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Abstract

The optical resolution of a digital camera is one of its most crucial parameters with
broad relevance for consumer electronics, surveillance systems, remote sensing, or
medical imaging. However, resolution is physically limited by the optics and sen-
sor characteristics. In addition, practical and economic reasons often stipulate the
use of out-dated or low-cost hardware. Super-resolution is a class of retrospec-
tive techniques that aims at high-resolution imagery by means of software. Multi-
frame algorithms approach this task by fusing multiple low-resolution frames
to reconstruct high-resolution images. This work covers novel super-resolution
methods along with new applications in medical imaging.

The first contribution of this thesis concerns computational methods to super-
resolve image data of a single modality. The emphasis lies on motion-based algo-
rithms that are derived from a Bayesian statistics perspective, where subpixel mo-
tion of low-resolution frames is exploited to reconstruct a high-resolution image.
More specifically, we introduce a confidence-aware Bayesian observation model
to account for outliers in the image formation, e. g. invalid pixels. In addition, we
propose an adaptive prior for sparse regularization to model natural images ap-
propriately. We then develop a robust optimization algorithm for super-resolution
using this model that features a fully automatic selection of latent hyperparam-
eters. The proposed approach is capable of meeting the requirements regarding
robustness of super-resolution in real-world systems including challenging con-
ditions ranging from inaccurate motion estimation to space variant noise. For in-
stance, in case of inaccurate motion estimation, the proposed method improves
the peak-signal-to-noise ratio (PSNR) by 0.7 decibel (dB) over the state-of-the-art.

The second contribution concerns super-resolution of multiple modalities in
the area of hybrid imaging. We introduce novel multi-sensor super-resolution
techniques and investigate two complementary problem statements. For super-
resolution in the presence of a guidance modality, we introduce a reconstruction
algorithm that exploits guidance data for motion estimation, feature driven adap-
tive regularization, and outlier detection to reliably super-resolve a second modal-
ity. For super-resolution in the absence of guidance data, we generalize this ap-
proach to a reconstruction algorithm that jointly super-resolves multiple modali-
ties. These multi-sensor methodologies boost accuracy and robustness compared
to their single-sensor counterparts. The proposed techniques are widely appli-
cable for resolution enhancement in a variety of multi-sensor vision applications
including color-, multispectral- and range imaging. For instance in color imag-
ing as a classical application, joint super-resolution of color channels improves the
PSNR by 1.5 dB compared to conventional channel-wise processing.

The third contribution transfers super-resolution to workflows in healthcare.
As one use case in ophthalmology, we address retinal video imaging to gain spatio-
temporal measurements on the human eye background non-invasively. In order to
enhance the diagnostic usability of current digital cameras, we introduce a frame-
work to gain high-resolution retinal images from low-resolution video data by
exploiting natural eye movements. This framework enhances the mean sensitiv-
ity of automatic blood vessel segmentation by 10 % when using super-resolution
for image preprocessing. As a second application in image-guided surgery, we



investigate hybrid range imaging. To overcome resolution limitations of current
range sensor technologies, we propose multi-sensor super-resolution based on
domain-specific system calibrations and employ high-resolution color images to
steer range super-resolution. In ex-vivo experiments for minimally invasive and
open surgery procedures using Time-of-Flight (ToF) sensors, this technique im-
proves the reliability of surface and depth discontinuity measurements compared
to raw range data by more than 24 % and 68 %, respectively.



Kurzübersicht

Die optische Auflösung einer Kamera ist eine ihrer wichtigsten Kenngrößen mit
hohem Stellenwert für Unterhaltungselektronik, Überwachungssysteme, Ferner-
kundung oder medizinische Bildgebung. Jedoch ist die Auflösung durch Optik
und Sensoren physikalisch beschränkt. Daneben bedingen praktische oder öko-
nomische Gründe den Einsatz veralteter oder preiswerter Hardware. Verfahren
zur Auflösungserhöhung sind eine Klasse retrospektiver Techniken mit dem Ziel
hochauflösende Bildgebung softwarebasiert zu gewährleisten. Bildfolgenbasierte
Algorithmen ermöglichen dies durch Fusion mehrerer niedrigauflösender Bilder
zur Rekonstruktion hochauflösender Bilder. Diese Arbeit behandelt neuartige Me-
thoden zur Auflösungserhöhung, sowie neue Anwendungen für die medizinische
Bildgebung.

Der erste Beitrag dieser Arbeit betrifft Verfahren zur Auflösungserhöhung von
Bildern einer einzelnen Modalität. Den Schwerpunkt bilden bewegungsbasierte
und mit Bayesscher Statistik hergeleitete Algorithmen, bei denen Subpixel-Ver-
schiebungen zwischen niedrig auflösenden Bildern zur Rekonstruktion eines hoch-
auflösenden Bildes genutzt werden. Konkret führen wir ein konfidenzgewichtetes
Beobachtungsmodell zur Behandlung von Ausreißern, z. B. defekte Pixel, in der
Bildaufnahme ein. Zusätzlich stellen wir eine neue adaptive Verteilungsfunk-
tion für die Regularisierung zur adäquaten Modellierung natürlicher Bilder vor.
Wir entwickeln ferner einen robusten Optimierungsalgorithmus mit diesem Mo-
dell, der Hyperparameter vollautomatisch auswählt. Der vorgestellte Ansatz zur
Auflösungserhöhung erfüllt in der Praxis Anforderungen hinsichtlich Robustheit,
welche schwierige Rahmenbedingungen von ungenauer Bewegungsschätzung bis
ortsvariantem Rauschen umfassen. Im beispielhaften Fall einer ungenauen Be-
wegungsschätzung verbessert die vorgeschlagene Methode das Spitzen-Signal-
Rausch-Verhältnis (PSNR) um 0.7 decibel (dB) gegenüber dem Stand der Technik.

Der zweite Beitrag betrifft Ansätze zur Auflösungserhöhung für mehrere Mo-
dalitäten in der hybriden Bildgebung. Wir führen hierfür neue Mehrsensor-Ver-
fahren ein und untersuchen zwei gegensätzliche Problemstellungen. Für die Auf-
lösungserhöhung unter Verwendung einer Führungsmodalität stellen wir einen
Algorithmus vor, der diese zur Bewegungsschätzung, merkmalsbasierten adap-
tiven Regularisierung und Ausreißerdetektion zur zuverlässigen Auflösungser-
höhung einer zweiten Modalität einsetzt. Für den Fall, dass Führungsdaten fehlen,
verallgemeinern wir diesen Ansatz zu einem Algorithmus, der mehrere Modalitä-
ten simultan verarbeitet. Diese Mehrsensor-Methodik steigert Genauigkeit und
Robustheit gegenüber Einzelsensor-Ansätzen. Die neu eingeführten Techniken
sind vielfältig für eine Auflösungserhöhung in zahlreichen Anwendungen von
Mehrsensor-Bildgebung einsetzbar, was Farb-, Multispektral- sowie Tiefenbildge-
bung umfasst. Im Bereich der Farbbildgebung als Beispiel für ein klassisches An-
wendungsfeld, verbessert die simultane Auflösungserhöhung von Farbkanälen
das PSNR um 1.5 dB gegenüber einer konventionellen kanalweisen Verarbeitung.

Der dritte Beitrag überträgt Verfahren zur Auflösungserhöhung in die Medi-
zin. Als Anwendung in der Ophthalmologie behandeln wir Videobildgebung zur
nicht-invasiven, örtlich-zeitlichen Untersuchung der menschlichen Retina. Um
den diagnostischen Nutzen aktueller Digitalkameras zu verbessern, stellen wir ein



Verfahren zur Gewinnung hochauflösender Retinabilder aus niedrigauflösenden
Videodaten unter Ausnutzung natürlicher Augenbewegungen vor. Das Verfahren
verbessert die mittlere Sensitivität einer automatischen Blutgefäßsegmentierung
um 10 %, wenn eine Auflösungserhöhung zur Bildvorverarbeitung genutzt wird.
Als eine weitere Anwendung in der bildgeführten Chirurgie untersuchen wir hy-
bride Tiefenbildgebung. Um Auflösungsbeschränkungen heutiger Tiefensensoren
zu überwinden, führen wir anwendungsspezifische Kalibrierverfahren ein und
verwenden hochauflösende Farbbilder für Mehrsensor-Auflösungserhöhung auf
Tiefendaten. In ex-vivo Experimenten für minimal-invasive und offene Chirurgie
mit Time-of-Flight (ToF) Sensoren verbessert diese Technik die Zuverlässigkeit von
Oberflächen- und Tiefenkantenmessungen um mehr als 24 % bzw. 68 % gegenüber
Rohdaten.
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Introduction

1.1 Resolution of Digital Imaging Systems . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Super-Resolution in this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The resolution of an imaging system characterizes the level of spatial detail at
which it captures images and – besides the contrast resolution – it is considered as
a major quality indicator. This is obvious in digital photography, where the camera
resolution is directly related to the acquisition of fine textures in a scene. In remote
sensing as another prominent example, one is interested in measuring information
on a planet surface over long distances, which requires high-resolution cameras.
Resolution is also crucial in the context of medical imaging to support interven-
tional or diagnostic workflows. For instance, morphological imaging modalities
need to provide precise information regarding human anatomy.

In most of these areas, a large effort has been made by researchers and sys-
tem manufacturers to develop sensors and optical components that enable high-
resolution imagery. However, resolution is inherently limited. Besides technolog-
ical constraints, the use of improved hardware might lead to unacceptable high
costs or sizes of commercial systems. In contrast to mass products with a limited
life cycle that may allow the use of improved hardware in future product releases,
a simple replacement of hardware components is often not feasible in existing
long-lived systems, e. g. in remote sensing or medical imaging. In these cases
one has to optimally use existing hardware and needs to employ techniques to en-
hance the actual image resolution. This thesis investigates super-resolution methods
to reconstruct high-resolution images from low-resolution ones retrospectively.

This chapter provides an introduction to the physics of digital imaging as well
as different paradigms of super-resolution. Finally, the scientific contributions of
this work are elaborated and an outline of the different chapters is presented.

1.1 Resolution of Digital Imaging Systems

Let us first discuss the meaning of optical resolution in terms of imaging systems
as it is the focus of any super-resolution method to improve this property. Optical
resolution is an abstract term and depends on a variety of physical parameters.
In this work, optical resolution is defined in accordance to optics literature and

1
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.  .  .

Figure 1.1: Illustration of the sensor array of a digital imaging system with square pixels.
Incoming light passes an optical system and is integrated on the active pixel areas.

denotes the ability of an imaging system to capture spatial details. A classical ap-
proach to objectify this parameter are two-point criterions that measure the abil-
ity to resolve two point light sources without interference in the image [Dekk 97].
Examples for these objective criterions are the Rayleigh [Lord 79] or the Sparrow
criterion [Spar 16]. As this thesis is focused on digital optical imaging, we consider
an imaging system as the composition of optical components and a sensor array.
There are two main aspects that influence the optical resolution1.

Limitations of the Optics. In terms of optics, the optical resolution is inherently
limited by diffraction that is related to the camera aperture size and the wave-
length of light [Erso 06]. The diffraction barrier results in a spread of incoming
light waves when passing a small aperture and leads to distortions of the light
signal. Moreover, unavoidable manufacturing uncertainties of lenses cause ad-
ditional distortions. For these reasons, point light sources cannot be captured as
ideal points and appear blurred in an acquired image. These distortions limit the
optical resolution and are modeled by the optical point spread function (PSF). This
function denotes the impulse response of the optical system and causes a band-
limitation in terms of spatial frequencies that can be actually resolved [Lind 12].

Limitations of the Sensor. In addition to optical effects, the utilized sensor tech-
nology influences the optical resolution. In digital imaging, resolution is affected
by the discretization of incoming light according to the sensor geometry. Charge-
coupled device (CCD) or complementary metaloxide semiconductor (CMOS) sys-
tems [El G 05] consist of picture elements (pixels) that represent the sampling posi-
tions for this discretization. Two major parameters of the sensor are the pixel pitch
and the active pixel area, see Fig. 1.1. These parameters define the pixel resolution
that denotes the number of pixels on the sensor array. The pixel resolution directly
contributes to the optical resolution as long as the diffraction limit is not exceeded.
According to the Nyquist-Shannon sampling theorem [Shan 48], the sensor needs
to provide a sufficiently high resolution to avoid aliasing due to undersampling.

However, simply putting a higher number of pixels to the sensor array is often
impracticable as pixels have a non-infinitesimal size and the maximum sensor area

1Notice that in this discussion we exclude conditions related to the scene, e. g. motion blur or
atmospheric turbulence, that may also affect the overall optical resolution.
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is bounded. Notice that only a percentage of the pixel area is light sensitive, which
is quantified by the fill factor [El G 05]. The incoming light is integrated over this
active area to gain a digital signal. This effectively applies a low-pass filter to the
acquired images and leads to a loss of detail. Unfortunately, decreasing the fill
factor would result in fewer photons being collected on each pixel. This attenuates
the pixel sensitivity and causes an increase of shot noise [Chen 00]. For this reason,
simply reducing the fill factor does not necessarily contribute to a higher optical
resolution as noise can be seen as another resolution limiting property [Dekk 97].

1.2 Super-Resolution in this Work

Over the past decades, a variety of super-resolution techniques emerged in dif-
ferent scientific disciplines. Common to all of these approaches is the goal to en-
hance the optical resolution of an imaging system by engineering the resolution
restricting aspects discussed in Section 1.1. To the best of our knowledge, there is
no clear taxonomy regarding the meaning of super-resolution and the techniques
may fundamentally differ [Drig 05]. This work distinguishes between instrumental
and computational super-resolution according to Lindberg [Lind 12].

The instrumental approach, also known as optical super-resolution, is focused
on an engineering of the optical PSF in order to increase the band-limitation of the
system. Methods that are related to this class have been widely studied in physics
and optical engineering and include, among others, the use of photoswitchable
proteins in microscopy [Hofm 05] or superlenses [Zhan 08]. These techniques aim
at breaking the diffraction limit as a resolution limiting property. However, it is in
the very nature of the instrumental approach that it requires modifications on the
underlying hardware, which is beyond the scope of this work.

Computational super-resolution [Bert 03] is a complementary approach and
features resolution enhancement by means of software – without considerable ef-
fort regarding hardware modifications. This methodology is well-suited for low-
cost imaging or workflows that do not allow changes on the system hardware.
This area can be further divided into two domains: diffractive and geometrical ap-
proaches [Zale 10]. On the one hand, diffractive super-resolution aims at overcom-
ing the diffraction barrier related to the optical system retrospectively [Garc 06,
Zale 13, Ilov 14]. Geometrical super-resolution on the other hand has the goal to
circumvent the limitations related to the sensor. One approach is to address the ac-
tive pixel area as a resolution limiting factor [Bork 09, Bork 11]. This has the goal to
alleviate the low-pass effect caused by spatial sampling with pixels of finite size. In
contrast to these methods, the focus of this thesis lies in computational techniques
that consider the pixel pitch as the limiting property. These methods have the ob-
jective to reconstruct images at finer pixel sampling from one or an entire sequence
of undersampled images and have been widely investigated in image processing
[Mila 10]. Undersampling refers to the fact that raw images are sampled below the
Nyquist-Shannon frequency [Shan 48] and are therefore affected by aliasing. This
improvement of the pixel sampling is due to redundancies or complementary in-
formation encoded in low-resolution images. As the primary goal in this area lies
in an enhancement of the pixel sampling, we use the pixel resolution as a synonym
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(a) Low-resolution frames (b) Super-resolved image

Figure 1.2: Example of multi-frame super-resolution by exploiting subpixel motion across
a set of low-resolution frames. (a) Sequence of low-resolution frames. (b) Super-resolved
image (4×magnification) gained from 17 frames using the method proposed in Chapter 4.

for the overall optical resolution. For the sake of brevity in the remainder of this
thesis, resolution simply refers to the pixel resolution of the imaging system. Ac-
cordingly, super-resolution denotes the process of reconstructing high-resolution
images from low-resolution ones by enhancing the pixel sampling.

This thesis further distinguishes super-resolution according to the type of infor-
mation that is exploited for resolution enhancement. Multi-frame super-resolution
obtains one or a set of high-resolution images from a sequence of low-resolution
frames by using complementary information across the input frames. This can
be achieved by utilizing relative motion [Park 03] as depicted in Fig. 1.2 or more
seldom by defocusing across the frames [Raja 03]. The algorithms studied in this
work mostly fall into the first category. Single-image super-resolution or upsam-
pling recovers a high-resolution image from a single low-resolution one. This can
be considered a special case of multi-frame super-resolution but the resulting re-
construction problem is highly underdetermined. State-of-the-art methods in this
area are learning based [Yang 10, Free 00, Dong 14] or make use of redundancies
within a single image [Glas 09]. These approaches need to be differentiated from
the closely related deconvolution methods [Patr 16]. The goal of image deconvolu-
tion is to remove blur caused by diffraction, atmospheric turbulence, or motion
but the pixel resolution of deblurred images remains the same.

1.3 Scientific Contributions

The major contributions of this thesis concern the theory and the development of
computational methods for multi-frame super-resolution. In addition, new ap-
plications in different domains of digital optical imaging including workflows in
healthcare are studied. Let us outline these contributions that cover three parts.

Numerical Methods for Multi-Frame Super-Resolution. The first contribution
concerns the development of general-purpose techniques for multi-frame super-
resolution. This part puts the emphasis on the design of robust numerical algo-
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rithms that are well-suited under challenging conditions in real-world imaging
systems, where super-resolution is prone to failure.

In the field of robust numerical algorithms, we propose a novel optimization
method based on space variant Bayesian modeling of super-resolution. This formu-
lation includes a confidence-aware observation model that considers space variant noise
and outliers in the image formation process. Furthermore, we follow up on recent
advances in the theory of compressed sensing [Cand 08] and introduce a spatially
adaptive prior distribution to exploit sparsity of natural images in the gradient do-
main as prior knowledge for super-resolution. The numerical optimization under
this model leads to an iteratively re-weighted minimization scheme, which facilitates
the simultaneous reconstruction of high-resolution images along with the infer-
ence of latent model parameters. This approach can handle super-resolution for
intensity images or 3-D range data under challenging conditions like inaccurate
motion estimation, photometric variations, or space variant noise.

These methods have been originally published in a journal article [Kohl 16b].

