WUXGA resolution
and measure the time needed for drawing operations via GL_TIMESTAMP [Shre 13,
Appendix H].

In Figure 5.17 we plot execution time against accuracy for varying ng. RMSE
and MAD are plotted on a logarithmic scale. We can observe that the average RMSE
becomes negligible with higher np for both drawing methods. However, the refined
method achieves low RMSE values for considerably lower settings of nz. Due to
outliers present in some of the histogram bins, the MAD for the refined method is
somewhat higher than the original MAD.

The time needed to build the histogram is denoted as Binning and is not deter-
mined by ng. The time needed for preparing the geometry and loading it on the
GPU (Loading) slowly grows with np. In contrast, ng plays an important role for the
time needed for the drawing operation (Drawing). For higher np values, the time
needed for drawing grows to multiples of the time needed for preparation. Hence
the histogramming plays an important role in achieving interactivity.

In Table 5.1 execution time and accuracy measures for the refined drawing
method are listed for the CAVE, Foster, and D.C. Mall datasets. Please refer to
Table 2.2 on page 12 for dataset statistics. The times shown for preparation are
the combined histogram building and geometry loading times. As in Figure 5.17, it
is observed that a low np can already achieve a small quantization error. Setting
np = 64 is a reasonable compromise between speed and accuracy on the tested
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Figure 5.17: Spectral distribution plotting performance on a scene from the Foster
dataset. Quantization errors are plotted for the naive (Bin Center) and the refined
(Mean) drawing method.

Dataset ng Preparation (s) Drawing (s) RMSE MAD
CAVE 3231 0.089 0.161 0.002 0.027
6431 0.115 0.240 0.001 0.014

25631 0.177 0.390 0.000 0.003

Foster 3233 0.274 0.146 0.005 0.031
6433 0.358 0.554 0.002 0.014

25633 1.085 2.955 0.000 0.004

D.C. Mall 32191 0.585 1.789 0.001 0.026
B 0.881 3.171 0.000 0.013

256191 1.020 3.554 0.000 0.003

Table 5.1: Average drawing times and accuracy.
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datasets. It provides an effective speed-up in comparison to a high histogram
resolution without a perceivable loss in drawing accuracy.

It can be seen in Table 5.1 that on our test machine, even with a moderate setting,
drawing the spectra from a large image may still take several seconds. Typically it
is impractical to work on a high-resolution image without a region-of-interest. Yet,
we alleviate longer drawing times by incrementally drawing the data (disabled in
the benchmarking) in order to provide direct visual feedback in the form of a rough
approximation of the full data (as pixels are drawn in a random order).

5.5.3 Combined Visualization and Image Data Descriptors

The two proposed visualization techniques, namely false coloring and distribution
displays, go hand-in-hand. As was shown in Figure 5.15, the pixel coloring obtained
through the SOM can not only be applied in the spatial domain, but also when
visualizing the distribution of the image, or another image descriptor. While the
spectral and spatial display paradigms work best together in an interactive workflow,
we may illustrate their synergy here based on the shared color-coding.

In the SOM false-color display computed on the spectral gradient, Figure 5.18b,
we see that pixels with the same material or reflectance properties are consistently
colored. One such example are the specular highlights, colored in light gray. Another
instance is the stems of the plastic and real peppers as annotated in Figure 5.18b.
Note that the peppers depicted in light blue, yellow/orange and light green are
real, while the others are plastic. Figure 5.18c allows us to see the relationships
between spectra of the six peppers in the image. The first prominent effect, as
discussed before, is that the green peppers in the middle both elicit a very weak
spectral response when compared to the yellow and red peppers. Furthermore, a
‘dent’ in the spectral response at around 670 nm to 690 nm distinguishes the fake
red pepper from the real one. The distinction is less clear, but still visible, between
the two yellow peppers to the right in Figure 5.18a, colored in two shades of green
in the other figures. We see that the fake pepper reflects the light stronger in
the range of 500nm to 530nm. The spectral gradient distributione depicted in
Figure 5.18d makes the separation of these different materials easier for us. We
see the two different peaks between 490 nm and 500 nm, and between 510 nm and
520 nm, for the fake yellow pepper, and the real yellow pepper, respectively. The real
pepper stems and a part of the real green pepper are colored in orange, while the
majority of the real green pepper is colored in yellow. The reason for this is revealed
by the respective distinction in the spectra of these pixels at 630 nm to 650 nm
and further on at 680 nm to 700 nm (both annotated with circles in Figure 5.18d).
This distinction is easy to miss in the display of the original spectral distribution,
Figure 5.18c.

This example illustrates that the choice of image descriptor is important for
visual analysis of multispectral data. The parallel coordinate plots are a powerful
way to access the spectral characteristics of the data. A false coloring can assist in
deciphering the structure of the distribution revealed in such a plot. See Appendix D
on page 179 for another example.
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Figure 5.18: Proposed Visualizations of Fake and Real Peppers image. In (b) (part (5)
of Figure 5.8, color-inverted), the occurrences of two materials in their respective
color coding (orange and dark gray) are annotated with circles. In (d), two distinc-
tions between differently colored spectra originating from the real green pepper
are annotated with circles.
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(a) true color (b) spectral gradient PCA

(e) second labeling (f) spectral gradient distribution of (e)

Figure 5.19: Inspection of cropped Superballs image. Labels are shown as overlay
on the spectral gradient at 490 nm to 500 nm.