Multi-Sensor Super-Resolution for Hybrid Imaging. The second contribution
concerns the development of super-resolution methods for hybrid imaging. For
this domain, we introduce novel multi-sensor super-resolution algorithms that are
applicable to various imaging setups. These algorithms exploit the existence of a
set of imaging modalities in contrast to conventional methods that consider only a
single one. Overall, we study two problem statements:

• First, we investigate super-resolution of one imaging modality under the
guidance of a complementary modality. To this end, we introduce a novel frame-
work that exploits high-resolution guidance data to steer super-resolution on
low-resolution input data. This comprises guidance data driven motion es-
timation, spatially adaptive regularization, as well as outlier detection. The
merit of this formulation over conventional super-resolution is demonstrated
in hybrid 3-D range imaging, where high-resolution color images are utilized
to reliably super-resolve low-resolution range data.

This methodology has been originally published in two conference proceed-
ings [Kohl 13b, Kohl 14b] and one journal article [Kohl 15b].

• Second, we examine multi-sensor super-resolution for an arbitrary number
of modalities and in the absence of reliable guidance data. We introduce a
novel Bayesian model based on linear regressions across the channels of multi-
channel images that represent the involved modalities. Furthermore, an en-
ergy minimization algorithm for the joint reconstruction of the different chan-
nels and latent hyperparameters of this model is presented. This method
is applicable to many target applications, including color-, multispectral-,
and hybrid range imaging. The proposed multi-channel reconstruction algo-
rithm exploits mutual dependencies between different channels as a strong
prior to boost the accuracy of super-resolution.

This methodology has been originally published in two conference proceed-
ings [Ghes 14, Kohl 15c].
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Super-Resolution in Medical Imaging. The third contribution concerns the trans-
fer of super-resolution algorithms to several fields in medical imaging with the
goal to enhance medical workflows. The following applications are covered:

• In terms of diagnostic imaging, we study super-resolution for a non-invasive
examination of the human eye background by means of retinal fundus im-
ages. In contrast to single-shot photography, we propose video imaging and
use a tailored approach to reconstruct high-resolution fundus images from low-
resolution video frames. This method utilizes natural eye motion during an
examination as a cue for super-resolution. Furthermore, we introduce a fully
automatic noise and sharpness measure for fundus images to steer the selection
of latent model hyperparameters. The proposed framework enables high-
resolution fundus imaging using mobile and cost-effective video hardware.

These applications have been originally published in three conference pro-
ceedings [Kohl 13a, Kohl 14a, Kohl 16a].

• In the field of interventional workflows, we investigate super-resolution to
facilitate image-guided surgery based on hybrid range imaging. We adopt
multi-sensor super-resolution to hybrid range imaging in 3-D endoscopy and
image guided open surgery that are studied as example applications. For this
purpose, we present two system calibration schemes that are tailored for these
applications in order to enable sensor data fusion of low-resolution range
data and high-resolution color images. The proposed method enables high-
resolution 3-D range measurements using current Time-of-Flight (ToF) sen-
sors, which is studied in ex-vivo experiments for minimally invasive and
open surgery procedures.

These applications have been originally published in two conference pro-
ceedings [Kohl 13b, Kohl 14b] and one journal article [Kohl 15b].

To foster reproducible research and future work of other groups, source code of the
developed algorithms have been made publicly available in a multi-frame super-
resolution toolbox for MATLAB2. This work also led to the publication of the Super-
Resolution Erlangen (SupER) benchmark [Kohl 17] – a comparative experimental
validation of current super-resolution algorithms on a novel image database.

In addition to these research results, this work also contributed to related areas
including multi-frame denoising [Kohl 12, Schi 17], blind deconvolution [Kohl 15d],
joint image registration and super-resolution [Berc 16], or hardware acceleration
of super-resolution [Wetz 13]. This thesis also contributed to research in medical
image analysis including image-based tracking [Kurt 14], super-resolved segmen-
tation [Haas 13c], and computer-assisted diagnostics [Kohl 15a].

1.4 Outline of this Thesis

This thesis is structured in an introductory part that covers the background of
multi-frame super-resolution as well as three main parts as shown in Fig. 1.3.

2https://www5.cs.fau.de/research/software/multi-frame-super-resolution-toolbox/

https://www5.cs.fau.de/research/software/multi-frame-super-resolution-toolbox/
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Chapter 2 presents an in-depth analysis of super-resolution in the frequency
domain. This includes a study of single- and multi-channel sampling along with a
discussion of the sampling theorem according to Nyquist and Shannon. The recon-
struction of well sampled signals from undersampled ones as the core of super-
resolution is modeled as an inverse problem based on the multi-channel theory.
A mathematical discussion regarding the uniqueness of this reconstruction and the
effective magnification factor obtainable by super-resolution is presented.

The main body is divided into three parts in accordance with the contributions
outlined in Section 1.3. Part I covers general-purpose methods for multi-frame
super-resolution. In Chapter 3, we introduce the computational framework for multi-
frame super-resolution that is widely employed in the algorithms presented in the
remainder of this work. This chapter concerns the fundamentals of state-of-the-art
algorithms ranging from the mathematical modeling of the image formation pro-
cess to Bayesian methods that formulate super-resolution as a statistical parame-
ter estimation problem. Subsequently, Chapter 4 introduces robust super-resolution
with sparse regularization that extends this framework by space variant observation
and prior distributions. In this chapter, we present iteratively re-weighted minimiza-
tion for simultaneous super-resolution and model parameter estimation.

Part II covers super-resolution for hybrid imaging and comprises the two multi-
sensor techniques developed in this work. In Chapter 5, we introduce multi-
sensor super-resolution using guidance images. This framework augments conven-
tional super-resolution (Chapter 3) by motion estimation, adaptive regularization,
as well as outlier detection techniques that are steered by guidance data to lever-
age the reconstruction of a complementary modality. Subsequently, Chapter 6 in-
troduces multi-sensor super-resolution using locally linear regression to jointly super-
resolve a set of imaging modalities without explicitly using one of them as a guid-
ance. This provides a generalization of guidance image based super-resolution (Chap-
ter 5) and employs iteratively re-weighted minimization (Chapter 4) for numerical
optimization. We present several potential applications of both methodologies
ranging from color and multispectral imaging to hybrid 3-D range imaging.

Part III is focused on novel applications of super-resolution to facilitate di-
agnostic and interventional medical imaging. In Chapter 7, we address super-
resolution for retinal fundus video imaging. This chapter is concerned with a new
method to reconstruct high-resolution fundus images from multiple low-resolution
video frames by exploiting natural human eye movements. This method is pre-
sented in the field of low-cost imaging to gain fundus images at high spatial reso-
lution by means of low-priced and mobile video camera systems. Chapter 8 covers
super-resolution for image-guided surgery using hybrid range imaging. This chapter
adopts the previously introduced guidance image based super-resolution (Chapter 5)
and presents the system calibration schemes to make it accessible for the desired
application. The proposed framework is presented in the context of hybrid 3-D
endoscopy and image-guided open surgery.

In Chapter 9, we draw a conclusion and summarize the main findings of this
thesis. Finally, Chapter 10 provides an outlook regarding promising directions for
future research.
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Figure 1.3: Structure of this thesis and relationship among the individual chapters. The
background part provides a theoretical discussion of the relationship between super-
resolution and the Nyquist-Shannon sampling theorem. The main body covers numer-
ical methods for multi-frame super-resolution algorithms (Part I), multi-sensor super-
resolution for hybrid imaging (Part II), as well as applications of super-resolutions in med-
ical imaging (Part III).
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This chapter is devoted to the relationship between the Nyquist-Shannon sam-
pling theorem [Shan 48] as fundamental principle underlying the acquisition of
digital signals and super-resolution reconstruction. In order to formulate this the-
oretical framework, single-channel sampling is generalized to the multi-channel
case, where a continuous signal is sampled multiple times to capture a set of dis-
crete signals. Based on a Fourier domain analysis, signal reconstruction to recover
the original, continuous signal from multiple sampled channels is formulated as a
linear inverse problem. It is shown that a solution of this linear problem yields a
super-resolved signal to overcome the constraints stated by the sampling theorem.
Finally, inherent limitations of super-resolution regarding the maximum magnifi-
cation and the uniqueness of the reconstruction are derived.

The analysis of multi-channel sampling presented in this chapter is based on
the pioneering work on image super-resolution algorithms [Tsai 84, Kim 90, Teka 92]
formulated in the frequency domain. A similar analysis is also presented in the
work of Vandewalle [Vand 06a, Vand 07], where the more general concept of finite
dimensional Hilbert spaces is used as mathematical tool.

2.1 Introduction

In digital imaging, a continuous description of the real world, i. e. geometry or
texture of objects, is discretized to provide a digital representation. In terms of
signal processing, one major parameter of such a system is how this sampling is
performed and whether the resulting image is sampled appropriately. In case of a
digital camera, the number of pixels on a sensor array as well as the spacing be-
tween the pixels are relevant system parameters related to the sampling process,

9
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see Section 1.1. The Nyquist-Shannon sampling theorem [Shan 48] states inherent
requirements regarding an appropriate sampling in order to capture a digital rep-
resentation without loss of information. These requirements concern the sampling
frequency as well as the spectral properties of the continuous signal. Violating
the sampling theorem such that the sampling frequency is chosen too small with
regard to the signal’s spectral properties leads to aliasing. In case of aliasing, low
frequency components of the continuous signal are superimposed by its high fre-
quency components resulting in signal distortions.

In presence of aliasing, a further analysis of the sampled signal is prone to
errors and restoration techniques are required to overcome undersampling. In
this context, super-resolution aims at reconstructing a digital signal that is free of
aliasing artifacts from an undersampled signal. This methodology is based on the
concept of multi-channel sampling, where a continuous signal is sampled multiple
times as opposed to classical single-channel sampling. Super-resolution can be seen
as a fusion of multiple channels in order to overcome the limitations stated by the
sampling theorem for a single channel. This is feasible by exploiting complemen-
tary information across the channels. In case of digital imaging, these channels
correspond to different frames of an image sequence taken from the same scene,
whereas each frame contains a complementary view.

The remainder of this chapter is organized as follows. Section 2.2 covers the
fundamentals of sampling under ideal and real conditions along with the Nyquist-
Shannon theorem. In Section 2.3, we extend single-channel sampling to the multi-
channel case. Accordingly, super-resolution is formulated as an inverse linear
problem based on the multi-channel sampling theory. Section 2.4 presents a nu-
merical algorithm to solve this inverse problem in the frequency domain. Sec-
tion 2.5 covers fundamental properties of super-resolution regarding the effective
magnification factor and the uniqueness of the signal reconstruction. Finally, Sec-
tion 2.6 provides a summary and a conclusion of these concepts.

2.2 Single-Channel Sampling Theory

The sampling of a continuous signal is first modeled for single channels, where one
set of discrete samples is obtained from the original signal [Mall 99]. For conve-
nience, but without loss of generality, this process is modeled for one-dimensional
signals only. As the different dimensions of multidimensional signals are separa-
ble, the underlying theory can be extended and applied to each individual dimen-
sion. Since common physical measurements such as digital images are real-valued,
we limited the following analysis to real-valued signals.

Let x : R → R be a real-valued, continuous signal denoted by x(t). For dis-
cretization in the domain t ∈ R, x(t) is sampled in equidistant steps with sam-
pling pitch T. The sampled signal defined as continuous function is denoted by
y(t) = DT{x(t)}, where DT{·} denotes the sampling operator. Then, the dis-
cretization y[n] associated with x(t) is obtained according to y[n] := x(nT), where
n ∈ Z denotes the sample index. This process is examined for two different situa-
tions including ideal sampling as well as real sampling as a reasonable model in the
context of digital imaging.
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2.2.1 Ideal Single-Channel Sampling
In case of ideal sampling, the sampling operator is modeled by Dirac delta im-
pulses. Then, y(t) is obtained from a product of the continuous signal x(t) and a
Dirac comb [Mall 99] as depicted in Fig. 2.1. More formally, single-channel sam-
pling is modeled by:

y(t) = DT{x(t)} :=
∞

∑
m=−∞

x(t)δ(t−mT), (2.1)

where m ∈ Z and the discrete Dirac delta is defined as:

δ(t) :=

{
1 if t = 0
0 otherwise

. (2.2)

The resulting signal y(t) is continuous and represents the discrete values of y[n]
for t = nT. In order to present the sampling theorem, we model the sampling
process in the frequency domain. Let X( f ) = F{x(t)} be the continuous Fourier
transform (CFT) [Rahm 11] of the signal x(t) defined as:

X( f ) = F{x(t)} :=
∫ ∞

−∞
x(t) · exp(−j2π f t)dt, (2.3)

where j is the imaginary unit. Using the Fourier transform, linearity, and the con-
volution theorem, Eq. (2.1) can be written in the frequency domain according to:

Y( f ) = F
{

∞

∑
m=−∞

x(t)δ(t−mT)

}

=
∞

∑
m=−∞

F{x(t)δ(t−mT)}

=
∞

∑
m=−∞

F{x(t)} ?F{δ(t−mT)} = 1
T

∞

∑
m=−∞

X( f ) ? ∆
(

f − m
T

)
(2.4)

where ? denotes the convolution, Y( f ) denotes the CFT associated with the sam-
pled signal y(t), and ∆( f ) is the CFT of the Dirac delta δ(t) [Mall 99]. According to
the definition of the sampling pitch, we define the sampling frequency fs =

1
T . Thus,

ideal sampling can be described as:

Y( f ) =
∞

∑
m=−∞

X( f ) ? fs∆( f −m fs)

= fs

∞

∑
m=−∞

X( f −m fs).
(2.5)

Accordingly, the sampling of x(t) by the frequency fs corresponds to a periodic
summation of X( f ), where the periodic length is given by the sampling frequency
fs. One key question is under which conditions the continuous signal x(t) can be
fully characterized by its discrete samples y[n] without loss of information. The
possibility of this reconstruction depends on the Fourier properties of x(t) and is
studied for band-limited signals that are defined as follows.
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Figure 2.1: Ideal sampling to obtain discrete samples y[n] from a continuous signal x(t).

Definition 2.1 (Band-limited signal). A continuous signal x(t) is band-limited if there
exists a cut-off frequency f0 such that X( f ) = F{x(t)} fulfills X( f ) = 0 for | f | ≥ f0.

Let us assume that x(t) is band-limited. Depending on the sampling frequency
fs, three situations for the sampling process can be distinguished [Vand 10], see
Fig. 2.2. In order to verify if x(t) can be fully reconstructed from y[n], the properties
of the periodic summation in Eq. (2.5) are analyzed.

Nyquist Sampling. If the sampling frequency fs is chosen according to fs ≥ 2 f0,
adjacent parts of the spectrum Y( f ) calculated by the periodic summation of X( f )
in Eq. (2.5) are non-overlapping. For this situation that is depicted in Fig. 2.2b and
termed as Nyquist sampling, it is feasible to recover x(t) from its discrete samples
y[n]. This fact is explained by the Nyquist-Shannon sampling theorem for band-
limited signals [Shan 48].

Theorem 2.1 (Nyquist-Shannon sampling theorem). Let x(t) be a band-limited con-
tinuous signal with cut-off frequency f0. Then, x(t) is completely described by its discrete
samples y[n] obtained by the sampling frequency fs if fs ≥ 2 f0.

In case of Nyquist sampling, the signal x(t) can be reconstructed from y[n]
using low-pass filtering to remove the periodic parts of Y( f ). We can obtain x(t)
based on the inverse CFT F−1{·} according to:

x(t) = F−1
{

Y( f ) · Hreco( f )
}

, (2.6)

where Hreco( f ) denotes the CFT of a reconstruction low-pass filter to suppress the
periodic parts. For example, one can employ the ideal low-pass filter:

Hreco( f ) =

{
1 if | f | ≤ f0

0 otherwise
. (2.7)
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(a) CFT of the continuous signal x(t)
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(b) CFT of the sampled signal y(t) under Nyquist sampling ( fs ≥ 2 f0)
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(c) CFT of the sampled signal y(t) for undersampling with partial aliasing ( f0 ≤ fs < 2 f0)
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(d) CFT of the sampled signal y(t) for undersampling with total aliasing ( fs < f0)

Figure 2.2: The sampling of the continuous, band-limited signal x(t) with frequency fs
corresponds to a periodic summation of the CFT X( f ). For the sake of visualization, the
frequencies f are normalized w. r. t. the band-limitation f0 of x(t). According of [Vand 10],
three situations for the sampling process can be distinguished. Depending on fs, the sam-
ples y[n] are acquired at the Nyquist rate, partial aliased or total aliased.
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(a) Full resolution (b) 4×4 hardware binning

Figure 2.3: Aliasing in digital imaging depicted on the ISO 12233:2000 resolution chart
[ISO 00]. (a) Acquisition of the resolution chart at the full pixel resolution (2048×1088 px)
of a Basler acA2000-50gm camera. (b) Acquisition of the same chart with 4×4 hardware
binning relative to the full pixel resolution. Notice that structures with high spatial fre-
quencies relative to the sampling frequency, e. g. line pairs with small spacings, are dis-
torted by a Moiré pattern caused by undersampling.

Undersampling with Partial Aliasing. While x(t) can be fully reconstructed if
the sampling theorem holds true, this is no longer feasible in case of undersam-
pling. Let us assume that f0 < fs < 2 f0. Then, in the periodic summation in
Eq. (2.5), parts of X( f ) are superimposed as depicted in Fig. 2.2c. In this situation,
the samples y[n] are considered as partial aliased.

In digital imaging, a violation of the sampling theorem leads to aliasing arti-
facts that are visible as Moiré pattern. This effect is visualized on the ISO 12233:2000
resolution chart [ISO 00] in Fig. 2.3 that was acquired with a Basler acA2000-50gm
complementary metaloxide semiconductor (CMOS) camera1. The resolution chart
was captured at the full pixel resolution of the camera (Fig. 2.3a) as well as at a
reduced resolution using 4×4 hardware binning [Kohl 17] of pixels on the sensor
array (Fig. 2.3b). Here, line pairs that have small spacings compared to the sam-
pling frequency are distorted by aliasing.

Notice that a reconstruction of x(t) using low-pass filtering would be distorted
due to undersampling if aliasing is not considered. One can remove aliasing in the
design of the reconstruction low-pass filter H̃reco( f ):

H̃reco( f ) =

{
1 if | f | ≤ fs − f0

0 otherwise
. (2.8)

Unfortunately, removing the signal distortions caused by undersampling, one also
loses the high-frequency content present in the original signal x(t). Another strat-
egy to overcome aliasing is an artificial increase of the sampling frequency by
means of super-resolution reconstruction as discussed below.

1http://www.baslerweb.com/en

http://www.baslerweb.com/en
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Undersampling with Total Aliasing. A situation that is even more severe ap-
pears if the sampling frequency is chosen as fs < f0. In this case, the interfer-
ence in the spectrum Y( f ) results in a total aliased discretization y[n] as depicted
in Fig. 2.2d. As opposed to the aforementioned partial aliasing, all parts of the
spectrum Y( f ) and thus the entire signal y[n] are distorted. Notice that a simple
reconstruction of the continuous signal x(t) by a removal of the aliasing artifacts
using low-pass filtering is no longer possible in this situation. However, similar
as for partial aliased signals, we will show how super-resolution can be utilized to
perform a reconstruction of x(t).

2.2.2 Real Single-Channel Sampling

Up to now, the sampling process was considered to be ideal, such that a Dirac
delta can be used to model the sampling operator DT. Theoretically, this would
result in an arbitrarily high resolution as long as the sampling frequency is cho-
sen such that the sampling theorem is fulfilled. However, this simplistic assump-
tion is never feasible in practice. In case of real sampling, the sampled signal is
a blurred version of the original one due to the fact that the impulse response of
the acquisition device deviates from the Dirac delta, see Section 1.1. Recently, non-
ideal sampling models gained attention for signal reconstruction. This results in a
deconvolution problem rather than interpolation as in the case of ideal sampling
[Elda 06, Rama 08, Guev 10]. Modeling of real sampling becomes important for
imaging systems, where diffraction, manufacturing uncertainties of lenses, and
the summation of light photons on a finite pixel area of the sensor array restrict
an ideal sampling and introduce blur. An illustration of this issue is depicted for
the ISO 12233:2000 resolution chart in Fig. 2.4. In this example, steep edges on the
resolution chart appear blurred in digital images.

Mathematically, blur in the sampling model is considered by replacing the
Dirac delta in Eq. (2.1) by a blur kernel h(t, t0). Using a linear blur model, the
sampled signal y(t) is given by:

y(t) =
∞

∑
m=−∞

x(t)h(t, mT). (2.9)

This models the blur at position t, whereas the kernel is evaluated at the sample
positions mT. If the blur kernel is assumed to be linear shift invariant (LSI), i. e.
h(t, mT) = h(t−mT), the amount of blurring depends only on the distance t−mT.
Then, the sampling process can be described according to:

y(t) =
∞

∑
m=−∞

(x(t) ? h(t))︸ ︷︷ ︸
z(t)

δ(t−mT)

= DT{x(t) ? h(t)} ,

(2.10)

Thus, the sampling process can be described in two steps. First, a filtered version
z(t) of the continuous signal x(t) according to the underlying kernel h(t) is deter-
mined. Since h(t) is the impulse response of a low-pass filter, the convolution to
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Figure 2.4: Illustration of sampling in digital imaging using the ISO 12233:2000 resolution
chart [ISO 00]. Steep edges on the resolution chart are blurred in digital images due to
diffraction, non-ideal lenses, and the finite pixel size of the camera.

determine z(t) corresponds to an averaging of x(t) over the support of the kernel,
which explains the blurring of x(t). Finally, to obtain a sampled signal y(t) and
thus the discretization y[n], z(t) is sampled with ideal Dirac deltas.

2.3 Multi-Channel Sampling Theory

In the previous section, the analysis was restricted to single-channel sampling,
where the continuous signal x(t) is sampled once to acquire a discrete signal y[n].
One situation interesting for the development of super-resolution algorithms is the
case of multi-channel sampling [Papo 77, Unse 97], where x(t) is sampled multi-
ple times. This appears in digital imaging, where multiple images of a scene can
be captured by moving the camera to different viewpoints while acquiring video
data. This section presents multi-channel sampling based on the formulation of
Tsai and Huang [Tsai 84]. In addition to the theoretical insights, this introduces
the historically first multi-frame super-resolution algorithm proposed in [Tsai 84].

Multi-channel sampling of the continuous signal x(t) can be modeled by a se-
quence of complementary channels determined from x(t). If the sampling of these
channels is not synchronized, the k-th channel x(k)(t), k = 1, . . . , K can be de-
fined as a shifted version of x(t) according to x(k)(t) = x(t − tk), where tk ∈ R

denotes the channel offset. Without loss of generality, the first channel is defined
as reference, i. e. t1 = 0. The sampled signals obtained from the different chan-
nels are denoted as y(k)(t) and the corresponding discrete samples are given by
y(k)[n] := y(k)(nTk), where Tk denotes the sampling pitch of the k-th channel. For
the sake of notational brevity, let us assume that the sampling pitch is fixed, i. e.
Tk = T for all channels. The samples y(k)[n] contain complementary information
about the underlying continuous signal x(t). Consequently, x(t) is sampled by
a non-uniform scheme parametrized by the sampling frequency and the channel
offsets as illustrated in Fig. 2.5. We analyze this process for two situations.
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Figure 2.5: Illustration of multi-channel sampling with constant sampling pitch for all
channels. The continuous signal x(t) is sampled K times (K = 3) according to the chan-
nel offsets tk with k = 1, . . . , K as shown in (a) - (c). The fusion of the resulting discrete
channels y(k)[n] leads to a non-uniform sampling in the domain t as shown in (d).

2.3.1 Ideal Multi-Channel Sampling
Let us first examine ideal multi-channel sampling, where the sampling operator
DT{·} is modeled by the Dirac comb. Thus, the sampled version of the k-th chan-
nel is given by:

y(k)(t) =
∞

∑
m=−∞

x(k)(t)δ(t−mTk)

=
∞

∑
m=−∞

x(t− tk)δ(t−mTk).
(2.11)

Notice that the CFT X(k)( f ) = F{x(k)(t)} for k > 1 is related to the CFT of the
first channel X( f ) = F{x(1)(t)} using the shift property of the Fourier transform
according to:

X(k)( f ) = exp(−j2π f tk)X( f ). (2.12)

In order to derive a relationship between y(k)[n] and x(t), it is assumed that all dis-
crete channels are defined by a finite number of N samples acquired over a finite
interval. Then, the discrete samples y(k)[n] are represented by N complex-valued
frequency coefficients using the discrete Fourier transform (DFT) [Oppe 99]:

Y (k)[n] =
N−1

∑
m=0

exp
(
−j2πn

m
N

)
y(k)[m], (2.13)
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where n = 0, . . . , N− 1. The DFT coefficients Y (k)[n] are related to the CFT X(k)( f )
of the k-th channel. According to the aliasing property of the Fourier transform in
Eq. (2.5) and the fact that the CFT and the associated DFT of a real-valued signal
x(t) are symmetric [Cool 69], this relationship is given by:

Y (k)[n] = fs

∞

∑
m=−∞

X(k)
( n

N
fs −m fs

)
. (2.14)

Since the continuous signal x(t) is assumed to be band-limited at a certain cut-
off frequency, we have X( f ) = 0 for | f | ≥ L fs with a finite integer L. Hence,
the aliasing property can be formulated for a finite interval in the Fourier domain
instead of considering the infinite summation in Eq. (2.14). Moreover, using the
Fourier shift theorem in Eq. (2.12), the aliasing property is formulated as:

Y (k)[n] = fs

L−1

∑
m=−L

X(k)
( n

N
fs −m fs

)
= fs

L−1

∑
m=−L

exp
(
−j2π

( n
N

fs −m fs

)
tk

)
X
( n

N
fs −m fs

)
.

(2.15)

Following the derivation of Kim et al. [Kim 90], this condition is written in terms
of the linear system:

Y (k)[1]
Y (k)[2]

...
Y (k)[N]


︸ ︷︷ ︸

Y (k)

=


w(k)

1 0 · · · 0
0 w(k)

2 · · · 0
...

...
. . .

...
0 0 · · · w(k)

N


︸ ︷︷ ︸

W(k)


X1,−L

X1,−L+1
...

XN,L−1


︸ ︷︷ ︸

X

, (2.16)

where Y (k) ∈ CN comprises the DFT coefficients of the k-th channel, X ∈ C2LN

comprises the 2L samples of X( f ) abbreviated as Xn,m := fsX(n/N fs −m fs) and
w(k)

n := (W(k)
n,−L, W(k)

n,−L+1, . . . , W(k)
n,L−1) are the row vectors containing the non-zero

elements of the system matrix W(k) ∈ CN×2LN. These elements can be computed
according to:

W(k)
n,m = exp

(
−j2π

( n
N

fs −m fs

)
tk

)
. (2.17)

The sampling process for a single channel with N samples is modeled by W(k),
which is fully determined by the channel offset tk and the sampling frequency fs.
After concatenating the system matrices to W = (W(1), . . . , W(K))> ∈ CKN×2LN

and the DFT coefficients to Y = (Y (1), . . . ,Y (K))>, the aliasing property is given
by the linear system:

Y = WX. (2.18)

This linear system explains how the CFT of the continuous signal x(t) is related
to the DFT of the sampled channels y(1)[n], . . . , y(K)[n]. Thus, it represents a gen-
erative model for multi-channel sampling in the Fourier domain. In order to re-
construct x(t) from its sampled channels, the linear problem in Eq. (2.18) must
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be solved w. r. t. the CFT coefficients in X. Note that, since X( f ) and Y (k)[n]
are complex-valued in general, Eq. (2.18) provides one condition for the real part
and one for the imaginary part and thus 2 · NK equations in total. However, for
real-valued signals, X( f ) as well as Y (k)[n] are symmetric [Cool 69] and the linear
system provides NK independent constraints. In this situation, it is sufficient to
formulate the aliasing property for one half of the spectrum only.

2.3.2 Real Multi-Channel Sampling

In order to model non-ideal sampling, the blur kernel for each channel is assumed
to be linear and shift invariant in accordance to the analysis of single-channel sam-
pling in Section 2.2.2. Let us consider the general case of different blur kernels
h(k)(t) associated with the set of channels. Then, the aliasing property introduced
in Eq. (2.14) can be formulated as:

Y (k)[n] = fs

L−1

∑
m=−L

exp
(
−j2π

( n
N

fs −m fs

)
tk

)
H(k)

( n
N

fs −m fs

)
X
( n

N
fs −m fs

)
,

(2.19)

where H(k)( f ) = F{h(k)(t)} is the CFT of the blur kernel associated with the k-th
channel. Reformulating the aliasing property as a linear system yields the gener-
alized version of Eq. (2.18):

Y = HX. (2.20)

The system matrix is assembled as H = (H(1), . . . , H(K))> ∈ CKN×2LN according to
the block structure in Eq. (2.16) with the non-zero elements:

H(k)
n,m = exp

(
−j2π

( n
N

fs −m fs

)
tk

)
H(k)

( n
N

fs −m fs

)
, (2.21)

This linear system states the relationship between the CFT of a continuous signal
and the DFT of the corresponding discrete channels with consideration of a blur
kernel.

2.4 From Multi-Channel Sampling to Super-Resolution

The analysis of multi-channel sampling presented above yields a super-resolution
algorithm in the frequency domain. This is the historically first multi-frame ap-
proach as proposed by Tsai and Huang [Tsai 84]. In this framework, the target
of super-resolution is the reconstruction of the continuous signal x(t) from the
sampled channels y(k)[n]. However, for practical implementation purposes, the
solution of this inverse problem is restricted to the reconstruction of discrete sam-
ples x[n] using an artificial sampling frequency f ′s that should be higher than the
original frequency fs. Note that if x[n] is determined such that the aliasing present
in y(k)[n] is removed and thus sampled at the Nyquist rate, the continuous signal
x(t) can be recovered from x[n]. Therefore, f ′s must be chosen such that it fulfills
the Nyquist-Shannon sampling theorem.
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In order to define a super-resolution algorithm, the gain in resolution provided
by the algorithm needs to be quantified. For this purpose, the magnification factor
denotes the enhancement of the sampling frequency achieved by super-resolution
relative to the original sampling frequency. This parameter is defined as follows.

Definition 2.2 (Magnification factor). Let fs be the sampling frequency that is used to
obtain the discrete channels y(k)[n] and f ′s ≥ fs be the sampling frequency provided by a
super-resolution algorithm. Then, the super-resolution magnification factor is given by:

s =
f ′s
fs

. (2.22)

In a computational super-resolution approach, sN discrete samples x[n] associ-
ated with the continuous signal x(t) are reconstructed from the sampled channels
y(k)[n], k = 1, . . . , K consisting of KN samples. In the Fourier domain formula-
tion, x[n] is represented by the sN discrete frequency coefficients of X( f ). The key
idea behind super-resolution is that the different channels y(k)[n] contain comple-
mentary information about x(t). In summary, the main computational steps of
super-resolution in the Fourier domain are as follows:

1. Fourier transform: For all discrete channels y(k)[n], k = 1, . . . , K given by
NK samples, the associated DFT coefficients are determined efficiently by
means of a Fast Fourier Transform (FFT) [Cool 65]. These coefficients form a
complex-valued observation vector Y ∈ CKN.

2. Reconstruction: Once the offsets tk for all channels are known, the samples
of the CFT X( f ) reorganized in X ∈ C2L·KN for s = 2L are determined for the
magnification factor s. This is done by solving the linear systems in Eq. (2.18)
(in case of ideal sampling) or in Eq. (2.20) (in case of real sampling).

3. Inverse Fourier transform: Finally, the discrete samples x[n] associated with
the continuous signal x(t) are recovered from X using an inverse FFT.

Existing frequency domain based super-resolution methods mainly differ in
the implementation of the second step. In [Tsai 84], the most basic situation of
ideal sampling and the absence of observation noise is considered. This is a sim-
plistic assumption, particularly in digital imaging, where an optical system acts as
a blur kernel in the sampling process and observation noise is caused by non-ideal
sensors. Kim et al. [Kim 90] have proposed a generalization of the Tsai and Huang
algorithm, where observation noise is taken into account. In this case, an estimate
for X can be obtained by solving the linear problem given in Eq. (2.18) in a least
square manner. Later, Tekalp et al. [Teka 92] have introduced a frequency domain
approach that considers observation noise as well as a blur kernel involved in the
sampling process. Super-resolution is then based on the more general linear prob-
lem given in Eq. (2.20).
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2.5 Limits of Super-Resolution

This section analyzes the linear problems in Eq. (2.18) and Eq. (2.20) in case of
ideal and non-ideal sampling, respectively. The properties of these relationships
between discrete channels and the underlying continuous signal indicate if super-
resolution is applicable and how well the behavior of an algorithm can be.

The following analysis covers two aspects. First, it is examined under which
conditions super-resolution is profitable in order to reconstruct an aliasing-free
signal from undersampled ones. This states that under certain conditions super-
resolution cannot provide resolution enhancement beyond a given limit. In par-
ticular, upper bounds regarding the effective magnification factor that depends
on the sampling parameters are derived. Second, necessary and sufficient condi-
tions for the existence of unique solutions for Eq. (2.18) and Eq. (2.20) are studied.
This states inherent theoretical limitations for super-resolution in the presence of
degenerate situations, where the underlying linear system is underdetermined.

2.5.1 Effective Magnification Factor
We are interested in an effective sampling frequency f ∗ that can be achieved by
means of super-resolution. In this context, the term effective means that super-
resolution cannot recover aliased parts of the spectrum beyond f ∗, which states
an upper bound of the artificial sampling frequency as well as an effective mag-
nification factor s∗. Applying super-resolution beyond this limit does not yield
additional gains compared to a simple interpolation of discrete samples. The key
idea regarding the following analysis is that even if aliasing is usually considered
as undesirable effect, it is a prerequisite for super-resolution. This is due to the
fact that super-resolution exploits aliased components in undersampled signals
according to Eq. (2.14). We examine this property for two different situations.

Magnification Factor for Ideal Sampling. Let us first consider ideal sampling of
x(t) with band-limitation f0 below the Nyquist rate, i. e. fs ≥ 2 f0. Thus, there is no
aliasing present in the sampled channels y(k)[n]. In this case the infinite summation
in Eq. (2.14) comprises only of one non-zero term, as there are no superimpositions
of periodically shifted versions X(k)( f ). Then, it follows for the aliasing property:

Y (k)[n] = X(k)
( n

N
fs

)
, (2.23)

for all k = 1, . . . , K. That is, each DFT Y (k)[n] is a sampled version of the corre-
sponding CFT without loss of information as the sampling theorem is fulfilled. It
is obvious that a solution of the linear system in Eq. (2.18) cannot recover addi-
tional information. Consequently, it follows for the effective sampling frequency
f ∗ = fs. Moreover, it is obvious that super-resolution cannot reconstruct frequen-
cies beyond the band-limitation f0. By combining these findings, the effective sam-
pling frequency that can be achieved by super-resolution is given by:

f ∗ =

{
fs if fs ≥ 2 f0

2 f0 otherwise.
(2.24)
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This yields an upper bound regarding the effective magnification factor:

s∗ =

{
1 if fs ≥ 2 f0

2 f0
fs

otherwise.
(2.25)

Magnification Factor for Real Sampling. If real sampling is considered, the pres-
ence of the blur kernel h(k)(t) limits the effective magnification factor. As derived
in Section 2.2.2, h(k)(t) acts as a low-pass filter for the channel x(k)(t). Unfortu-
nately, this blur kernel also performs anti-aliasing depending on its cut-off fre-
quency fh. If the cut-off frequency is above the band-limitation, i. e. fh ≥ f0, the
blur kernel does not affect the sampling process. However, if fh < f0, spectral
components of X(k)( f ) affected by aliasing are suppressed by the blur kernel. In
the worst case where fh < f0 − fs, aliasing is fully removed. However, these are
exactly the signal components exploited by super-resolution. Hence, the cut-off
frequency fh limits the effective sampling frequency to:

f ∗ =

{
min( fs, fh) if fs ≥ 2 f0

min(2 f0, fh) otherwise.
(2.26)

Note that fh is now an upper bound for the sampling frequency f ∗ that can be
smaller than the original sampling frequency fs. The effective sampling frequency
f ∗ yields an upper bound regarding the magnification factor:

s∗ =

{
1
fs

min( fs, fh) if fs ≥ 2 f0
1
fs

min(2 f0, fh) otherwise.
(2.27)

This barrier needs to be considered in digital imaging, where the optical point
spread function (PSF) and the finite size of pixels on the sensor array act as a low-
pass filter. This has the consequence that super-resolution cannot provide effective
magnifications beyond the system band-limitation related to these properties. In
Chapter 3 and 4, we study different regularization techniques in conjunction with
super-resolution reconstruction to alleviate this limitation in practical applications.