5.5.4 Example Workflow

For an example on how the different displays work together with automated analysis
tools, we revisit the case of the Superballs image that was previously discussed in
Section 4.2.4 (page 108). It shows plastic balls of various color that highly reflect on
each other. In Figure 5.19, the user investigates a red ball specifically. With an RGB
camera, we could only spot the reflection from the yellow ball (see Figure 5.19a).
Calculating the PCA on the spectral gradient also reveals the reflection from the
green ball (see Figure 5.19b). However, the blue balls also reflect on the red ball,
which is not revealed by both depictions. The first labeling, Figure 5.19c, is obtained
by supervised segmentation: One foreground seed is set in the middle of the ball, and
a circle is drawn around the ball for background seeds. When looking at the spectral
gradient distribution of that segment (see Figure 5.19d), we see the deviations from
the distribution caused by these inter-reflections. Browsing through these parts of the
spectral gradient distribution plot with the interactive highlight reveals their spatial
locations. By setting corresponding seed points for new supervised segmentations,
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we can find three additional segments within the ball (see Figure 5.19¢). The
spectral gradient distribution plot (see Figure 5.19f) reveals how the pixels from
these three segments contribute to the deviations in the distribution. To further
understand them, the user might continue by also segmenting the surrounding balls,
effectively adding them to the plot.

5.6 Discussion

In this chapter we discussed various approaches on visualization of multispectral
and hyperspectral images, and how these can be combined for interactive analysis.
The evaluation of the SOM false coloring supports our expectation that it per-
forms well for visual discrimination of spectra. As the SOM topology is fitted
on the observed data manifold during training, said data then fits well into the
low-dimensional data space formed by the SOM topology, in this case a cube that
provides r, g, b coordinates. This leads to a high contrast, but also high entropy
in the resulting display, given that we employ the proposed ranked BMU lookup
technique. Without, the quantization of the SOM would significantly lower the
amount of information conveyed in the image. The false-color display is especially
helpful for selecting regions-of-interest (ROIs) that should be examined. In large
images, due to clutter and computational expense, it is beneficial to select a ROI
before performing further visualization tasks. Additionally, the false-color display
can give a good first impression of the data, e.g. to spot the same reflectance in
several regions of the image or to find inhomogeneities within a depicted object.

We introduced spectral distribution plots based on parallel coordinates to make
the actual distribution of reflectances in the scene accessible to the user. Due to
a fast and accurate drawing strategy, these plots can be embedded in a software
framework that facilitates interactive exploration within the structure of the data
distribution. For this, false-coloring and spectral distribution plots go hand-in-hand,
as the coloring of spectra helps in quickly understanding the plot and identifying
clusters visually. Furthermore, the proposed workflow is based on connecting the
spectral and spatial views on the data. In our experiments, we showed that the
combination of these techniques, and analysis tools discussed in Chapter 4, can be a
powerful tool for general hyperspectral analysis.

The Graphical User Interface exemplified in this chapter provides new, intuitive
ways for understanding a multispectral or hyperspectral image also for novice users.
We anticipate that our software framework is of assistance especially in emerging
applications of this imaging domain, as is indicated by our communications with
current users.
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Chapter 6

Outlook

In this work, we presented several aspects of image processing and visualization for
interactive analysis capabilities in the multispectral and hyperspectral domains. As
the scope of this work is necessarily limited, we have suggestions for future work in
these areas to validate and improve our work, or use it as a basis for new algorithms.

Edge Detection We introduced two variants of a new pseudometric for edge
detection in Section 4.1.2, referred to as SOM; and SOM,. The latter is based
on the observation that the direct distance between two spectra in a SOM is not
always a sufficient edge criterion. SOM3 confines the effect of varying cluster sizes
by considering a larger set of best-matching units (BMUs). We might also tackle
the variation in BMU locations more directly with an edge measure that compares
intra-class and inter-class variation. Recall the merge criterion of Felzenszwalb and
Huttenlocher for two adjacent superpixels. In the same vein, a measure SOM3 could
compute the ratio of intra-class variations (i. e. the variations within the two BMU
sets) and inter-class variation (i. e. the variation in a joint BMU set). Early tests of
such a measure look promising and seem to complement SOM,.

While we did a qualitative comparison of SOM;, SOM, and other measures
for edge detection, quantitative analysis is lacking. It would be worthwhile to
benchmark the methods on synthetic images using quantitative measures. Note that
designing a meaningful dataset as well as choosing appropriate measures for a fair
evaluation is not a trivial task [Lope 13].

Clustering In Section 4.2.2 and Section 4.2.3, we proposed various speed-ups of
the FAMS mode-seeking algorithm. While mean shift in general can be performed
with any radial-basis kernel, FAMS uses the Epanechnikov kernel and the L, distance
for computing adaptive bandwidths. A reason for this is that the locality-sensitive
hashing (LSH) employed in FAMS approximates nearest-neighbor search in L. As
the mssom algorithm avoids LSH, it should be considered to perform nearest-neighbor
searches in Lo and also to try a different kernel, e. g. the Gaussian kernel.

More generally, as was discussed in our experimental evaluation, we need better
benchmarking capabilities for clustering methods, based on valid ground-truth labels.
Furthermore, the proposed methods need to be tested for more specific applications
to assert their general applicability.
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False-color Visualization Our approach to false coloring, detailed in Section 5.2,
maps a cubic SOM topology onto the RGB cube. Note however that the RGB color
space is not perceptually uniform, which is a drawback when communicating the
distance on the data manifold through color coding. It should be beneficial to employ
a mapping to a different color space that is designed for perceptual uniformity. An
example would be the CIE 1976 (L*, u*, v*) color space. Note that this also changes
the shape of the SOM topology.