2.5.2 Uniqueness of the Reconstruction
The uniqueness of super-resolution based on the linear problems in Eq. (2.18) in
case of ideal sampling and Eq. (2.20) in case of real sampling depends on sev-
eral parameters of the sampling process. For this analysis, a reconstruction is
called unique iff the associated system matrix involved in the linear problem is
non-singular. In this case, the complementary information encoded by multiple
channels is sufficient to provide a super-resolved signal. If the system matrix is sin-
gular, super-resolution becomes underdetermined and does not enable a unique
reconstruction. In general, non-uniqueness might be caused by degenerate set-
tings in terms of the sampling parameters resulting in a major limitation of super-
resolution in practical applications.

This sections analyzes the uniqueness of the underlying inverse problem and
derives conditions for a unique reconstruction. These derivations lead to two rel-
evant classes of super-resolution algorithms applicable in digital imaging.



2.5 Limits of Super-Resolution 23

Uniqueness for Ideal Sampling. The uniqueness of Eq. (2.18) is first studied for
ideal sampling. For this purpose, the channel offsets are used as a cue to pro-
vide complementary information and to guarantee a unique reconstruction. Let
us study the case that the magnification factor is given by s = K for K channels.
If we consider the real and imaginary parts of the complex-valued Fourier trans-
forms in Eq. (2.18), the system matrix is quadratic and an exact solution of this
inverse problem can be obtained2. The conditions regarding uniqueness of super-
resolution in this situation are summarized in the following theorem.

Theorem 2.2 (Uniqueness for ideal sampling). Let s = K be the super-resolution
magnification factor and K be the number of channels in a multi-channel sampling process,
where ti with i = 1, . . . , K and t1 = 0 are the corresponding channel offsets and T is the
sampling pitch. Then, the solution of the linear inverse problem in Eq. (2.18) is unique if
and only if: tj 6= c1ti + c2T for all 1 ≤ i < j ≤ K and c1, c2 ∈ Z.

Proof. The proof of this theorem is given in Appendix A.1.1.

These conditions provide an intuitive approach to perform super-resolution
reconstruction. The distinct and non-integer offsets w. r. t. the sampling pitch en-
able a non-uniform sampling at a higher frequency compared to single-channel
sampling. Thus, a solution of Eq. (2.18) can be seen as a fusion of the comple-
mentary information encoded by single channels, see Fig. 2.5. In fact, choosing
distinct and non-integer channel offsets are necessary and sufficient conditions for
a unique reconstruction. This is a popular strategy for resolution enhancement in
digital imaging, where channel offsets can be related to subpixel displacements
among multiple images [Park 03]. The offsets required for this motion-based super-
resolution can be provided by capturing a set of images of the underlying scene
while moving a camera to slightly different viewpoints.

Uniqueness for Real Sampling. Theorem 2.2 states necessary conditions for a
unique reconstruction if only the channel offsets are exploited. However, in case of
real sampling according to Eq. (2.20), the blur kernel can be used as cue to achieve
uniqueness even in the absence of channel offsets. The following theorem summa-
rizes the conditions to achieve a unique reconstruction in this situation.

Theorem 2.3 (Uniqueness for real sampling). Let s = K be the super-resolution mag-
nification factor and K be the number of channels in multi-channel sampling with offsets
ti = 0 for all i = 1, . . . , K and sampling pitch T. Each channel x(i)(t) is affected by a blur
kernel H(i)( f ) denoted by H(i) in matrix notation. Then, the solution of the linear inverse
problem in Eq. (2.20) is unique if and only if:

1. ∑K
i=1 ciH(i) 6= 0 for all ci 6= 0 and i = 1, . . . , K (linear independent blur kernels)

2. ∑K
i=1

∣∣∣H(i)( n
N fs + m fs

)∣∣∣ 6= 0 for all m = −L, . . . , L− 1 (kernel cut-off frequency)

Proof. The proof of this theorem is given in Appendix A.1.2.

2For s < K, an approximation can be obtained by means of least-squares estimation [Teka 92].
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Besides the use of distinct, non-integer channel offsets to make super-resolution
reconstruction unique, an alternative approach is to exploit the properties of the
blur kernel. Complementary information required for super-resolution is gained
by utilizing independent kernels for multiple channels. Moreover, the kernel cut-
off frequency needs to be above the Nyquist rate and at least one kernel needs
to span the entire frequency range that should be super-resolved. In this situa-
tion, a unique solution can be provided according to Theorem 2.3. This approach
has been widely studied in digital imaging. In [Elad 97], Elad and Feuer investi-
gated motion-free spatial domain super-resolution, which shows that this approach
is feasible. Rajagopalan and Kiran [Raja 03] proposed a Fourier domain method
to perform super-resolution reconstruction from multiple defocused images cor-
responding to varying levels of blur in a set of channels.

2.6 Conclusion

This chapter presented single- and multi-channel sampling as theoretical frame-
work for super-resolution. This theory considered ideal sampling as well as real
sampling in the presence of a blur kernel. Super-resolution was formulated as lin-
ear inverse problem that states the relation between a continuous signal and dis-
crete channels that are captured by sampling the continuous signal multiple times.
In this context, super-resolution aims at reconstructing an aliasing-free signal from
multiple undersampled channels.

In order to derive fundamental limits of super-resolution, the properties of the
underlying inverse problem were analyzed. First, the relationship between super-
resolution and the Nyquist-Shannon sampling theorem was discussed. It was
shown that the effective magnification, achievable by super-resolution, is bounded
by the band-limitation of the continuous signal as well as the cut-off frequency of
the blur kernel in case of real sampling. Second, the uniqueness of super-resolution
reconstruction was examined. This analysis shows that super-resolution requires
complementary information in multiple channels to provide a unique solution.
The necessary and sufficient conditions to gain complementary information in-
volve properties of the channel offsets or the blur kernel.
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This chapter presents the common computational framework that is employed in
the remainder of this thesis. This introduction comprises three parts. First, a lit-
erature survey on different paradigms in the field of super-resolution is presented
including a review of state-of-the art frequency domain and spatial domain algo-
rithms. Second, a spatial domain model for optical imaging is derived. Third,
based on generative modeling, multi-frame super-resolution is approached from
a Bayesian perspective and different parameter estimation schemes are presented.

3.1 Introduction and Literature Survey

In Chapter 2, super-resolution was introduced as a multi-channel signal recon-
struction problem. A continuous signal was assumed to be sampled by multi-
ple channels to obtain a set of discrete signals. In case of linearly independent
offsets among the channels, each of these discrete signals contains complemen-
tary information about the underlying continuous one. In terms of motion-based
super-resolution as the major scope of this work, channel offsets are explained
by subpixel displacements across multiple images showing the same scene from
slightly different perspectives. Mathematically, this motion is described by image-
to-image transformations on the image plane and can be induced by camera mo-
tion, object motion, or a combination of both. Given a sequence of undersam-
pled images along with their associated subpixel motion, the goal of image super-
resolution is to obtain a high-resolution image from low-resolution ones. This
reconstruction is unique if the channel offsets related to the subpixel motion are
independent and distinct to multiples of the sampling rate, see Section 2.5.2.

Let us first present a survey on super-resolution paradigms including frequency
and spatial domain methods, see Fig. 3.1. For a more comprehensive overview, we
refer to the review articles by Park et al. [Park 03], Farsiu et al. [Fars 04a], and Nas-
rollahi and Moeslund [Nasr 14], as well as the book by Milanfar [Mila 10].
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Figure 3.1: Classification of multi-frame super-resolution algorithms including references
to seminal works and some of the most recent publications in the different domains.

3.1.1 Frequency Domain Reconstruction

Early approaches describe super-resolution reconstruction in the frequency do-
main based on the multi-channel sampling theory presented in Section 2.3. In this
context, the method of Tsai and Huang [Tsai 84] employs the Fourier shift theorem
to exploit translational subpixel motion in a sequence of low-resolution images.
This yields a generative model for super-resolution in the Fourier domain. Trans-
lational motion is first determined by means of image registration, which can be
performed in the Fourier domain using phase correlation. Then, super-resolution
is implemented as inversion of the underlying model equations parametrized by
the estimated motion, see Section 2.4. In the approaches of Kim et al. [Kim 90]
and Tekalp et al. [Teka 92], this concept has been further extended to tackle sensor
noise as well as blurring in the image formation. Tom et al. [Tom 94, Tom 95] have
proposed simultaneous super-resolution and translation estimation in the Fourier
domain. In [Rhee 99], Rhee and Kang have employed the discrete cosine transform
(DCT) for super-resolution as alternative to the Fourier transform.

The frequency domain formulation provides valuable theoretical insights to
super-resolution and the use of the FFT as a computational tool enables efficient
implementations of these algorithms. However, only simple motion models can
be used. For instance, the Fourier shift theorem in [Tsai 84] enables the description
of translational motion but cannot model arbitrary displacements. In particular, it
is not feasible to handle non-rigid motion. Additionally, blur needs to be described
by LSI kernels to be tractable by means of the Fourier transform. This restricts the
flexibility of these algorithms in terms of the underlying image formation model.
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Figure 3.2: Spatial domain super-resolution using non-uniform interpolation. First, sub-
pixel motion between multiple low-resolution frames is estimated and compensated.
Then, the super-resolved image is interpolated from the motion-compensated frames.

3.1.2 Interpolation-Based Spatial Domain Reconstruction

Spatial domain reconstruction can be seen as a complementary trend in the design
of super-resolution algorithms. These methods have the goal to enhance the flex-
ibility regarding the choice of the image formation model. Ur and Gross [Ur 92]
proposed interpolation-based reconstruction based on the multi-channel sampling
theory of Papoulis [Papo 77] that has later been adopted in other spatial domain
methods [Alam 00, Pham 06, Hard 07, Hard 12, Take 07, Batz 15]. Such algorithms
differ in their implementations but share a similar conceptual structure. Their con-
cept is described by a multi-stage procedure with the following steps, see Fig. 3.2:

1. Motion estimation by means of image registration determines the subpixel
motion between multiple low-resolution frames.

2. Motion compensation transforms all low-resolution frames into a common
high-resolution grid according to the motion estimate.

3. Non-uniform interpolation determines a super-resolved image based on the
motion-compensated frames.

Some of the well known methods in this area include normalized convolution
[Pham 06], kernel regression [Take 07], and adaptive Wiener filtering [Hard 07,
Hard 12]. More recently, adaptive weighting schemes [Batz 16] as well as hybrid
multi-frame and single-image reconstruction [Batz 15] have been proposed to al-
leviate the impact of motion estimation inaccuracies. These schemes can also be
augmented by image deblurring [Patr 16] to remove blur after the interpolation.

A closely related class of algorithms employs deep learning that became a pop-
ular alternative to classical interpolation-based frameworks. These methods learn
parts of the multi-stage procedure in Fig. 3.2 from pairs of low-resolution and high-
resolution images. For instance, non-uniform interpolation [Kapp 16, Li 17] or mo-
tion compensation [Tao 17] can be learned via convolutional neural networks.

Unlike the aforementioned frequency domain methods that utilize a generative
model, non-uniform interpolation aims at a direct reconstruction without consid-
ering such a model. These approaches can be implemented efficiently in terms
of computational complexity. Moreover, the motion compensation is flexible and
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Figure 3.3: Spatial domain super-resolution using iterated backprojection [Iran 91]. The
deviation between the acquired low-resolution observations and a prediction obtained
from the current reconstruction under a generative image model is iteratively optimized.

can be applied under various types of subpixel motion. However, due to the se-
quential design, errors in one stage are propagated to following stages, e. g. from
motion estimation to interpolation. This might lead to suboptimal reconstructions
in terms of a global quality criterion [Park 03]. It is also difficult to model prior
knowledge regarding the appearance of super-resolved images.

3.1.3 Iterative Spatial Domain Reconstruction

The vast majority of the state-of-art algorithms as well as the methods investi-
gated in this work are formulated as iterative spatial domain reconstructions. In
the same way as for the frequency domain methods, a generative model to de-
scribe the image formation is utilized. However, this model is formulated in the
spatial domain to increase its flexibility. The basic idea is to iteratively refine an
estimate for a super-resolved image such that it best explains the observed low-
resolution data under the generative model. In literature, this concept has been
first formalized in the iterated backprojection algorithm proposed by Irani and Peleg
[Iran 91]. This approach is illustrated in Fig. 3.3 and we consider two realizations.

Non-Blind Reconstruction. In non-blind super-resolution, it is assumed that the
parameters of the generative model are known a priori. In particular, it is assumed
that the PSF is known either by system calibration, by automatic parameter selec-
tion [Nguy 01a], or by simply modeling it empirically with a realistic blur kernel.

One important class of these algorithms approaches super-resolution from a
Bayesian statistics point of view that has also become a common tool in image
denoising [Chen 07], restoration [Besa 91, Biou 06], and single-image expansion
[Schu 94]. In [Elad 97], Elad and Feuer have proposed maximum likelihood (ML)
estimation that has been used as a probabilistic framework in several follow-up
works [Cape 00, Elad 01, Zibe 07, Mitz 09]. The subpixel motion that is exploited
for this point estimation is determined via registration of low-resolution frames.
Then, the most probable high-resolution image associated with the subpixel dis-
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placed frames is reconstructed under a generative model. Maximum a-posteriori
(MAP) estimation generalizes the ML approach by exploiting prior knowledge
to regularize super-resolution. For this purpose, a Gaussian prior distribution
to model the statistical appearance of images has been introduced in [Elad 97].
Later, other priors have been proposed [Schu 96, Fars 04b, Ng 07] that can better
model the characteristics of natural images. These probabilistic models lead to
energy minimization problems that can be solved iteratively. For details on these
Bayesian methods, we refer to Section 3.3. A closely related technique is the pro-
jection onto convex sets (POCS) [Star 89, Patt 01]. POCS methods formulate prior
knowledge by set theoretic constraints as opposed to probability distributions.
Super-resolution is performed by iterative projections under these constraints.

Contrary to algorithms that estimate subpixel motion prior to super-resolution,
there are also methods that treat the motion as hidden information. In a seminal
work, Hardie et al. [Hard 97] proposed joint MAP estimation for both parameter
sets based on alternating minimization. This avoids motion estimation on low-
resolution data, which is error-prone due to undersampling [Vand 06b]. Notice
that many algorithms that are formulated in the fashion of iterative spatial do-
main reconstruction, e. g. Gauss-Newton [He 07, Berc 16] or linear programming
[Yap 09] schemes, fall into this category even if they are not explicitly derived in
Bayesian frameworks. A related approach is to make use of Bayesian marginaliza-
tion in the absence of a proper motion estimate. In [Tipp 03], Tipping and Bishop
proposed marginalization over the domain of high-resolution images. A different
approach has been developed by Pickup et al. [Pick 07b], where marginalization
is performed over motion parameters to integrate them out from super-resolution
reconstruction. As another technique in the field of Bayesian statistics, variational
inference [Baba 11] has proven to be a valuable tool. As opposed to the ML and
MAP schemes that provide point estimates, variational inference aims at deter-
mining full posterior probability distributions. This enables a joint estimation of
the super-resolved image along with latent model parameters.

Blind Reconstruction. In terms of blind super-resolution, the blur kernel related
to the camera PSF is assumed to be unknown, and so are the parameters of the
generative image model. This class of algorithms is closely related to blind decon-
volution [Patr 16] and treats the blur as a latent variable. Blind super-resolution
is commonly implemented as an interlacing of non-blind reconstruction and blur
estimation in joint optimization frameworks.

Super-resolution under an unknown PSF has been investigated by Sroubek
et al. [Srou 07] and Faramarzi et al. [Fara 13]. Such methods combine multi-frame
resolution enhancement and blind deconvolution to unified frameworks. These
are formulated via iterative spatial domain reconstruction with known subpixel
motion. Later, Zhang et al. [Zhan 12b] as well as Liu and Sun [Liu 11, Liu 14] have
proposed to treat blur, subpixel motion and the latent high-resolution image as
triple coupled variables to determine them simultaneously. This circumvents a di-
rect motion estimation on low-resolution frames. More recently, the handling of
motion blur has been studied for situations where optical and sensor blur are no
appropriate models, e. g. fast camera-shake [Zhan 14a, Ma 15].
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3.2 Modeling the Image Formation Process

One of the key components of multi-frame super-resolution is an appropriate math-
ematical modeling of image formation implemented by a digital imaging system.
This section describes a spatial domain model that is widely applicable and em-
ployed to develop the super-resolution algorithms presented in the remainder of
this work. This model can be seen as a spatial domain analog to the Fourier do-
main model derived in Chapter 2.

3.2.1 Continuous Image Formation Model

The image formation model used in this thesis is based on the work of Elad and
Feuer [Elad 97] that has later been extended by Capel and Zisserman [Cape 03,
Cape 04]. In recent years, this model has been utilized for the vast majority of
super-resolution algorithms. It describes the physics of image acquisition in a for-
ward process to explain how a digital image is obtained from a real-world scene.

For the derivation from a continuous point of view, let x : R2 → R be the ir-
radiance light field [Lin 04] obtained by an ideal projection of a 3-D scene onto the
2-D image plane of a digital camera. Mathematically, this projection can be de-
scribed by a pinhole camera [Hart 04]. Since we limit ourselves to single-channel
images, x(u) denotes an intensity at the 2-D position u ∈ R2. Using the assump-
tion of an ideal projection to the image plane, x(u) can be seen as a ground truth
and is referred to as ideal image [Hard 07]. In particular, as no sampling is mod-
eled and x(u) is given as a continuous irradiance signal, it can be considered as
a signal of infinite spatial resolution. In terms of an imaging system that acquires
video data, one observes a set of K degraded frames given as continuous functions
y(1)(u), . . . , y(K)(u) associated with the ideal image x(u). In order to describe the
image formation process mathematically, the following operations are analyzed.

Motion Model. The ideal image x(u) is assumed to be warped by a geometric
transformation w. r. t. a certain coordinate reference for each frame to describe the
acquisition of an image sequence. This geometric transformation encodes cam-
era motion, object motion or a combination of both. For the sake of convenience,
motion is described on the 2-D image plane instead of describing it by a 3-D trans-
formation. The k-th warped version of x(u) denoted by x(k)(u) is given by:

x(k)(u) =M(k){x(u)} , (3.1)

whereM(k){·} denotes the motion model for the k-th frame. Without any further
assumption on the type of motion, this model is described by:

M(k){x(u)} := x
(
u + m(k)(u)

)
, (3.2)

where m(k) : R2 → R2 denotes the displacement of x(u) at position u relative to
the reference frame. For a given reference frame x(r)(u) with r ∈ {1, . . . , K},M(r)

is the identity and x(r)(u) coincides with x(u).
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Sampling Model. Next, we need to describe the sampling process that explains
how the imaging system discretizes the ideal image. In the most basic formulation
of the image formation model, we limit ourselves to two common aspects.

First, each frame is affected by the PSF of the imaging system. This PSF is the
impulse response of the entire system and describes how an ideal point object is
captured on the image plane. We assume a LSI model that is characterized by a
low-pass filter and define the PSF by a blur kernel h(u). Then, a blurred version
x̃(k)(u) of the warped image x(k)(u) is obtained by the convolution:

x̃(k)(u) = x(k)(u) ? h(k)(u)

=
∫

R2
x(k)(v)h(k)(u− v) dv.

(3.3)

Note that we assume the general case of a time variant blur kernel, i. e. h(k)(u) can
be different for each frame. Following the analysis in [Bake 02], this blur kernel
can be decomposed according to:

h(k)(u) =
(
h(k)optics ? hsensor

)
(u), (3.4)

where h(k)optics(u) models time variant blur caused by optical effects and hsensor(u)
describes the time invariant blur caused the integration of light over a finite area
on the sensor array corresponding to a pixel of the detector.

Finally, each frame is discretized on the sensor array that is modeled by two
operations. First, each frame is sampled on the center positions of rectangular
pixels. Since the integration of light on the sensor array is included in the PSF
model, we describe the sampling by ideal Dirac impulses. Second, the sampled
frame is disturbed by random measurement noise caused by an imperfect sensor.
Mathematically, the sensor array is described by:

y(k)(u) = D
{

x̃(k)(u)
}
+ ε(k)(u) , (3.5)

where D{·} denotes the sampling at the pixel positions and ε(k)(u) is a stochas-
tic signal to model measurement noise. Assuming a pixel pitch ∆i in coordinate
direction i ∈ {u, v}, the sampling operator is given by:

D
{

x̃(k)(u)
}

:=
∞

∑
m=−∞

∞

∑
n=−∞

x̃(k)(u, v)δ(u−m∆u, v− n∆v), (3.6)

where δ(u) denotes the 2-D Dirac delta impulse.

Joint Motion and Sampling Model. The different physical effects that occur
when acquiring a digital image from a real-world scene are combined in sequen-
tial order, see Fig. 3.4. In summary, the k-th frame y(k)(u) out of a set of K frames
is related to the ideal image x(u) according to:

y(k)(u) = D
{
M(k){x(u)} ? h(k)(u)

}
+ ε(k)(u) . (3.7)
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Figure 3.4: Illustration of the image formation model employed in this work.

This model is appropriate if the optical components and the sensor array have
a dominant influence to the image formation while atmospheric effects need to
be negligible. As shown in the following section, this scheme can be efficiently
discretized to make it applicable for super-resolution.

Notice that there also exist related approaches with the order of the operations
in Eq. (3.7) is reversed. One example is the blur-warping formulation with a re-
versed order of the motion and blur operators, which is superior to Eq. (3.7) in case
of a high uncertainty regarding the motion as studied by Wang and Qi [Wang 04a].

3.2.2 Discretization of the Image Formation Model
In order to employ the image formation model defined in Eq. (3.7) in a compu-
tational super-resolution algorithm, a discretization of the model equation is re-
quired. For this discretization, two common assumptions must be met.

First, the only accessible information regarding a set of acquired images are the
sampled intensity values at discrete pixel positions u in the domain of the input
images denoted by Ωy ⊂ R2. For the sake of convenience, the intensity values at
the pixel positions for each frame y(k)(u) of size Mu × Mv are reorganized into a
vector using line-by-line scanning defined by:

y(k) :=
(
y(k)(∆uy, ∆vy) y(k)(∆uy, 2∆vy) . . . y(k)(Mu∆uy, Mv∆vy)

)>
∈ RMu·Mv ,

(3.8)

where ∆uy and ∆vy denote the pixel pitch in u- and v-direction, respectively. Since
y(k) is defined on the pixel grid of the acquired frames, y(k) is referred to as a low-
resolution frame. We denote by y the set of K low-resolution frames.

Second, as it is not feasible to reconstruct a continuous representation of the
ideal image x(u), we limit ourselves to the reconstruction of a digital image with
finer spatial sampling in the domain Ωx ⊂ R2. The samples at pixel positions
u ∈ Ωx in the image x(u) of size Nu × Nv are reorganized to a vector according to:

x :=
(

x(∆ux, ∆vx) x(∆ux, 2∆vx) . . . x(Nu∆ux, Nv∆vx)
)>

∈ RNu·Nv ,
(3.9)
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where ∆ux and ∆vx denote the pixel pitch in u- and v-direction, respectively. As
these samples are defined on a finer pixel grid compared to the low-resolution
frames, x is referred to as high-resolution image. Similar to the notation of low-
resolution frames, the k-th warped version of the reference high-resolution image
is denoted by x(k). Assuming isotropic magnification, the magnification factor s ∈
R is given by s =

√
N/M, where N = Nu · Nv and M = Mu ·Mv denote sizes of

high-resolution and low-resolution images, respectively.

Discretization of the Motion Model

Let us next discretize the motion model. For this purpose, we consider discrete
pixel positions u = (u, v)> ∈ Ωx in a warped high-resolution frame x(k). Each
point u in x(k) is related to a transformed point u′ = (u′, v′)> ∈ Ωx in x, where
u′ = m(k)(u). In order to describe subpixel motion, we introduce two motion mod-
els widely used within the algorithms developed in this work.

Parametric Motion. In case of a parametric model, u is assumed to be trans-
formed by a global transformation that is characterized by a small number of pa-
rameters to describe image warping of x(k) w. r. t. x. We define this model via a
projective homography in homogeneous coordinates [Hart 04] according to:u′

v′

1

 ∼=
p11 p12 p13

p21 p22 p23
p31 p32 1

u
v
1

 = P
(

u
1

)
, (3.10)

where ∼= denotes equality up to a scale factor. In general, the homography P has
full rank and is parametrized by eight degrees of freedom given by nine matrix
elements minus a scale factor. In particular cases, the degrees of freedom can be
reduced, which leads to a hierarchy of transformations [Hart 04]. The following
cases are widely considered in literature. A homography Paffine is called affine if it
can be parametrized by six degrees of freedom according to:

Paffine =

(
A t
0> 1

)
, (3.11)

where A ∈ R2×2, 0 ∈ R2 is an all-zero vector and t ∈ R2 denotes a translation
vector. An affine homography describes subpixel motion by rotation, anisotropic
scaling and shearing as well as translation. This transformation does not preserve
angles between lines and ratio of distances in an image but the parallelism of lines
is invariant under an affine homography.

An affine homography Prigid is called rigid if it can be parametrized by three
degrees of freedom according to:

Prigid =

(
R(ϕ) t

0> 1

)
, (3.12)

where R(ϕ) is an orthogonal rotation matrix parametrized by the rotation angle ϕ.
A rigid homography describes subpixel motion by rotation and translation with-
out considering scaling or shearing. Notice that this transformation preserves an-
gles between lines as well as the ratio of distances in an image.
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These models are completely described by a few degrees of freedom but can
only model 3-D motion under certain assumptions. One of their major limitations
is that they are only applicable under rigid body motion. Moreover, even for rigid
body motion, it can be shown that a homography is only valid for pure rotational
camera motion or general camera motion in case of planar scenes due to occlu-
sions of objects [Hart 04]. Nevertheless, this model is a reasonable approximation
to describe rigid body motion for many applications of practical interest. One ex-
ample is the acquisition of a static and non-planar scene from large distances such
that it can be described as approximately planar, e. g. in remote sensing.

Non-Parametric Motion. A more flexible approach is the description by a dense
displacement vector field according to:(

u′

v′

)
=

(
u + mu(u)
v + mv(u)

)
. (3.13)

The displacements m(u) = (mu(u), mv(u))> with mi : Ωy → R, i ∈ {u, v} describe
the motion of x(k) towards the reference image x at the pixel positions u. Under
the brightness constancy assumption, camera and object motion can be related to
displacements on the image plane using the notion of optical flow [Horn 81].

This approach has the advantage that non-rigid deformations can be modeled
along with rigid camera motion. In comparison to the parametric approach, it is
also able to describe more general types of camera motion under projective dis-
tortions. However, as opposed to the parametric transformation in Eq. (3.10), the
non-parametric model in Eq. (3.13) might be not bijective, e. g. due to occlusion.
For this reason, one cannot obtain the motion of x relative to x(k) by simply invert-
ing the displacements m(u) that describe the motion in the opposite direction.

Discretization of the Sampling Model

Next, we examine the sampling process and discretize Eq. (3.7). In this continuous
equation, a single low-resolution frame y(k)(u) with blur kernel h(u) and subpixel
displacements m(u) is related to x(u) according to:

y(k)(u) = D{x(u + m(u)) ? h(u)}+ ε(k)(u) . (3.14)

The discretization of this relationship is derived in terms of the transformed image
x(u + m(u)) and we set u′ = u + m(u). It is important to note that Eq. (3.14)
defines a complicated non-linear relationship between x(u) and y(k)(u) as we do
not limit the motion model m(u) to a simple linear transformation. To simplify the
continuous formulation, we approximate Eq. (3.14) as:

y(k)(u) ≈ D
{

x(u′) ? h
(
u′
)}

+ ε(k)(u)

= D
{∫

R2
x(v)h

(
u′ − v

)
dv
}
+ ε(k)(u) ,

(3.15)

where we assumed that h(u′) describing the blur kernel transformed according to
m(u) fulfills h(u′) ≈ h(u). Notice that under pure translational motion and an
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arbitrary blur kernel or under rigid motion and a radially symmetric blur kernel,
it follows that h(u′) = h(u). Then, the motion and blur operations of the image
formation model commutes [Fara 13]. In case of more general transformations,
e. g. affine motion, the approximation h(u′) ≈ h(u) can be justified by the fact
that h(u) is typically a spatially smooth kernel. In particular, this approximation
is sensible under small subpixel motion. In case of local or non-rigid motion, one
needs to assure that these deformations are small compared to global motion.

In order to discretize the relationship between x(u) and a single frame y(k)(u),
we consider the vectorized versions of these images given by x and y(k), respec-
tively. Then, we implement Eq. (3.7) in matrix/vector notation as:

y(k) = W(k)x + ε(k), (3.16)

where W(k) ∈ RM×N denotes the system matrix that comprises a discrete version
of the motion model associated with the k-th frame, the blurring caused by the
camera PSF as well as sampling on the sensor array. ε(k) ∈ RM is a random vector
to model additive noise. Given a sequence of K frames yields:y(1)

...
y(K)


︸ ︷︷ ︸

y

=

W(1)

...
W(K)


︸ ︷︷ ︸

W

x +

ε(1)

...
ε(K)


︸ ︷︷ ︸

ε

,
(3.17)

where W ∈ RKM×N, y ∈ RKM and ε ∈ RKM denote the combined versions of the
system matrices, the low-resolution frames and the noise vectors, respectively. In
the sequel, we introduce two approaches to implement this relationship.

Implementation using Filter Operations. To avoid an explicit computation of
the system matrix, the image formation can be implemented by discrete filter op-
erations [Zome 00]. For this approach, the system matrix of the k-th frame is de-
composed as:

W(k) = DHM(k), (3.18)

where D ∈ RM×N denotes subsampling by Dirac impulses, H ∈ RN×N models
the blur kernel, and M(k) ∈ RN×N encodes the motion for the k-th frame in matrix
notation. These operations are discrete versions of their continuous counterparts
in Fig. 3.4 and can be implemented as follows. The motion operator M(k) is mod-
eled by geometric warping of x according to the underlying motion model. The
blur operator H is implemented by means of a discrete convolution, whereas the
filter kernel corresponds to a discrete version of h(u). The subsampling operator
D is implemented by a nearest-neighbor interpolation.

This approach is computationally efficient in terms of memory management as
the system matrix does not need to be stored. However, due to the concatenation
of the three operations interpolation artifacts in these stages are propagated. Here,
image warping to implement M(k) might result in aliasing artifacts due to resam-
pling that is required to obtain the intermediate image M(k)x. These artifacts are
propagated to blurring and subsampling but are not physically meaningful.
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Implementation using Matrix Operations. The approach that is employed in
this thesis is based on the work of Tipping and Bishop [Tipp 03]. For this im-
plementation, the system matrix is constructed without decomposition in discrete
filters. This requires that the PSF is modeled by a narrow kernel h(u′) and its con-
tinuous version is used to determine the matrix elements. This is reasonable since
the integration of photons per pixel on the sensor array is performed over a finite
area and one does not need to consider the entire detector surface. Hence, the con-
volution can be replaced by an integration over a circular neighborhood ωPSF(u′)
centered at u′, where ωPSF(u′) = {v : ||v− u′||2 ≤ NPSF} and NPSF denotes the
PSF radius. Then, the frame y(k)(u) is related to the high-resolution image x(u)
according to:

y(k)(u) ≈ D
{∫

ωPSF(u′)
x(v)h

(
u′ − v

)
dv
}
+ ε(k)(u)

= D

 ∑
v∈ωPSF(u′)

x(v)h
(
u′ − v

)+ ε(k)(u) .
(3.19)

Thus, the intensity at the pixel position u is described by a weighted sum of the
intensities in ωPSF(u′) and the weights are expressed in terms of h(u′). For the k-th
frame, these weights are encoded in the system matrix W(k). The matrix element
at position (m, n) is determined with normalized row sums according to:

Wmn =

{
1

∑N
i=1 h(u′m−vi)

h (u′m − vn) vn ∈ ωPSF(u′m)

0 otherwise
, (3.20)

where u′m are the coordinates of the m-th pixel in y(k)(u) transformed to the co-
ordinate grid of x(u), and vn are the coordinates of the n-th pixel in x(u). This
construction exploits the fact that the PSF is described by a narrow blur kernel and
we set Wmn = 0 if u′m and vn does not affect each other.

One common assumption is to model the PSF by an isotropic Gaussian kernel
h(u) = exp(−1

2 ||u||22/(s2σ2
PSF)) and to truncate h(u) for ||u||2 > 3σPSF [Pick 07a]

as depicted in Fig. 3.5. Notice that σPSF characterizes the PSF size in units of low-
resolution pixels. For efficient storage, the joint system matrix W is assembled as
a sparse matrix since most of the elements are zero due to the finite support of the
blur kernel. The size of the matrix depends on the number of frames K, the image
dimension M as well as the PSF radius NPSF. In the asymptotic case, the number
of non-zero elements in W is O(KMNPSF).

3.2.3 Discussion and Limitations of the Model
The benefit of the presented image formation model is that low-resolution data y
can be simulated in an efficient way from a high-resolution image x by means of
the system matrix W, which is precomputed from motion and imaging parame-
ters. This simulation only involves matrix-vector operations and is used to imple-
ment super-resolution via iterative energy minimization. For an efficient imple-
mentation, the matrix elements can be calculated in a parallel way [Wetz 13].
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Figure 3.5: Construction of the system matrix W(k) in an element-wise scheme. Each low-
resolution pixel um is warped towards the high-resolution image x resulting in the trans-
formed pixel u′m. The element Wmn is computed from u′m and vn assuming a radial sym-
metric PSF that is non-zero in the neighborhood ωPSF(u′m) but approaches zero otherwise.

It is important to note that the proposed discretization approximates the con-
tinuous model in Eq. (3.7) by assuming that the PSF blur kernel is the same in the
reference frame and a subpixel warped frame. This is reasonable under subpixel
motion that is approximately rigid. In prior work, other discretization schemes
have been proposed, see e. g. [Pick 07a] and [Cape 04] as well as the references
therein. These are more accurate under certain types of motion, e. g. affine mo-
tion, but are computationally more demanding.

There are also several practical limitations of the model that need to be consid-
ered. First, it is assumed that the characteristics of the imaging system in terms
of the PSF are space invariant. In many practical applications, this assumption
might be violated. Common examples are motion blur [Ma 15] or atmospheric
blur that might be space variant. In order to model such effects, the construction
of the system matrix needs to be implemented spatially adaptive to take a varying
blur kernel into account. Another class of limitations is related to internal signal
processing performed by a camera after capturing raw data. One issue is white
balancing, which results in photometric variations over the low-resolution frames.
In this chapter, such effects are not considered but the model can be extended to al-
low spatially and temporally varying photometric conditions, see Chapter 7. Such
shortcomings of the model haven been quantitatively studied in [Pick 07a].

In the above derivation, we limited ourselves to single-channel images, where
each pixel represents one discrete measurement. One interesting extension is to
model the acquisition of color images in the RGB space. In today’s low-cost cam-
eras, color images are mosaiced since each pixel can only measure one spectral
band according to a color-filter array (CFA) [Fars 06]. This CFA needs to be con-
sidered in color image super-resolution by extending the image formation model.

3.3 Bayesian Modeling of Super-Resolution

This section introduces multi-frame super-resolution from a Bayesian point of
view. Let us describe the latent high-resolution image x along with the set of low-
resolution observations y as random variables. The observation model that describes
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the probability of observing a single frame y(k) from the high-resolution image x
is denoted by the probability density function (PDF) p(y(k) | x). This conditional
probability is defined in terms of the discrete image formation model in Eq. (3.17).
If the observation noise ε is space invariant and follows a normal distribution with
zero mean and covariance σ2

noiseI, the observation model is given by:

p
(

y(k) | x
)
= N

(
y(k) −W(k)x; 0, σ2

noiseI
)

:=
1

σnoise
√

2π
exp

{
−
(
y(k) −W(k)x

)>(y(k) −W(k)x
)

2σ2
noise

}
,

(3.21)

Notice that the observation model can be tailored to different noise characteristics.
In Section 4.3, we present a model that accounts for space variant noise in the low-
resolution observations.