The stochastic nature of the SOM results in a major drawback for false color-
ing. Spectra are assigned seemingly random colors, mainly due to the rotational
invariance of the map. This effect might be lessened by utilizing the batch variant of
the SOM algorithm [Cott 16]. This variant does not update the map in each step,
instead, an accumulated update is performed after determining BMU and influences
for all input samples. Note, however, that while this behavior results in a more
predictable map, it does not necessarily find an optimal solution. Another possibility
that is applicable to specific application scenarios is to integrate the proposed semi-
supervised learning variant. In this case, the general map orientation can be fixed if
several most-relevant spectra are known.

Spectral Distribution Visualization We discussed several extensions to the paral-
lel coordinate display concept which can be of use for our application in Section 5.3.
Especially interesting in this regard is the clutter reduction based on rendering
spectra as bundled curves instead of straight polylines. The bundling of curves needs
to be determined either in the feature space or in the plot. We proposed methods to
very quickly obtain a data clustering, most particularly the somtopo method. This
can serve as an input to the bundling algorithm, such that the clustering results can
not only be used for a color coding but also for an uncluttered view of the data.

Spectral Unmixing The task of spectral unmixing is typically a two-step process,
whereas in the first step, the constituent prototypes of a scene, referred to as
endmembers, are found. In the second step, unmixing methods fit each pixel to a
linear mixture of the endmembers. Spectral unmixing is an important tool in remote
sensing [Biou 13], where the area of land represented by a pixel can span several
square meters. However, we can find mixtures in pixels also in other application
domains, e. g. medical diagnosis or cultural heritage. When analyzing historical
paintings, the paint pigment mixtures used by the artist are of high interest. While
spectral unmixing is out of the scope of this thesis, it can play a significant part in
interactive analysis of hyperspectral data.

Current spectral unmixing algorithms face challenges in both endmember de-
tection and unmixing steps. Recall the proposed fuzzy mean shift variant of mssom
from Section 4.2.3, which is based on a rank-weighted BMU scheme. Note that fuzzy
clustering in the hyperspectral domain is closely related to the problem of spectral
unmixing: Each cluster is represented by a prototype (its mode) and each spectrum
x has a set of weighted cluster assignments that sum up to one, which effectively
can be translated to x being a mixture of cluster prototypes. It is a valid assumption
that endmembers are modes in the distribution when a reasonably sized set of
pure pixels is part of the scene, and these modes are found by mssom. Commonly



151

made assumptions about endmembers could be employed to further reduce the set
of modes. In traditional unmixing algorithms, when finding a linear mixture of
prototypes, it is hard to fulfill the simple, but crucial constraints that all mixture
weights are non-negative and sum up to one. However, in our rank-weighted cluster
assignments, these properties are inherent. Through the fuzzy mssom, we would
obtain an approximation for each pixel that is easy to compute, yet always valid.
This approximation could then be further improved by several means, forming a
new, computationally efficient spectral unmixing algorithm.

Another aspect of spectral unmixing is the visualization and refinement of its re-
sults. Labitzke et al. propose an interactive method for improving spectral unmixing
results, where the user can add or remove endmembers in each iteration [Labi 13a].
It would be worthwhile to integrate this algorithm with the visualization capabilities
proposed in this thesis. Spectral distribution plots can be employed, whereas the
transparency of spectral vectors under display would correspond to mixing weights,
or constituents encoded in color, so that the color of a spectrum represents the
mixture. The enhanced visualization capabilities should improve the capability of
the user to find errors in the unmixing or endmember selection and correct them.
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Chapter 7

Summary

Imaging spectroscopy allows acquisition of rich reflectance information that is not
available with traditional RGB cameras and invisible to the human eye. Multispectral
and hyperspectral images are well-established in various fields of application like
remote sensing, astronomy, and microscopic spectroscopy. More recently, the avail-
ability of new sensor designs, more powerful processors and high-capacity storage
further opened this imaging modality to a wider array of applications in medical
diagnosis, food quality and safety control, and cultural heritage, to name a few.

In this thesis, we follow a universal approach on multispectral and hyperspectral
image analysis. Instead of attending to a specific application, we work on fundamen-
tal problems and procedures to achieve a broad applicability of multispectral image
data across applications. We tackle the question of how a computer system may
guide a user towards a full understanding of the information contained in an image,
independent of the capture and application scenario. Towards this goal, interactivity
in the analysis is one of the most important, yet little researched aspects, which
includes interactive time constraints for the employed algorithms. The generality
of our approach makes it more difficult to evaluate proposed algorithms due to
limited quantitative measures, lacking a specific scenario where the correct answer
is already known or can be assessed by domain experts. On the other hand, the
proposed generic solutions can be tuned to a wide array of emerging applications.