Below, we review two commonly used approaches to infer the high-resolution
image x from the set of low-resolution observations y under this distribution. Both
approaches yield a formulation of super-resolution as unconstrained energy min-
imization and provide point estimates for the latent high-resolution image.

3.3.1 Maximum Likelihood Estimation
Let us assume that the sequence of low-resolution frames y(1), . . . , y(K) are inde-
pendent and identically distributed (i. i. d.) random variables. Then, one can de-
rive the joint distribution to describe the probability of observing the low-resolution
data y from the high-resolution image x according to the factorization:

p(y | x) =
K

∏
k=1
N
(

y(k) −W(k)x; 0, σ2
noiseI

)
. (3.22)

The objective of ML estimation is to infer a high-resolution image that best
explains the set of low-resolution observations. If there is no prior knowledge
about the high-resolution image available, it can be directly inferred from the point
estimation:

xML = argmax
x

p(y | x) . (3.23)

Taking the negative log-likelihood L(x) ∝ − log p(y | x) of Eq. (3.23), this is equiv-
alent to the unconstrained minimization problem:

xML = argmin
x

L(x) , (3.24)

where:

L(x) =
K

∑
k=1

∣∣∣∣r(x, y(k))∣∣∣∣2
2

=
∣∣∣∣r(x, y)

∣∣∣∣2
2 ,

(3.25)

and r(x, y) = y−Wx denotes the residual error of the estimate x w. r. t. the obser-
vations y. This links the Gaussian observation model to least-square optimization.
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The convex minimization problem in Eq. (3.24) can be solved in closed form.
Unfortunately, this requires an inversion of the system matrix W, which is compu-
tationally prohibitive for real-world problem sizes. For the purpose of a practical
implementation, energy minimization is performed by means of iterative numer-
ical optimization to avoid a direct inversion of the system matrix. Several ap-
proaches that are widely used in literature include steepest descent iterations with
fixed [Elad 97, Li 10] or adaptive step size [Hard 97, Lee 03] as well as conjugate
gradient (CG) based iteration schemes [Nguy 01b, Zibe 07]. In case of pure trans-
lational motion and a space invariant generative model, ML estimation can also
be decomposed into a non-iterative interpolation and an iterative deblurring stage
[Elad 01]. For details on the numerical optimization, we refer to Section 4.3.

3.3.2 Maximum A-Posteriori Estimation
In terms of MAP estimation, prior knowledge regarding the occurrence of high-
resolution images is exploited instead of using a uniform prior. The motivation of
this approach is that super-resolution is a highly ill-posed problem under practical
conditions [Borm 04]. Thus, ML estimation that does not consider prior knowl-
edge on the desired high-resolution image needs to be regularized to steer the
reconstruction algorithm to a reasonable solution.

Figure 3.6 depicts this issue on a simulated dataset with known subpixel mo-
tion, where K = 16 low-resolution frames are obtained from a ground truth ac-
cording to the proposed image formation model. This example considers low-
resolution observations in the intensity range [0, 1] that are corrupted by Gaussian
noise at different standard deviations σnoise. In the corresponding ML estimates,
image noise in the input frames is severely amplified. Notice that in addition to
the influence of image noise, super-resolution based on ML estimation is also ill-
conditioned in case of uncertainties of model parameters [Pick 07a].

Let p(x) be a prior distribution on the latent high-resolution image to model
its appearance in Bayesian way. Similarly, let p(y) be the distribution of the low-
resolution frames. Then, using Bayes’ rule, the posterior distribution p(x | y) is
given by:

p(x | y) = p(y | x) · p(x)
p(y)

∝ p(y | x) · p(x) . (3.26)

The goal of MAP estimation is to reconstruct a high-resolution image that maxi-
mizes the posterior p(x | y) according to:

xMAP = argmax
x
{p(y | x) p(x)} . (3.27)

In order to derive this point estimation as an energy minimization problem, we
use the negative log-likelihood associated with the posterior according to:

xMAP = argmin
x
{L(x) + λR(x)} , (3.28)

where L(x) denotes the negative log-likelihood from ML estimation referred to as
data fidelity term. R(x) ∝ − log p(x) denotes a regularization term with the regular-
ization weight λ ≥ 0 to weight this term relative to the data fidelity.
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(a) Ground truth

(b) σnoise = 0 (c) σnoise = 0.025 (d) σnoise = 0.05 (e) σnoise = 0.075

Figure 3.6: Super-resolution using ML estimation on simulated data. First row: ground
truth image used for this example. Second row: low-resolution frames simulated from the
ground truth at different levels of Gaussian noise with standard deviation σnoise. Third
row: ML estimates using K = 16 low-resolution frames with magnification s = 4.

To define the prior distribution p(x), various approaches emerged in litera-
ture. A wide class of these general-purpose models exploits smoothness, piece-
wise smoothness or sparsity of natural images in transform domains. We consider
image priors that are expressed by the Boltzmann distribution [Bish 06]:

p(x) =
1

Z(σprior)
exp

{
− R(x)

σprior

}
, (3.29)

where σprior > 0 is a distribution scale parameter and Z(σprior) is the partition
function used for normalization. Below, we review some of the most commonly
used priors that are employed in this thesis. For the design of prior distributions
that are tailored to the characteristics of natural images, we refer to Chapter 4.

Gaussian Prior. A Gaussian prior as the most basic and commonly used ap-
proach [Elad 97, Hard 97, Cape 03] considers a high-resolution image x as a spa-
tially smooth signal. This should avoid noise amplification by ML estimation. In
doing so, the prior p(x) defined by Eq. (3.29) is parametrized by:

RGauss(x) = ||Qx||22 , (3.30)

where Q ∈ RN×N is a circulant matrix to write a discrete convolution with a high-
pass filter q as a matrix-vector product, i. e. Qx ≡ x ? q. Typical choices for Q are
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(a) σnoise = 0 (b) σnoise = 0.025 (c) σnoise = 0.05 (d) σnoise = 0.075

Figure 3.7: MAP estimation on the simulated data in Fig. 3.6 with a Gaussian prior mod-
eled by a discrete Laplacian [Hard 97] and a constant regularization weight (λ = 0.05).
Super-resolved images are depicted at different noise standard deviations σnoise.

the gradient determined by finite differences [Cape 03] or the discrete Laplacian
[Hard 97, He 06]. This prior yields a Tikhonov regularized optimization problem
also known as ridge regression [Hast 09]. The main benefits of this model are that
it is feasible to use the prior for analytical computations and that it yields a convex
regularization term that is easy to minimize by numerical optimization.

Figure 3.7 depicts the influence of the image prior on the simulated dataset in
Fig. 3.6. In this example, the MAP estimation is based on a discrete Laplacian and
a constant regularization weight (λ = 0.05). In contrast to ML estimation, noise
amplification is reduced by regularization with the Gaussian prior. This stabilizes
the reconstruction and improves the visual quality of super-resolved images.

Huber Prior. The major shortcoming of the Gaussian prior is that discontinuities
in an image are penalized in the same manner as noise. This reduces the ability
of edge reconstruction since sharp edges appear blurred due to the smoothness
assumption. One approach to enhance edge reconstruction is to replace the L2
norm of the Gaussian prior by a robust loss function to obtain a distribution with
heavier tails. A common choice is to employ the Huber prior [Schu 96, Pick 07b]:

RHuber(x) =
N

∑
i=1

φHuber([Qx]i) , (3.31)

where Q ∈ RN×N is a circulant matrix and [z]i denotes the i-th element of the
vector z. The function φHuber(z) denotes the Huber loss applied element-wise to
the high-pass filtered image Qx. In this work, we use the smooth approximation
of the Huber loss that has continuous first- and second-order derivatives [Hart 04]:

φHuber(z) = δHuber

√
1 +

(
z

δHuber

)2

− δHuber, (3.32)

where δHuber is a scale parameter. This function behaves like the Gaussian prior for
small z (z � δHuber) and penalizes z quadratically. In case of large z (z � δHuber),
it is proportional to |z|. Hence, it features piecewise smooth regularization in or-
der to enhance the reconstruction of discontinuities. Similar to the Gaussian prior,
Eq. (3.31) yields a convex regularization term. However, in contrast to the Gaus-
sian prior, it requires non-linear optimization techniques for energy minimization.
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Total Variation. The Rudin, Osher and Fatemi (ROF) model [Rudi 92] also known
as total variation (TV) has been originally introduced for image denoising. Later,
it has also been employed for blind deconvolution [Chan 98] and super-resolution
[Ng 07]. Unlike the Huber prior that provides piecewise smooth regularization,
the TV prior explains an image as a piecewise constant signal.

The isotropic version of this prior introduced in [Rudi 92] is defined by:

RTV(x) =
N

∑
i=1

√
[∇ux]2i + [∇vx]2i , (3.33)

where ∇ux and ∇vx denote the discrete image gradient in u- and v-direction, re-
spectively. This convex regularization term exploits the sparsity of natural images
in the gradient domain. Besides its application in image restoration problems, this
prior has also great importance for regularization of ill-posed problems in the the-
ory of compressed sensing [Dono 06, Cand 08].

Isotropic TV has the limitation that it considers the image gradient in horizontal
and vertical direction only. For this reason, super-resolution is prone to staircasing
artifacts in image regions with small gradient magnitudes. One common general-
ization of this approach is the use of bilateral total variation (BTV) [Fars 04b]. The
BTV prior is inspired from bilateral filtering [Toma 98] and is given by:

RBTV(x) =
NBTV

∑
m=−NBTV

NBTV

∑
n=−NBTV

αBTV
|m|+|n| ||x− Sm

u Sn
vx||1 , (3.34)

where Sm
u and Sn

v denote shifts of x by m pixel in u-direction and n pixel in v-
direction, respectively. The shifts are performed in a (2NBTV + 1) × (2NBTV + 1)
window, where αBTV ∈]0, 1] weights the difference between x and its shifted ver-
sion according to the shift magnitude. This prior performs a multiscale analysis of
the image gradient and yields convex regularization similar to isotropic TV.

3.4 Conclusion

This chapter introduced the computational framework that is utilized for the al-
gorithm development in the remainder of this work. In the first part, a litera-
ture survey served as an overview regarding different paradigms of multi-frame
super-resolution including frequency domain, interpolation-based as well as iter-
ative spatial domain approaches. The algorithms proposed in this thesis are based
on the iterative spatial domain formulation due to its flexibility in terms of the mo-
tion model and the ability to integrate prior knowledge. The second part covered
the derivation of an image formation model to describe image acquisition in digi-
tal imaging from a mathematical viewpoint. This model was discretized in order
to make it applicable for multi-frame super-resolution algorithms. Finally, super-
resolution was formulated from a Bayesian perceptive as a statistical parameter
estimation based on the discrete image formation model. For this purpose, ML
and MAP estimation were discussed. These formulations state super-resolution as
energy minimization problem that provides the basis for the computational meth-
ods introduced in the subsequent chapters.
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The computational framework for multi-frame super-resolution as previously pre-
sented in Chapter 3 relies on a simplistic approximation of the true physics of im-
age acquisition and accurate mathematical modeling of this process. For instance,
it requires an accurate subpixel motion estimate and prior knowledge about the
distribution of measurement noise. Uncertainty regarding these aspects limits
the robustness of super-resolution in real-world applications. This chapter in-
troduces a new algorithm for robust super-resolution imaging derived from a
Bayesian point of view. The proposed method employs a confidence-aware obser-
vation model along with a sparse image prior and is implemented as iteratively
re-weighted minimization. Unlike previous work, this approach features robust
and edge preserving image reconstruction with small amount of parameter tun-
ing, is flexible in terms of imaging models and computationally efficient.

Parts of this chapter have been originally published in [Kohl 16b] and have
been later extended in [Berc 16].

4.1 Introduction

Robustness is one of the main design criteria for the development of multi-frame
super-resolution algorithms. In this context, the term robustness refers to the abil-
ity of an algorithm to reconstruct a reasonable high-resolution image even in the
presence of degenerated information employed in the reconstruction procedure.
Conversely, an algorithm can be considered as not robust if it is severely affected
by a small uncertainty of this information. In practice, such uncertainties are un-

45
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(a) Low-resolution frame (b) Ground truth

(c) Super-resolution with exact motion (d) Super-resolution with inaccurate translation

Figure 4.1: Super-resolution under motion estimation uncertainty. (a) Simulated low-
resolution frame. (b) High-resolution ground truth. (c) and (d) Super-resolved images (4×
magnification) using an L2 norm data fidelity term and Tikhonov regularization [Elad 97]
with exact subpixel motion and inaccurate translations, respectively. The inaccurate mo-
tion estimate leads to ghosting artifacts due to the non-robust observation model.

avoidable and deteriorate super-resolution reconstruction. Let us discuss several
aspects of practical relevance. These refer to motion estimation, image formation
models, numerical optimization, and regularization.

Motion Estimation Uncertainty. An important aspect for robust super-resolution
is the uncertainty of subpixel motion. If this information is unknown, super-
resolution requires an accurate motion estimate to provide reliable results. Un-
fortunately, this requirement is hard to fulfill using motion estimation on low-
resolution images due to systematic artifacts like aliasing or blurring as well as
random measurement noise [Vand 06b]. These issues cause uncertainties in the es-
timated subpixel motion. For this reason, motion estimation and super-resolution
can be considered as a chicken-or-egg dilemma. In particular, this is the case if
independently moving objects in a scene must be taken into account. Another
challenging situation is non-rigid motion that causes ambiguities due to occlu-
sions. In these cases, motion estimation may be affected by local outliers. In order
to simplify motion estimation, some existing super-resolution algorithms are lim-
ited to simple parametric motion, e. g. globally rigid motion. However, parametric
models are inappropriate in many applications, e. g. video upscaling [Kell 11].
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The impact of motion estimation is demonstrated in Fig. 4.1, where K = 16
low-resolution frames (Fig. 4.1a) were generated from a ground truth (Fig. 4.1b) by
simulating rigid motion and Gaussian noise. Super-resolution is based on an L2
norm data fidelity and Tikhonov regularization using Laplacian filtering [Elad 97].
The super-resolved image using exact subpixel motion is depicted in Fig. 4.1c.
Next, the translations t ∈ R2 of every second frame were corrupted by uniform
distributed errors tε ∈ R2 of random directions with ||tε||2 = 1.0. Super-resolution
under this inaccurate motion is depicted in Fig. 4.1d. Notice that even under these
small uncertainties, the reconstruction is severely affected by ghosting artifacts.

Model and Optimization Parameter Uncertainty. In addition to motion estima-
tion, the uncertainties of parameters employed in the image formation model have
a considerable impact on super-resolution. Compared to conditions in many real-
world imaging setups, super-resolution usually approximates the true physics of
image acquisition with simplified mathematical models. One aspect that is rarely
considered is internal processing of image data in the camera system, e. g. image
compression or white-balancing, see Section 3.2.3. Another issue is measurement
noise that does not follow a simple space invariant normal distribution, e. g. due
to invalid pixels related to impulse noise [Chan 05] or mixed noise [Xiao 11]. The
influence of these aspects is demonstrated by corrupting low-resolution data by
salt-and-pepper noise using a fraction of 0.5 % invalid pixels as depicted in Fig. 4.2a
and Fig. 4.2b. Super-resolution on the corrupted low-resolution frames is not able
to compensate for invalid pixels, see Fig. 4.2c.

Besides model parameters, there are also optimization parameters related to
the formulation of super-resolution as energy minimization problem. One exam-
ple are regularization weights that are selected prior to optimization. This is cum-
bersome as parameter selection is often performed off-line by trial-and-error or by
automatic parameter selection schemes [Nguy 01a]. However, in both cases super-
resolution is affected by an inappropriate selection and cannot compensate for the
uncertainty of the parameters. This issue is demonstrated for the regularization
weight λ in Fig. 4.3. In case of an underestimated regularization weight (Fig. 4.3a),
super-resolution is affected by residual noise. As opposed to underestimation, an
overestimated weight (Fig. 4.3c) results in oversmoothing. The optimal weight
(Fig. 4.3b) results in a suitable tradeoff between residual noise and sharpness.

Ill-Posedness and Regularization. Super-resolution is known to be an ill-posed
problem [Borm 04] and prior knowledge regarding the appearance of the images
to be reconstructed is required to alleviate ill-posedness, see Section 3.3.2. This
prior knowledge is leveraged by regularization techniques, where most paramet-
ric regularization terms are derived from Gaussian, Huber or TV priors. This has
a crucial impact on the performance of super-resolution but most of these general-
purpose priors are inadequate to model natural images [Bake 02]. For instance,
discontinuities related to texture or edges are not explained appropriately due to
the assumption of smooth or piecewise smooth images used to design these pri-
ors. This becomes crucial in presence of image noise as there is an inherent tradeoff
between denoising and the preservation of edges or texture.
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(a) 1st frame with salt-and-pepper noise (b) 2nd frame with salt-and-pepper noise

(c) Super-resolution under salt-and-pepper noise (d) Ground truth

Figure 4.2: Influence of invalid pixels to super-resolution. (a) and (b) Frames from Fig. 4.1
corrupted by salt-and-pepper noise. (c) and (d) Super-resolved image using an L2 norm
data fidelity term with Tikhonov regularization [Elad 97] and the ground truth. Notice
that the non-robust observation model is unable to compensate for invalid pixels.

The remainder of this chapter is organized as follows. Section 4.2 presents
a literature survey on related work in the area of robust super-resolution. Sec-
tion 4.3 introduces a confidence-aware Bayesian model for robust super-resolution
reconstruction. Section 4.4 introduces an iterative estimation scheme based on this
model. Section 4.5 presents a comprehensive evaluation of this algorithm with
comparisons to the state-of-the-art. Finally, Section 4.6 concludes this chapter.

4.2 Related Work

The algorithms most relevant to this work are based on Bayesian models. In partic-
ular, we are interested in the formulation of super-resolution as MAP estimation as
well as related probabilistic methods. The focus in the design of robust algorithms
in this area lies in outlier detection, optimization, and regularization, see Fig. 4.4.

Outlier Detection. The goal of outlier detection is to identify and downweight
invalid observations termed outliers. According to Eq. (3.28), this is done by defin-
ing the data term:

L(x) =
KM

∑
i=1

βi
∣∣ [y−Wx]i

∣∣p, (4.1)
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(a) Underestimated reg. weight (λ = 5 · 10−5) (b) Optimal reg. weight (λ = 5 · 10−3)

(c) Overestimated reg. weight (λ = 5 · 10−1) (d) Ground truth

Figure 4.3: Influence of the regularization weight λ to super-resolution. (a) - (d) Super-
resolution using an L2 norm data fidelity term and Tikhonov regularization [Elad 97] with
an underestimated λ (λ = 5 · 10−5), an optimal λ (λ = 5 · 10−3), an overestimated λ
(λ = 5 · 10−1) as well as the ground truth. Notice that an over- or underestimation lead to
oversmoothing or noise amplification, respectively.

where p ∈ [1, 2] and β = (β1, . . . , βKM)> denotes a confidence map to indicate
valid observations referred to as inliers. The confidence βi can be either a binary or
a continuous variable, where βi = 1 corresponds to an inlier yi.

Deterministic approaches detect outliers in low-resolution observations. To
this end, Zhao and Sawhney [Zhao 02] have proposed local image similarity as-
sessment on displacement vector fields. In [Tana 10], Tanaka and Okutomi have
proposed displacement estimation to construct confidence maps. This enables the
detection of local outliers in optical flow. One drawback is that outlier detection
does not exploit the presence of super-resolved data. Probabilistic strategies aggre-
gate outlier detection and image reconstruction by expectation maximization (EM)
[Harm 10, Cho 11]. These methods also focus on the detection of specific types of
outliers, e. g. oversaturated pixels, by describing them in a probabilistic way.

In a different approach, Zomet et al. [Zome 01] have proposed robust gradient
descent optimization. Instead of an explicit construction of the confidence map,
outliers in the gradient descent update equations are filtered during iterative min-
imization. To remove outliers, median filtering of the gradient of the energy func-
tion is performed. This approach does not focus on specific types of outliers but
has no proper theoretical justification in terms of convergence [Fars 04b].
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Figure 4.4: Overview of related work on robust super-resolution techniques.

Robust Optimization. In contrast to explicit outlier detection, outlier observa-
tions can be removed implicitly by defining the data fidelity as:

L(x) =
KM

∑
i=1

φdata([y−Wx]i) , (4.2)

where φdata(·) is a robust loss function. Robustness refers to the property that
outliers are not penalized disproportionately as in case of the L2 norm.

Farsiu et al. [Fars 04b] have introduced robust MAP estimation based on the
L1 norm, where the loss function in Eq. (4.2) is given by φdata(z) = |z|. This mea-
sure is statistically optimal in case of Laplacian noise. However, Laplacian noise
is rarely the optimal model for inliers, where Gaussian noise is much more com-
mon. Inlier and outlier observations are also uniformly weighted and their influ-
ences are proportional to the magnitude of their residual errors. From a statistical
point of view, this is not necessarily optimal. Besides the L1 norm, re-descending M-
estimators have been examined to design the loss function φdata(z). The use of non-
convex functions should further reduce the influence of outliers by rejecting them
in the data fidelity term. In [Pata 07], Patanavijit and Jitapunkul have proposed the
Lorentzian loss. Other widely used M-estimators are the Gaussian [Pham 08] or
Tukey’s biweight [Anas 09]. For the selection of the scale parameters of these func-
tions, different adaptive schemes have been introduced [El Y 08a, El Y 08b]. Zeng
and Yang [Zeng 13] have proposed an adaptive Huber function to consider a vary-
ing reliability of model parameters associated with the low-resolution frames. A
similar approach is to employ hybrid error norms [Song 10, Yue 14], where φdata(z)
is an aggregation of the L1 and the L2 norm to combine their advantages.

One common issue of the aforementioned methods is that they rely on addi-
tional model parameters. For instance, regularization weights or scale parameters
of M-estimators need to be specified. This task often requires user supervision or
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ad-hoc methods based on empirical knowledge. Numerical methods for adaptive
regularization weight selection have been developed by He and Kondi [He 06] and
Vrigkas et al. [Vrig 12, Vrig 14]. However, these are based on Tikhonov regulariza-
tion limiting the ability of edge reconstruction as discussed below.

Robust Regularization. Besides recognition-based image priors [Bake 02], most
algorithms employ parametric prior distributions including Huber [Pick 07a] or
TV models [Fars 04b, Ng 07]. These smoothness priors are characterized by con-
vex regularization terms R(x) ∝ − log p(x) related to a distribution p(x) and are
not spatially adaptive. While this often leads to efficient algorithms, one inher-
ent limitation is the ability to represent the characteristics of natural images in
terms of sparsity. As we show in the derivation of the proposed prior, natural
images are typically sparse and need to be represented by heavy-tailed distribu-
tions [Huan 99]. Such priors have been widely investigated for deblurring, where
the Hyper-Laplacian distribution is a common choice [Levi 09, Kris 09, Kote 13].
In [Pata 07], Patanavijit and Jitapunkul have proposed non-convex Lorentzian-
Laplacian regularization that implements a heavy-tailed prior for super-resolution.

Another class of priors aims at enhancing the parametric models to make them
spatially adaptive. Yuan et al. [Yuan 12, Yuan 13] and Li et al. [Li 10] have pre-
sented spatially adaptive versions of TV and BTV, respectively. The idea is to
decrease the impact of the regularization on discontinuities compared to the im-
pact in homogenous regions. This may improve edge reconstruction compared
to the unweighted counterparts of these priors. However, their benefit is highly
dependent on additional feature extraction algorithms, e. g. the computation of
second-order derivatives [Yuan 12] or entropy-based measures [Li 10].

Regularization of ill-posed problems has also been widely investigated in the
theory of compressed sensing [Dono 06]. Here, sparse regularization is achieved
by iteratively re-weighted L1 norm optimization to approximate L0 norm mini-
mization. This scheme has been studied by Candes et al. [Cand 08] and Daubechies
et al. [Daub 10] for sparse signal recovery, where it leads to sparser solutions com-
pared to unweighted priors. This property makes these techniques attractive also
for regularization in low-level vision problems [Ochs 13].

4.3 Bayesian Model for Robust Super-Resolution

This section introduces the mathematical model of the proposed super-resolution
algorithm from a Bayesian perspective. This requires the definition of an observa-
tion model as well as a reasonable image prior. For both components, we propose
space variant distributions to enhance space invariant modeling.

4.3.1 Space Variant Observation Model

In the most basic formulation of multi-frame super-resolution, the observation
model p(y | x) is defined by a family of parametric distributions. For instance, one
can employ a normal distribution [Elad 97] assuming additive Gaussian noise or a
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Laplacian distribution [Fars 04b] assuming additive Laplacian noise in the image
formation process, see Section 3.3. The main motivation behind this approach lies
in its simplicity as noise can be fully described by a small number of parameters,
e. g. its standard deviation, and the corresponding data fidelity term is convex.
However, it has the shortcoming of being sensitive to outliers and cannot model
spatially varying uncertainties, see Section 4.1.

We follow the assumption that the observation model can be reasonably de-
scribed locally by a parametric distribution. Unlike Gaussian noise with fixed stan-
dard deviation for all observations, the proposed model employs a normal dis-
tribution with spatially varying standard deviation. This property is enforced by
assigning pixel-wise confidence weights in spirit of outlier detection in Eq. (4.1).
The observation model is given by the zero-mean weighted normal distribution
N (y−Wx; 0, σ2

noiseI, β) defined by:

p(y | x, β) = N
(

y−Wx; 0, σ2
noiseI, β

)
:=

1
Z(σnoise, β)

exp

{
− 1

2σ2
noise

(y−Wx)>B(y−Wx)

}
,

(4.3)

with normalization constant Z(σnoise, β), noise standard deviation σnoise, and non-
negative confidence weights β ∈ R+KM

0 that are assembled to the diagonal matrix
B = diag(β1, . . . , βKM). In fact, assuming i. i. d. observations, Eq. (4.3) defines the
normal distribution with spatially varying standard deviation:

p(y | x, β) ∝
KM

∏
m=1

exp
{
− 1

2σ2
m
[y−Wx]2m

}
, (4.4)

where σm = σnoise/
√

βm with βm 6= 0 is the standard deviation at the m-th pixel.
This observation model shares several conceptual similarities with determin-

istic outlier detection. However, deterministic outlier detection is designed as a
two-stage procedure, where confidence weights are determined on low-resolution
data followed by super-resolution. This might lead to the selection of suboptimal
confidence weights. In this chapter, we model the weights β as latent variables
similar to probabilistic outlier detection [Harm 10, Cho 11] and estimate them si-
multaneously to the super-resolved image. This has the inherent advantage that
we can gradually refine the confidence weights in an iterative algorithm.

4.3.2 Space Variant Image Prior
Similar to the observation model, most related works on image priors focused on
parametric distributions that yield convex regularization terms in certain trans-
form domains. In general, this transform domain is given by ΩS ⊂ RNS and a
linear sparsifying transform of an image x is described by S : Ωx → ΩS with
S(x) = Sx, where S ∈ RNS×N denotes the transform in matrix notation. The prior
distribution exploits the sparse representation of an image under such transforms
to regularize super-resolution reconstruction.

Next, different realization for S and its properties are compared. Based on these
findings, a new sparsity-promoting prior for super-resolution is introduced.
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Sparsity measure Sparsifying transform S(x)
0th order 1st order 2nd order
Identity Roberts Sobel BTV Laplacian

sGini(z) 0.26 ± 0.06 0.59 ± 0.06 0.59 ± 0.07 0.68 ± 0.05 0.61 ± 0.05
sHoyer(z) 0.09 ± 0.04 0.41 ± 0.08 0.41 ± 0.08 0.53 ± 0.06 0.43 ± 0.07
sEntropy(z) 7.33 ± 0.34 5.46 ± 0.74 7.44 ± 0.76 2.87 ± 0.58 5.64 ± 0.69

Table 4.1: Sparsity of natural images from the LIVE database [Shei 16] in different trans-
form domains. The sparsity is measured by mean ± standard deviation of the Gini index,
the Hoyer index, and the entropy. The domains cover zeroth-order (identity), first-order
(Roberts gradient, Sobel gradient, BTV) as well as second-order (Laplacian) transforms.

Analysis of Natural Image Statistics. The choice for the sparsifying transform
S is based on an analysis of natural image statistics. This analysis studies dif-
ferent realizations for S based on high-pass filtering. These transforms include
first-order methods based on the image gradient implemented by the Sobel oper-
ator, the Roberts operator as well as BTV (L = 2 and αBTV = 0.5). Moreover, the
discrete Laplacian is examined as a second-order transform. For the sake of com-
parison, we also analyze the identity given by S = IN×N, which is considered as a
zeroth-order transform. All transforms are compared by evaluating the sparsity of
a transformed image z = Sx. In this context, sparsity refers to the amount of zero
elements in the transform domain ΩS.

To measure the sparsity of a transformed image z quantitatively, the Gini in-
dex sGini(z), the Hoyer index sHoyer(z) as well as the entropy sEntropy(z) are used
[Hurl 09]. The higher sGini(z) and sHoyer(z) are, the higher the degree of sparsity
of z obtained by the underlying transform. Conversely, a small entropy sEntropy(z)
expresses higher sparsity. All measures are analyzed for 29 reference images of
natural scenes that are available in the LIVE database [Shei 16], see Tab. 4.1. The
implementation by the identity does not yield a sparse signal as the intensities it-
self do not follow a sparse distribution. Notice that the highest degree of sparsity
is obtained by BTV indicating its efficiency to design sparse priors.

To prove the benefits of BTV to design the transform S, we analyze the statis-
tical distribution of z. Figure 4.5 shows the discrete histogram assembled from all
transformed samples zi that are obtained from the 29 reference images using the
BTV model. This demonstrates the clustering of the samples close to zero, which
indicates sparsity of the transformed images. In order to model the histogram
statistically, we employ the family of Hyper-Laplacian distributions [Kris 09]:

p(zi) = HL
(
zi; µPrior, σprior, ν

)
:=

1
Z(σprior, ν)

exp
{
−1

ν

(
|zi − µPrior|

σprior

)ν}
,

(4.5)

with shape parameter µPrior, scale parameters σprior and ν, and normalization con-
stant Z(σprior, ν). This distribution is used to establish the image prior:

p(x) =
NS

∏
i=1
HL

(
zi; µPrior, σprior, ν

)
, (4.6)
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Figure 4.5: Analysis of the distribution p(zi) on 29 natural images [Shei 16] (left) using the
BTV model. The discrete histogram (right) represents the empirical distribution of zi in the
reference images. The histogram is approximated by Hyper-Laplacian distributions using
ν = 2 (Gaussian), ν = 1 (Laplacian), as well as ν = 0.6 (heavy-tailed Hyper-Laplacian).
Note the fit of the histogram tails for ν = 0.6 compared to the Gaussian with ν = 2.

where z1, . . . , zNS are assumed to be i. i. d. variables. The Hyper-Laplacian is fitted
to the discrete samples by ML estimation using ν = 2 corresponding to a Gaussian
N (zi; µPrior, σ2

prior), ν = 1 corresponding to a Laplacian L(zi; µPrior, σprior), as well
as ν = 0.6 corresponding to a heavy-tailed Hyper-Laplacian distribution.

Note that except for small zi, Gaussian and Laplacian distributions provide
poor fits to the statistical appearance of natural images. In Fig. 4.5, this is visi-
ble by the poor approximation of the histogram tails resulting in an inappropriate
modeling of discontinuities. For ν < 1, p(zi) follows a heavy-tailed distribution
that is able to characterize the histogram tails in a reasonable way. This provides a
better fit to the appearance of natural images than the Laplacian, which is consis-
tent with recent findings in the area of natural scene statistics [Huan 99, Sriv 03].
For this reason, heavy-tailed priors became a common tool for image restoration
[Levi 09, Kris 09, Kote 13] and compressed sensing [Cand 08, Daub 10].

Weighted Bilateral Total Variation. The design of the proposed image prior is
motivated by these findings and exploits the sparsity of natural images in a trans-
form domain ΩS. However, instead of modeling the prior directly as a Hyper-
Laplacian distribution, it is defined by the zero-mean weighted Laplacian distri-
bution L(Sx; 0, σpriorI, α):

p(x | α) = L
(
Sx; 0, σpriorI, α

)
:=

1
Z(σprior, α)

exp
{
−||ASx||1

σprior

}
,

(4.7)

where σprior denotes a distribution scale parameter, α ∈ R
+NS
0 are confidence weights

of the distribution in the transform domain assembled as the diagonal matrix
A = diag

(
α1, . . . , αNS

)
, and Z(σprior, α) is a normalization constant.

The regularization term associated with the distribution in Eq. (4.7) termed
weighted bilateral total variation (WBTV) is based on the unweighted BTV in
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Eq. (3.34) due to the performance of this approach to yield a sparse transform.
Since αBTV

|m|+|n| > 0, we can reformulate the unweighted BTV according to:

RBTV(x) =
NBTV

∑
m=−NBTV

NBTV

∑
n=−NBTV

∣∣∣∣∣∣αBTV
|m|+|n| (IN×N − Sm

v Sn
h) x
∣∣∣∣∣∣

1

=
NBTV

∑
m=−NBTV

NBTV

∑
n=−NBTV

∣∣∣∣Sm,nx
∣∣∣∣

1 =
∣∣∣∣Sx

∣∣∣∣
1,

(4.8)

where Sm,n = αBTV
|m|+|n|(IN×N−Sm

v Sn
h) ∈ RN×N denotes the transform associated

with the shift (m, n). The overall transform S ∈ RNS×N with NS = (2NBTV + 1)2N
for all shifts is assembled as:

S =
(
S−NBTV,−NBTV S−NBTV+1,−NBTV . . . SNBTV−1,NBTV SNBTV,NBTV

)> . (4.9)

Then, WBTV regularization is conditioned on the weights α according to:

RWBTV(x | α) := ||ASx||1 =
NBTV

∑
m=−NBTV

NBTV

∑
n=−NBTV

N

∑
i=1

αm,n
i |[Sm,nx]i| , (4.10)

where α = (α−NBTV,−NBTV , . . . , αNBTV,NBTV)> denotes the joint weight vector over all
shifts and αm,n = (αm,n

1 , . . . , αm,n
N )> are weights associated with the shift (m, n).

This term allows us to locally adapt the prior p(x | α) by controlling the weights
α similar to the locally adaptive BTV introduced by Li et al. [Li 10]. In particular,
the impact of the regularization needs to be reduced on discontinuities compared
to the behavior in flat regions. However, unlike [Li 10], the weights are handled
as latent variables in the same way as those of the observation model. This avoids
their explicit computation by means of feature detection in a preprocessing step.

4.3.3 Inference of the Model Confidence Weights

Our goal is to reconstruct the high-resolution image that best explains a set of low-
resolution observations. If one knows the confidence weights employed in the
Bayesian model, the high-resolution image could be inferred by the MAP frame-
work presented in Section 3.3.2. However, if one does not know the weights, they
need to be treated as latent variables in the estimation of the high-resolution im-
age. For this purpose, three alternative approaches are examined.

Bayesian Marginalization. One approach is to marginalize over the latent vari-
ables α and β. Then, the high-resolution image is estimated from the marginal
distribution. This Bayesian marginalization is formulated by:

x̂ = argmax
x

∫
RKM

∫
RNS

p(y, β | x) p(x, α) dαdβ, (4.11)

where the integration is performed over all configurations of the confidence maps.
Using the Bayes rule, marginalization over α and β yields:

x̂ = argmax
x

∫
R+KM

0

p(y | β, x) p(β)
∫

R
+NS
0

p(x | α) p(α) dαdβ, (4.12)
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where p(α) and p(β) are the prior distributions assigned to the confidence weights.
Although this approach provides a theoretical basis for super-resolution under

unknown confidence weights, there exist several practical limitations. One impor-
tant restriction is that analytic marginalization is possible only for few relatively
simple priors1 or with simplistic approximations of the integration. An exact so-
lution would require integration in a KM + NS dimensional space. This is compu-
tationally prohibitive for real-world applications, where the size of the parameter
space lies in the range KM + NS ≈ 106. Another limitation is the parameter tun-
ing that is required to define p(α) and p(β) as these distributions would comprise
additional hyperparameters.