One of the findings of this work is that the self-organizing map (SOM) can
function as such a generic tool, taking part in providing solutions for several areas of
analysis and visualization. In Chapter 3, we discuss the importance of dimensionality
reduction for many algorithms operating on high-dimensional data in general and
hyperspectral image data specifically. Linear methods like the principal component
analysis may fail to capture subtle differences in the data. One example is to dis-
tinguish differences in the reflectance curves of metamers, that are overshadowed
by more general reflectance effects, e. g. the positioning of objects in relation to a
light source and the resulting intensity of illumination. Nonlinear methods are often
known to better represent the data manifold in a lower dimension. However, they
are generally computationally expensive and not viable in an interactive setting.
The SOM is an exception to the rule, as it allows for fast manifold-learning due to
its robustness towards a smaller sample set and strong quantization of the learned
data topology. We also propose a probabilitic manifold learning method that closely
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resembles the SOM training, formulated as an expectation-maximization algorithm.
Further, we show how a SOM can be trained more efficiently in terms of computa-
tional complexity. On a range of benchmark datasets and map configurations, our
changes to the algorithm led to speed-up factors between 4.8 and 9.5. This allows
training on an unseen image in interactive time. We also propose two extensions of
the SOM to remedy its quantization effects and improve its representation of known
data samples. One is based on using more rich information in the map lookup,
through the collection of not one, but several best-matching units (BMU), and a
ranking scheme to combine the information of these units. The other is a variation of
the SOM learning process that combines input of labeled data with unlabeled data.
Our experiments underline the SOM’s robustness and versatility when applied to
multispectral and hyperspectral data. Furthermore, the proposed extensions of the
SOM in this thesis make it an even more powerful tool for data analysis regarding its
data representation quality. This is shown in a classification scenario on a commonly
used remote sensing benchmark image. There, the use of an efficiently trained larger
map, our semi-supervised training method, and our modified map lookup greatly
increase the classification performance both individually and when combined. On
the widely used Indian Pines benchmark, overall accuracy was improved from a
traditional SOM at 75.1 % to 84.3 %.

With the self-organizing map at our disposal, we then attend to three prominent
fields of image processing that are relevant in multispectral and hyperspectral image
analysis in Chapter 4, namely edge detection, clustering, and supervised segmenta-
tion. These are fundamental tools for automated and manual scene understanding.

Edge detection on multispectral and hyperspectral images is an issue short of a
comprehensive solution. Previous work on R-ordering was an important step towards
better reflecting the high-dimensional characteristics of the data when compared
to gradient-based methods. However, as is seen in our experiments, the most
prominent recent R-ordering method, RCMG, depends heavily on a well-performing
dissimilarity measure. Toivanen etal. proposed a method based on dimensionality
reduction via the self-organizing map. Unfortunately, their algorithm suffered from
its ties to global pixel ordering, resulting in linearization artifacts. In this work, we
introduce two pseudometrics that are also based on the topological learning of a
SOM. These pseudometrics are, in contrast to established measures, data-driven.
Our methods omit linearization and use the SOM more efficiently for edge detection
while also retaining greater flexibility, without a disadvantage in computational
performance. The first proposed pseudometric, SOMj, is based on a traditional
SOM readout. The SOM; pseudometric instead employs a multi-BMU lookup and
the earth mover’s distance for higher consistency and quality in the edge map. Our
experimental evaluation reveals that both newly introduced measures, but most
particularly SOM,, significantly improve on the performance of both gradient-based
and R-ordering-based edge detection for multispectral and hyperspectral images.

Unsupervised clustering of image data is an equally important image processing
tool, which we treat in Section 4.2. Due to the rich pixel vectors of a multispectral
image, mode-seeking clustering algorithms can provide very helpful segmentations
without prior knowledge. We demonstrate this with the SG-FAMS method which
is based on the well-known mean shift algorithm. However, the method is com-
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putationally demanding and not suitable for an interactive analysis setting in the
foreseeable future. Therefore, we propose two means of reducing the problem com-
plexity. One, by employing superpixel pre-segmentation for a spatial sparsification
of the data. Two, by relying on the vector quantization capabilities of the SOM to
operate on a sparse representation of the sample distribution. We also investigate
how the topology learned by a SOM can be directly employed for scene clustering.
Our experiments show that superpixels are an effective tool not only on grayscale
and RGB data, but also in the multispectral domain. By combining superpixels with
SG-FAMS, we obtain a fast, yet reliable unsupervised clustering method. In cases
where spatial resolution needs to be fully preserved, a likewise fast clustering can
be performed with the SOM. We related the output of the SOM-based SG-FAMS
method with the original SG-FAMS in terms of agreement between segmentation
results and found an average Rand index of 0.93 on our test dataset. On the other
hand, our proposed topology-based method, which only relies on the relationship
of model vectors with each other both in feature space and SOM topology, is also
shown to be a viable tool for obtaining an especially fast, high quality segmentation,
with an achieved average computation time on our test dataset of 3.4 seconds as
compared to over nine minutes for SG-FAMS. The SOM based methods are extended
for fuzzy clustering using our proposed rank-weighted multi-BMU lookup scheme.
Fuzzy clustering is useful in areas where a hard assignment is unsuitable to convey
mixed information contained in a pixel, as demonstrated by an example.

Tending to our goal of a universal framework for interactive image analysis,
we also explore the viability of seed-based local segmentation in multispectral im-
ages in Section 4.3. We adapt the power watershed framework, which combines
several well-established graph-based supervised segmentation methods, by incorpo-
rating similarity measures known from the field of spectral matching as well as our
data-driven approach previously developed for edge detection. To test algorithmic
performance, we design a benchmark that covers a wider range of segmentation
tasks on a publicly available multispectral dataset. Our results show that a straight-
forward attempt of using the Chebyshev distance does not yield satisfactory results
with an average Fi-score of 0.66. Both proposed adaptations improve the seg-
mentation performance significantly and achieve average F;-scores between 0.90
and 0.93. As a result, we obtain a versatile supervised segmentation method that
works without putting the burden on the user to carefully place a higher number of
foreground and background seeds. The segmentation algorithm is shown to operate
reliably and fast enough to enable quick refinements or further exploration.

Unsupervised and supervised analysis algorithms go hand-in-hand with a strong
visualization when inspecting data. In Chapter 5 we discuss novel ways of visualizing
multispectral and hyperspectral images. Existing analysis frameworks are limited to
traditional display and plotting tools in their visualization capabilities, or provide
additional visualizations that are very application-specific. A generally powerful
concept is false color visualization, where specific information is encoded in color
and displayed in the spatial layout of the image. Unsupervised false-coloring is
strongly tied to dimensionality reduction. The most popular methods under this
category are based on PCA. However, PCA often fails to reflect relevant information
in the first three principal components used for false-coloring. In Section 5.2, we
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propose a fast, non-linear false-color display that is based on the SOM. We note that
when using a traditional SOM with a single-BMU lookup, a low-quality display of
low entropy is obtained, suffering from the strong quantization of the map. Using
our new rank-weighted multi-BMU lookup, entropy values of the resulting display
channels greatly surpass the ones achieved by PCA, ranging between 0.88 and
0.96 on average for the two datasets we evaluated. We also find through visual
comparison that spectral discrimination appears greatly improved when compared
to PCA.

While plots of single spectra, or data ranges are common in existing analysis
software, there exists no visualization of the whole spectral distribution contained
in an image. We fill this gap with the help of the parallel coordinate visualization
method, as introduced in Section 5.3. The distribution plots build on a sparse,
high-dimensional histogram to combine similar spectra and draw them efficiently
with varying opacity. Furthermore, spectra can be color-coded according to data
labels or by employing a false-coloring method. In combination with different data
descriptors, the user can quickly gain an idea about the relationship of objects in
the scene in the high-dimensional space. In our experiments, we show how the
drawing of histogram-based spectral distributions can be done with very low effort,
without significant loss in accuracy. We further discuss how the brushing and linking
technique, where the user can manipulate the distribution plots and spatial displays
of the data simultaneously, forms a concept for interactive exploration that is new to
manual hyperspectral image analysis.

A software framework coined Gerbil was developed that combines the proposed
new approaches to both automated analysis tools and visualization techniques with
established tools. It demonstrates a new workflow in multispectral and hyperspectral
image inspection and exploration. Gerbil is developed by an open-source software
project in the tradition of free software frameworks in the signal processing research
community such as OpenCV or Weka. The project received continued support
from the European Space Agency in the years 2012-2016 as well as individual
contributions. It is in use by several research groups and industry worldwide. See
Appendix B on page 163 for a current feature overview of the software. One purpose
of this work and the Gerbil software project is to help broaden the application field
of imaging spectroscopy. Domain experts who did not work with multispectral data
before need assistance in understanding and utilizing the modality. We believe
that an intuitive, responsive graphical user interface that encapsulates generally
applicable algorithms can significantly facilitate the entry to multispectral image
analysis.

The software originating from this work serves as an example on how intuitive
exploration of multispectral and hyperspectral image data from a broad variety of
application domains is possible, by adapting established methods from traditional
monochromatic and trichromatic computer vision research as well as non-linear
manifold learning methods and combining them with powerful, interactive data
visualization concepts.
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Symbols and Acronyms

Acronyms
Acronym Meaning
AQE Average quantization error
BMU Best-matching unit(s)
FAMS Fast-adaptive mean shift [Geor 03]

FHO4 Algorithm by Felzenszwalb and Huttenlocher [Felz 04]
FSPMS Full superpixel mean shift

HSV Hue-Saturation-Value color space
ISOMAP  Optimal isometric mapping [Tene 00]
LDA Linear Discriminant Analysis

MQE Maximum quantization error

PCA Principal component analysis

PDF Probability density function

PSPMS Per-superpixel mean shift

RCMG Robust color morphological gradient [Evan 06]

RGB Red-Green-Blue color space

SA(M) Spectral angle (mapper)

SEDMI Saliency-based edge detection in multispectral images [Dinh 11]
SG-FAMS FAMS on the spectral gradient

SID Spectral information divergence
SOM Self-organizing map [Koho 01]
sRGB standard RGB color space [Stok 96]
SVM Support vector machine
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Symbols

In general, a set A consists of either scalars a, or vectors a with coefficients a,.
The size of A is denoted as ng = |A|. A matrix is denoted as A. Chapter-specific
symbols are listed after symbols that are used throughout the thesis.

Sets
Set Element Count Meaning
c,c ne best-matching unit index / indices
K k reference labels
L 1 n labels, class assignments
M m nm SOM model vectors
M u cluster centers
R rvr locations in a map
S ns samples
X x,9,z nx pixels

Other counts not listed above

Symbol Meaning

np number of bands / pixel dimensionality
ng parameter k for kNN, k-means, FAMS bandwidth selection
ny sidelength of SOM topology
nR dimensionality of SOM topology
Indices

Symbol Meaning

d,e band/coefficient in [1, np]

i,j general index

i spectral vector, typically in [1, nx]
j spectral vector, typically in [1, ng]
k,1 SOM unit

l x-coordinate

m y-coordinate

s sample / iteration
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Functions
Symbol Meaning
a(s) SOM learning-rate factor
COV(x, y) covariance
d(x, y) a distance function
e(A) spectrum of light source
E(p) relative direction of light source

I(p, A), 1L, m)
x(x)

Li(p, A)

N(x)

NED(x, y)

R(p, 1)

S(p, A)

a(s)

SA(x, y)

SCM(x, y)
SID(x, y)
SIDSAMLz(X, y)
sRGB(x)

VAR(x)

Sensor response

a kernel

spectral gradient
Normalization in Lo
normalized Euclidean distance
relative amount of reflected light
reflectance function

SOM kernel width

spectral angle

spectral correlation mapper
spectral information divergence
combined SA, SID measure
conversion to sSRGB

variance

Other symbols

Symbol Meaning

Lo R >~ S

S
S

a spectral band

wavelength

point in a scene

sample Pearson correlation coefficient
non-discrete representative location
vector of weights, single weight
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Chapter 3
Symbol Meaning
A ICA mixing matrix
a(x) class response by classifier
a mixture weight
C graph clique set
n a prior

Gm = (X,EM) graph on the manifold M
Go =(R,Eqp) graph on the manifold Q

h(-,-) neighborhood function

M manifold in the input feature space

np number of principal components

Q manifold in a low-dimensional space

S covariance matrix

s ICA signal sources

T temperature of Gibbs distribution

u PCA projection vector

U] votes for a class

w(+) weighting function in supervised learning
5,8 Set of parameter vectors, a single vector

Zg partition function of Gibbs field
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Chapter 4
Symbol Meaning
B set of background seeds

c parameter to FHO4

C compactness measure

E,e graph edges, single edge

7 set of foreground seeds

y(x) a gradient kernel, x shadow of y

Gy, Gy horizontal and vertical edge maps

Gu(l, m) x-directional gradient function

Gy(l,m) y-directional gradient function

h,h; (per-sample) bandwidth in mean shift / kernel density estimation

L omnidirectional Laplacian filter matrix

L(l,m)  omnidirectional Laplacian filter

m mean shift vector

m parameter to FH04

ns number of superpixels

ny amount of pixels represented by a SOM unit

p power watershed segmentation result

p pre-factor for FAMS bandwidth selection

p,q parameters for power watersheds

R location map (index for each pixel)

Ry set of BMU locations for a pixel

R Rand index

S Sobel filter matrix

S, S; a set of pixels / a superpixel

S centroid of a superpixel

V,o graph vertices, single vertex

wr,wp  weights for foreground and background affiliation
Chapter 5

Symbol Meaning

a opacity of a bin/polyline

y(x) sRGB gamma correction function

H(x) entropy function

h calculated entropy

np number of histogram bins per dimension
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Appendix B

Software Framework Features

Figure B.1 shows the modular architecture of Gerbil.

Input/Output

Support of a wide range of image formats, including ENVI, FITS, ESRI, TIFF
Custom file format, easy data import/export with Matlab

Processing of image data that does not fit into system memory

Reading and writing of label files, writing of spectral plots

Data Processing
¢ Data reduction:

1. Region-of-interest selection, spatial masking
2. Band range selection
3. Interpolation, binning in the spectral domain

Normalization:

1. Data range calculation and histogramming
2. Automatic, manual data normalization and range clamping
3. Illuminant exchange

* Preprocessing:

1. Flipping/transposition/rotation
2. Apply logarithm, L2 normalization
3. Gaussian kernel denoising

* Feature extraction:

Spectral gradient

Principal Component Analysis (PCA)

Band-wise correlation

Manhattan, Euclidean, Chebyshev norm

Spectral Angle Mapper, Spectral Information Divergence, SIDSAM
Earth mover’s distance and statistical measures

QAN
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Input, Process
Core . Export Shell GUI
. e . Locality-Sens.
False Coloring Classifier Clustering Hashing
Edge Detection Self—o’\s\%e;)nlzmg ~  Superpixels Correlation
Distance Map Similarity | Supervised Labeling.and
Measures Segmentation Evaluation

Figure B.1: Software modules. Solid arrows denote dependencies, dotted arrows
denote optional dependencies.

* Label manipulation:

1. Find labels via supervised segmentation

2. Create and manipulate labels via thresholding
3. Edit labels with various label brushes

4. Merge, delete etc. labels in a separate view

Visualization
* Spectral Plots:

1. Interactive Parallel-coordinates based spectral plots
2. Display distribution in feature spaces including:

(a) Original spectra

(b) Ly-normalized spectra

(c) Spectral gradient

(d) Principal Component Analysis

3. Color-coding based on labels or true color/false color
4. Configurable drawing quality

 Spatial Plots:

1. Display of image bands, spectral gradient bands, PCA components
with translucent label overlay

2. True-color display via CIE XYZ

3. False-color display via PCA, Self-organizing Map (SOM)

4. Distance Map for reference point/region

* Zoom/pan in all views, export views to file
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Algorithms
» Dimensionality reduction via PCA, SOM
* Edge detection:

1. Hyperspectral Laplace operator

2. Robust color morphological gradient (RCMG)
3. Canny edge detector

4. SOM-based ordering

5. SOM pseudometric for Laplace, RCMG, Canny

* Segmentation:

1. Supervised segmentation via Graph Cuts, Power Watersheds
2. Superpixel segmentation

Global clustering:

k-Means+ +

Fast-adaptive mean shift (FAMS)
Accelerated FAMS via superpixels
Accelerated FANS via SOM pre-processing
Topological SOM

Gh W

Classification:

1. k-Nearest Neighbor
2. Semi-supervised SOM
3. Cross-validation framework

Interface

Hardware-accelerated GUI on all major desktop platforms
Command-line interface for batch processing and automated evaluation
C+ +-API for image data access and incorporation of new methods
Modularized build, command and parameter handling
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Appendix C

Self-organizing Map Configurations

We provide one parameter set for each combination of size and topology. When size
and topology are given in the text, the corresponding parameter set was used in
testing. The default parameters across all configurations, if not specified otherwise,
are:

®* Smax = 50000
* U(Smax) =1
* a(1)=0.75
* a(Smax) = 0.01

Square Tesseract
* ny,=16,0(1)=6
ny, =24,0(1) =8
ny, =32,0(1) =12
ny, =48,0(1) = 16
ny, =64,0(1) =24

* nyy=4,0(1)=1,0(Smax) = 0.3

* nyy,=5,0(1) =1.5,0(5max) = 0.4

* 1y =6,0(1)=2,0(Smax) = 0.5

* nyy =7,0(1) =2.5,0(5max) = 0.6

* 1), =8,0(1) =3,0(smax) = 0.7
Cube
* ny,=6,0(1) =2,0(Smax) = 0.5
n, =8,0(1) = 3,0(Smax) = 0.75
« ), =10,0(1) = 4
« ), =13,0(1) =5

e njy,=15,0(1)=5.5
* ny,=16,0(1)=6
e njy, =20,0(1) =12
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Appendix D

Experimental results

(a) initialization (b) iteration 5 (c) iteration 15 (d) iteration 50

Figure D.1: Visualization of SOM training progress on Egyptian Statue image at the

very beginning of the training. See Figure 3.3 on page 35 for later stages. Maps are
rendered in true color.
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Figure D.2: Quantization error for different SOM parameters. ns is plotted on a
logarithmic scale. See also Figure D.3.
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Figure D.3: Quantization error for different SOM parameters (cont.). ns is plotted
on a logarithmic scale.
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Figure D.4: Quantization error for different SOM shapes and sizes. ny, is plotted
on a logarithmic scale.



Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 #samples
1| 0.939 0.002 0.002 0.002 0.018 0.008 0.008 0.002 0.004  0.002 0.010 483
2 | 0.150 0.500 0.050 0.250 0.050 20
3 | 0.006 0.609 0.173 0.027 0.049 0.002 0.116 0.014 830
4 | 0.005 0.001 0.030 0.807 0.050 0.002 0.015 0.001 0.077 0.006 2455
5 | 0.021 0.717 0.021 0.239 46
6 | 0.033 0.939 0.025 1265
7 | 0.008 0.001 0.033 0.182 0.707 0.018 0.004  0.040 0.004 972
8 | 0.240 0.015 0.002 0.005 0.002 0.209 0.432 0.005 0.069 0.015 386
9 | 0.010 0.080 0.106 0.001 0.077  0.005 0.483 0.001 0.207 0.025 593

10 | 0.035 0.928 0.035 28
11 | 0.030 0.001 0.002 0.001 0.041 0.916 0.006 730
12 | 0.004 0.059 0.199 0.050 0.060 0.002  0.602 0.020 1428
13 | 0.021 0.043 0.021  0.913 93
14 | 0.029 0.021 0.160 0.084  0.012 0.046 0.054  0.232 0.358 237
15 | 0.004 0.004 0.014 0.004 0.972 478
16 | 0.024  0.019 0.004 0.019 0.931 205

CLT

Table D.1: Confusion matrix for baseline method with SOM of 1), = 1296, unsupervised training, and single BMU lookup. Overall
accuracy: 75.1%, average accuracy: 73.5%.
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Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 #samples
1 | 0.960 0.004 0.006 0.004 0.006 0.008 0.004 0.004 0.002 483
2 | 0.100 0.650 0.100  0.100 0.050 20
3 0.721 0.138 0.021 0.001 0.032 0.072 0.012 830
4 | 0.001 0.028 0.841 0.053 0.002 0.011 0.056 0.004 2455
5 | 0.195 0.695 0.108 46
6 | 0.006 0.972 0.019 1265
7 | 0.001 0.001 0.016 0.125 0.806 0.001 0.012 0.004 0.028 0.003 972
8 | 0.012 0.002 0.002 0.015 0.186 0.007 0.681 0.007 0.067 0.002 0.012 386
9 | 0.001 0.021 0.064 0.052 0.001 0.758 0.003 0.075 0.003 0.016 593

10 | 0.357 0.571 0.071 28
11 | 0.001 0.001 0.001 0.013 0.982 730
12 0.033 0.121 0.050 0.022 0.002 0.756 0.012 1428
13 0.021 0.021 0.956 93
14 0.054 0.059 0.042 0.012 0.004 0.143 0.679 0.004 237
15 0.004 0.995 478
16 | 0.004 0.004 0.004 0.985 205

Table D.2: Confusion matrix for best-performing method with SOM of n,; = 4096, semi-supervised training, and ranked BMU
lookup of n¢ = 15. Overall accuracy: 84.3 %, average accuracy: 81.3 %.
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(b) Ordering, 256 x 1 SOM
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Figure D.5: Canny edge detector results on Fake and Real Food image. Canny
parameter criteria: A) best object contour preservation; B) minimum fine-grained
noise introduced by object/background texture.
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Figure D.6: RCMG edge detector results on Egyptian Statue image.
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Figure D.7: RCMG edge detector results on Cyflower image.
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Cloth
Algorithm c| # AC R Algorithm nM | # AC R
SG-FAMS 14 SG-FAMS* -1 +23 097
PSPMS 0.05| +3 +54 0.94 mssom 8000 | +5 +0.3 0.84
0.25 | +4 +12.7 091 1000 | -3 +4.3 0.92
FSPMS 0.05 | +0 +4.6 0.92 somtopo 4096 | +1 +3.2 0.86
0.25 | +0 +12.1 0.87 1024 | +1 +7.2 0.82

Egyptian Statue
Algorithm c| # AC R Algorithm nym | # AC R

SG-FAMS 13 SG-FAMS* +3  +8.6 0.90
PSPMS 0.05 | +87 -0.7 0.89 mssom 8000 | +11 -28.9 0.90
0.25 | +64 +3.4 0.87 1000 | -1 -21.6 0.83

FSPMS 0.05 | +22 -49 0.87 somtopo 4096 | +4 -29.2 0.86
0.25 | +14 -149 0.85 1024 | +3 -30.6 0.85

Fake and Real Peppers
Algorithm c # AC R Algorithm nm # AC R

SG-FAMS 19 SG-FAMS* +0 -0.9 0.99
PSPMS 0.05| +6 -22 0.97 mssom 8000 | +2 -1.3 0.97
025 | +4 +1.7 097 1000 | -6 +4.8 0.95

FSPMS 0.05| +9 -14 0.96 somtopo 4096 | -6 +8.5 0.94
025| +2 +7.5 0.95 1024 | -5 +3.6 0.95

Fake and Real Food
Algorithm c| # AC R Algorithm npm | # AC R

SG-FAMS 26 SG-FAMS* +0 -1.8 0.98
PSPMS 0.05| +6 -29 0.98 mssom 8000 | -1 -1.1 0.94
0.25 | +6 0.0 0.97 1000 | -5 -0.1 0.93
FSPMS 0.05| +1 -3.2 0.96 somtopo 4096 | -9 +6.5 0.90
025| -2 +2.8 0.92 1024 | -7 +1.9 0.93
Flowers

Algorithm c| # AC R Algorithm ny | # AC R
SG-FAMS 25 SG-FAMS* -2 -18.3 0.98
PSPMS 0.05 [ +21 -89 0.97 mssom 8000 | +0 -21.1 0.96
0.25 | +30 -5.9 0.97 1000 | -7 -14.1 0.95
FSPMS 0.05| +0 -15.1 0.96 somtopo 4096 | -7 -16.0 0.93
0.25 -8 -14.1 0.96 1024 | -11 -12.4 0.94

Table D.3: Statistical results on individual images. Listed under # is number or
segments, or difference therein. AC is given in percent.
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Pompoms

Algorithm c # AC R Algorithm nMm # AC R
SG-FAMS 25 SG-FAMS* -1 +1.0 0.98
PSPMS 0.05| +8 -0.7 0.98 mssom 8000 | -6 0.0 0.94
0.25 | +7 +2.4 0.97 1000 | -13 +4.6 0.94
FSPMS 0.05| -3 -0.6 0.96 somtopo 4096 | -8 +2.0 0.93
025| -8 +84 0.94 1024 | -11 +6.5 0.92

Superballs

Algorithm c| # AC R Algorithm nym | # AC R
SG-FAMS 18 SG-FAMS* -1 409 0.99
PSPMS 0.05| +3 -0.1 0.98 mssom 8000 | +4 -3.4 0.95
025 | +4 +0.6 0.98 1000 | -4 +5.0 0.93
FSPMS 0.05 | -1 +2.2 0.95 somtopo 4096 | -2 +1.3 0.93
0.25| -1 +5.5 0.94 1024 | -4 +2.4 093

Thread Spools

Algorithm c| # AC R Algorithm nym | # AC R
SG-FAMS 32 SG-FAMS* +0 +0.2 0.99
PSPMS 0.05 | +4 0.0 0.99 mssom 8000 | +0 -0.9 0.97
0.25| +8 +04 0.98 1000 | -15 +9.7 0.93
FSPMS 0.05| +1 —-4.7 0.97 somtopo 4096 | -14 +13.4 0.93
0.25 | -15 +14.3 0.91 1024 | -17 +12.1 0.92

Watercolors

Algorithm c # AC R Algorithm nm # AC R
SG-FAMS 32 SG-FAMS* -7 +3.2 0.89
PSPMS 0.05| +9 +0.5 0.94 mssom 8000 | -3 +3.0 0.92
0.25| +6 -0.2 0.95 1000 | —20 +6.7 0.81
FSPMS 0.05| -7 +0.7 0.93 somtopo 4096 | —20 +10.6 0.84
0.25 | =12 +12.3 0.61 1024 | -19 +5.2 0.85

Table D.4: Statistical results on individual images.

Listed under # is number or
segments, or difference therein. AC is given in percent.
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(a) SG-FAMS (b) FSPMS (c) somtopo, 1y = 4096

Figure D.8: Additional segmentation results on Ribeira image. For HRK and mssom
see Figure 4.26 on page 106.

(a) true color (b) PCA (c) SOM

Figure D.9: Color displays of Egyptian Statue image in original feature space.

(a) user-provided (b) color-rotated (c) published [Jord 13a]

Figure D.10: SOM false-color displays of Fake and Real Peppers image computed on
the spectral gradient. The result depicted in (b) was computed by a color-wheel
rotation of (a) by 236.8°. This simple 2-D rotation explains most of the difference
between (a) and (c).
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Figure D.11: Distribution plots of Superballs image. Spectra are colored in true color.
The image is depicted in Figure 4.28a on page 109.
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