Alternating MAP Estimation. As an alternative to marginalization, one can jointly
estimate the super-resolved image and the confidence weights:

(x̂, α̂, β̂) = argmax
x,α,β

{
p(x | α)

K

∏
k=1

p
(

y(k) | x, β(k)
)

p(α) p(β)

}
, (4.13)

where p(α) and p(β) are priors for the confidence weights to obtain meaningful
solutions of this underdetermined problem. Taking the negative log-likelihood of
Eq. (4.13) leads to the joint energy minimization problem:

(x̂, α̂, β̂) = argmin
x,α,β

{
KM

∑
i=1

βi |[y−Wx]i|
2 + λ

NS

∑
i=1

αi |[Sx]i|

+ log Z(σnoise, β) + log Z(σprior, α)− log p(β)− log p(α)

}
.

(4.14)

This minimization problem can be solved by alternating MAP estimation for
α, β, and x. Hamada et al. [Hama 13] investigated this approach for a simplified
model, where only confidence weights of a data fidelity term are taken into ac-
count. However, similar to Bayesian marginalization, the performance is highly
dependent on the priors p(α) and p(β) and only tractable for simplistic models.

Majorization-Minimization. Another approach to infer the confidence weights
is to treat them as hidden information within an EM algorithm [Demp 77]. Related
schemes have been successfully applied for probabilistic outlier removal [Cho 11].
However, similar to the aforementioned approaches, this concept requires a pure
probabilistic formulation, i. e. an explicit definition of distributions p(α) and p(β).
These distributions are difficult to model for real-world problems, which limits
the flexibility. For this reason, the proposed method is formulated as majorization-
minimization (MM) algorithm [Hunt 04] as generalization of EM [Ba 14]. This does
not require explicit modeling of p(α) and p(β), and yields a computationally effi-
cient approach for the inference of the confidence weights via iteratively re-weighted
minimization [Cand 08, Scal 88].

1For instance, conjugate priors [Bish 06] to the data likelihood can be used. These priors enable
an analytic calculation of the marginal distribution to infer latent hyperparameters [Oliv 09].
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The iteratively re-weighted minimization framework comprises two steps, which
results in a sequence of iterations {(xt, αt, βt) : t = 1, . . . , T}:

1. Given an estimate xt−1 for the latent high-resolution image, we first deter-
mine αt and βt according to:

αt = α
(

xt−1
)

, (4.15)

βt = β
(

xt−1, y(1), . . . , y(K)
)

, (4.16)

where α : RNS → R
+NS
0 and β : RKM → R+KM

0 are weighting functions to com-
pute confidence weights based on xt−1 and y.

2. Given the weights αt and βt, we determine xt according to the solution of the
weighted minimization problem:

xt = argmax
x

{
p
(
x | αt) p

(
y | x, βt)} . (4.17)

Both steps are alternated until convergence. For a detailed analysis of the relation-
ship between this scheme and MM algorithms, we refer to Section 4.4.2.

4.4 Robust Super-Resolution Reconstruction

This section introduces a robust super-resolution algorithm based on iteratively
re-weighted minimization. For the derivation of this algorithm, the basic compu-
tational steps for numerical optimization are outlined. Eventually, a theoretical
study of the underlying Bayesian model and the proposed iteration scheme is pro-
vided by explicitly deriving this method as MM algorithm.

4.4.1 Iteratively Re-Weighted Minimization Algorithm

The general iteratively re-weighted minimization framework has some degrees
of freedom that need to be adjusted for robust super-resolution. First, it utilizes
weighting functions that need to be specified. Second, it assumes a fixed regu-
larization weight λ that is adjusted prior to the iterative procedure. Hence, this
approach is not adaptive regarding the characteristics of the low-resolution data.

The proposed algorithm is developed as adaptive iteration scheme. The weights
αt and βt are inferred by:

αt = α
(

xt−1, σt
noise

)
, (4.18)

βt = β
(

xt−1, y(1), . . . , y(K), σt
prior

)
, (4.19)

where α : RNS → R
+NS
0 and β : RKM → R+KM

0 are adaptive weighting functions
that exploit σt

noise and σt
prior as scale parameters of the observation and the prior

model. These scale parameters are adjusted at each iteration and characterize the
data uncertainty in the underlying Bayesian model. To avoid manual parameter
tuning, automatic hyperparameter estimation is used to determine the regulariza-
tion weight λt at iteration t. Finally, the super-resolved image xt is reconstructed
using the confidence weights αt and βt as well as the regularization weight λt.
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Weight Estimation. To determine the confidence weights βt of the observation
model, the residual error r(x, y) = y−Wx is analyzed. In this work, the weighting
function in Eq. (4.18) is defined element-wise according to:

β
(
x, y, σnoise

)
:=
(

β1 (r, σnoise) . . . βKM (r, σnoise)
)> ∈ R+KM

0 , (4.20)

where r = r
(
xt−1, y

)
denotes the residual error associated with the estimate xt−1

obtained at the previous iteration, and βi : RKM → R+
0 determines the weight for

the i-th observation. The confidence weights are computed by considering frame-
wise (global) outliers as well pixel-wise (local) outliers via the decomposition:

βi
(
r, σnoise

)
:= βi,bias (r)︸ ︷︷ ︸

frame-wise

· βi,local (r, σnoise)︸ ︷︷ ︸
pixel-wise

. (4.21)

In order to detect outlier frames, we assume that the residual errors associ-
ated with the different frames need to be symmetric and zero-mean according to
Eq. (4.3). Individual frames that violate this assumption are considered as outliers.
Potential reasons for a violation of this assumption could be systematic errors like
global photometric differences between the frames. We perform a bias detection
[Zome 01] to identify such frames using the binary weighting function:

βi,bias
(
r
)
=

{
1 if

∣∣median
(
r(k)
)∣∣ ≤ cbias

0 otherwise
, (4.22)

where r(k) is the residual error of the k-th frame associated with the i-th observa-
tion, and median(·) denotes the sample median as robust estimator of the mean
residual error [Zoub 12].

In addition to the detection of outlier frames, local outliers are detected pixel-
wise using the bi-weight function:

βi,local
(
r, σnoise

)
=

{
1 if |ri| ≤ clocalσnoise
clocalσnoise
|ri|

otherwise
, (4.23)

where σnoise denotes an estimate of the standard deviation of the weighted nor-
mal distribution N

(
r; 0, σ2

noiseI, βt−1) and clocal is a tuning constant. Notice that
a constant confidence is assigned to observations classified as inliers of a normal
distribution, whereas outliers are weighted by their inverse residual errors. This
function can downweight outliers related to non-Gaussian noise, e. g. impulsive
noise, or locally inaccurate motion estimation.

The estimation of the prior weights αt in Eq. (4.19) follows a similar motivation
and is done under the transform z = Sxt−1 according to:

α(x, σprior) :=
(
α1
(
z, σprior

)
. . . αNS

(
z, σprior

))> ∈ R
+NS
0 . (4.24)

The i-th weight is computed by the weighting function:

αi
(
z, σprior

)
=

1 if |[Q(z)]i| ≤ cpriorσprior

p (cpriorσprior)
1−p

|[Q(z)]i|
1−p otherwise

, (4.25)
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(a) (b) (c)

Figure 4.6: Illustration of the proposed confidence weighting on an example image se-
quence. (a) Low-resolution image (top row) and super-resolved image with 4× magnifi-
cation (bottom row) along with a zoom-in. (b) - (c) Gray-scale visualizations of the obser-
vation confidence weights (top row) and the prior weights (bottom row) after the 1st and
the 10th iteration, respectively (bright regions denote higher weights). The observation
weights identify outlier observations (e. g. due to inaccurate motion estimation) while the
prior weights extract image structures for adaptive regularization.

where p ∈ [0, 1] is referred to as sparsity parameter, σprior is an estimate of the scale
parameter of the weighted Laplacian distributionL

(
z; 0, σpriorI, αt−1) and cprior is a

tuning constant. Note that in order to reduce the influence of isolated noisy pixels,
these weights are inferred from a locally filtered version of the spatial information
denoted by Q(z). In this work, Q(·) is implemented by a 3× 3 median filtering2.
This scheme explains an image as a mixture of flat regions and discontinuities by
assigning spatially adaptive weights. Accordingly, higher weights are assigned to
flat regions while the influence of discontinuities is downweighted.

In Fig. 4.6, we illustrate the proposed weighting functions employed for itera-
tively re-weighted minimization. Figure 4.6 (top row) depicts the observation con-
fidence weights associated with a single low-resolution frame affected by insuffi-
cient motion estimation. The weights are iteratively refined and model the low-
resolution observations by mixed noise. In this example, mixed noise is related to
the superposition of measurement noise and motion estimation uncertainty. Fig-
ure 4.6 (bottom row) depicts the prior weights in the domain of the super-resolved
image. These weights are gradually refined over the iterations in order to make
regularization spatially adaptive w. r. t. image structures. More specifically, lower
weights are assigned to sharp edges to enhance their reconstruction.

Scale Parameter Estimation. The weighting functions in Eq. (4.23) and Eq. (4.25)
require the knowledge of the scale parameters σnoise and σprior, respectively. In

2In [Yuan 13], a related method has been proposed, where median filtering is used to extract
edge information. This avoids the origination of false edges in spatially adaptive TV regularization.
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order to avoid manual parameter tuning, both parameters are determined in an
optimal way at each iteration. Given xt−1 and βt−1 obtained at the previous it-
eration and assuming a uniform prior p(σnoise), we determine σt

noise via the ML
estimator:

σt
noise = argmax

σnoise

p
(

y | xt−1, βt−1, σnoise

)
. (4.26)

For outlier-insensitive estimation in Eq. (4.26), the scale parameter is computed
from the median absolute deviation (MAD) [Scal 88] of rt−1 = y−Wxt−1. In or-
der to take different confidence weights associated with the low-resolution ob-
servations into account, the MAD is computed in a weighted version using the
weighted median [Yin 96, Zhan 14b]:

σt
noise = σ0 ·mad

(
rt−1, βt−1

)
= σ0 ·median



∣∣rt−1

1 −median
(
rt−1, βt−1) ∣∣

...∣∣rt−1
KM −median

(
rt−1, βt−1) ∣∣

 ,

βt−1
1
...

βt−1
KM


 ,

(4.27)

where we set σ0 = 1.4826 to obtain a consistent estimate for the standard devia-
tion of a normal distribution [Scal 88]. The quantities mad(r, β) and median(r, β)
denote the weighted MAD and the weighted median of the residual error r under
the confidence weights β, respectively. The weighted median r̃ = median(r, β)
generalizes the sample median and is defined as the point r̃, where the sum of the
weights βi associated with residuals ri above and below r̃ fulfills:

∑
i:ri<r̃

βi <
1
2 ∑

i
βi and ∑

i:ri≥r̃
βi ≤

1
2 ∑

i
βi. (4.28)

Similarly, the ML estimate for the scale parameter σt
prior is obtained from the

distribution of Sxt−1. Given the weights αt−1 determined at the previous iteration,
the scale parameter at iteration t is determined by:

σt
prior = σ0 ·mad

(
Q
(
Sxt−1), αt−1

)
, (4.29)

where σ0 = 1 for the Laplacian distribution.

Hyperparameter Estimation. The selection of the regularization parameter λ has
to deal with the following inherent tradeoff. On the one hand, if λ is underes-
timated, super-resolution is ill-conditioned and the reconstructed images are af-
fected by residual noise. On the other hand, in case of an overestimate, the super-
resolved images get blurred as illustrated in Fig. 4.3. In general, an optimal regu-
larization weight is unknown and manual tuning based on trial-and-error proce-
dures is time-consuming and error prone. In the proposed approach, an optimal λ
also depends on the estimated confidence weights. Fully automatic approaches to
select λ use, e. g. generalized cross validation (GCV) [Nguy 01a], the discrepancy
principle [Wen 12], or Bayesian methods [Oliv 09, Baba 11]. Typically these meth-
ods deal with simplistic prior distributions, e. g. Gaussian priors [Vrig 14], or use
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approximative schemes to determine a closed-form solution for the prior partition
function [Oliv 09] to make parameter selection tractable.

In this work, a data-driven parameter selection that generalizes fairly well to
different forms of the image prior is used. This approach is inspired by the work
of Pickup et al. [Pick 07b] and is based on a two-fold cross validation like proce-
dure that estimates the regularization parameter λ jointly with the super-resolved
image. The advantage of this approach is that λ is adjusted at each iteration t as λt

and the parameter selection exploits the model confidence weights as opposed
to parameter selection prior to super-resolution. The key idea is to determine
λt based on training observations such that it minimizes a cross validation error
on a disjoint set of validation observations. For this purpose, the low-resolution
observations y are decomposed into two disjoint subsets, where a fraction of δ,
0 < δ < 1 observations are used for parameter training and the remaining ob-
servations are hold back for validation. This is achieved by assembling a binary
diagonal matrix Iδ ∈ {0, 1}KM×KM, where the i-th element is Iδ,i = 1 with proba-
bility δ to specify the training subset and Iδ,i = 0 with probability 1− δ to specify
the validation subset. Given a regularization weight λ, the super-resolved image
reconstructed with this setting from the training observations is denoted by:

x(λ) = argmin
x

{(
y−Wx

)>IδBt(y−Wx
)
+ λ

∣∣∣∣AtSx
∣∣∣∣

1

}
, (4.30)

where At = diag
(
αt) and Bt = diag

(
βt). The optimal weight λt is determined

from the validation observations according to:

λt = argmin
λ

Lcv
(
λ, Iδ

)
. (4.31)

The cross validation error measures the fidelity of x(λ) on the validation set and is
given by:

Lcv
(
λ, Iδ

)
=
(
y−Wx(λ)

)>IδBt(y−Wx(λ)
)
, (4.32)

where Iδ is obtained from Iδ by flipping the diagonal elements. The behavior of
this cross validation error is visualized in Fig. 4.7 in the log-transformed range
log λ. Unlike the error on the training observations Lcv(λ, Iδ) that is strictly mono-
tonic increasing in Fig. 4.7b, the optimal regularization weight is the minimum of
Lcv
(
λ, Iδ

)
in Fig. 4.7a.

Notice that the minimization problem in Eq. (4.31) itself depends on an op-
timization problem. This makes the application of gradient-based optimization
[Pick 07b] difficult as the gradient ∇Lcv

(
λ, Iδ

)
is not well-defined and its numeri-

cal approximation would be computationally expensive. To this end, the proposed
parameter selection utilizes an adaptive grid search to solve Eq. (4.31). This search
is performed in the domain of the log-transformed regularization weight log λ
instead of using the linear space for λ. For the first iteration of the proposed al-
gorithm, λ1 is selected as the global minimum of Lcv

(
λ, Iδ

)
. For this task, a grid

search is performed over the initial search range [log λl, log λu]. In the subsequent
iterations (t > 1), λt−1 is used as initial guess to refine it to λt with search range:[

log λt−1 − 1
t

, log λt−1 +
1
t

]
. (4.33)
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Figure 4.7: Behavior of the cross validation error for the selection of an optimal regular-
ization weight. (a) Cross validation error Lcv

(
λ, Iδ

)
in the log-transformed range log λ on

the validation observations. (b) Error Lcv(λ, Iδ) on the training observations. Note that
Lcv(λ, Iδ) is strictly monotonic increasing while Lcv

(
λ, Iδ

)
has a unique minimum.

The number of iterations is adaptively adjusted at each iteration of iteratively re-
weighted minimization. For t = 1, it is initialized by T1

cv = Tcv. Then, it is gradu-
ally reduced to Tt

cv = d0.5 · Tt−1
cv e. This enables a parameter selection of moderate

computational effort while avoiding the limitation of a gradient-based search.

Image Reconstruction. Once the confidence weights αt and βt as well as the reg-
ularization weight λt are determined, the super-resolved image xt is estimated via
the weighted energy minimization problem:

xt = argmin
x

Ft(x). (4.34)

The energy function that is minimized at iteration t is given by:

Ft(x) = (y−Wx)> Bt (y−Wx) + λt ∣∣∣∣AtSx
∣∣∣∣

1 , (4.35)

where At = diag
(
αt) and Bt = diag

(
βt). This convex and unconstrained min-

imization problem provides an MAP estimate for xt under the given parameters
and is numerically solved by means of gradient-based techniques. In this thesis,
we employ scaled conjugate gradient (SCG) iterations [Nabn 02] to solve for xt and
to enhance the rate of convergence compared to steepest descent schemes. SCG it-
erations seek a stationary point:

∇xFt(x) = −2BtW> (y−Wx) + λtAtS>sign
(
AtSx

) !
= 0. (4.36)

Numerical optimization requires a smooth and continuous differentiable regu-
larization term to facilitate gradient-based iterations. Therefore, the regularization
term is approximated by the convex Charbonnier function [Char 94]:

φChar(z) :=
NS

∑
i=1

√
z2

i + τ. (4.37)
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For small τ (τ = 10−4), this provides a reasonable approximation of the L1 norm
while avoiding the non-differentiability. Consequently, the gradient of the regu-
larization term is given by:

AtS>sign
(
AtSx

)
≈ AtS> · ψChar(AtSx), (4.38)

where ψChar(z) = ∇zφChar(z) is the gradient of the Charbonnier function:

ψChar(z) =
(
ψChar(z1) ψChar(z2) . . . ψChar(zNS)

)> (4.39)

ψChar(zi) = zi

(√
z2

i + τ

)−1

. (4.40)

Coarse-to-Fine Optimization. Although re-weighted minimization according to
Eq. (4.34) is convex, it is important to note that the overall optimization problem
solved by iteratively re-weighted minimization is non-convex. Intuitively, this
is caused by the fact that the convergence is affected by the initialization of the
confidence weights and thus it may converge to different local minimums. For
this reason, iteratively re-weighted minimization is implemented in a coarse-to-fine
scheme as shown in Algorithm 4.1. In this approach, the initial confidence weights
are set to α0 = 1 and β0 = 1, where 1 is an all-one vector. The super-resolved
image x0 is initialized by the temporal median of the motion compensated low-
resolution frames that severs as an outlier-insensitive initial guess [Fars 03]. The
magnification factor is initialized by a lower value than the desired magnifica-
tion starting with s1 = 1. Then, it is gradually increased by ∆s per iteration such
that st = st−1 + ∆s until the desired magnification is reached. In order to solve
Eq. (4.34), xt−1 is propagated as initial guess to determine xt.

We perform a maximum number of Tirwsr iterations in the outer optimization
loop, a maximum number of Tscg iterations for SCG in the inner loop, and an
initial number of Tcv iterations for cross validation based parameter selection. As a
termination criterion we use the absolute difference between xt and xt−1 according
to:

max
i=1,...,N

(∣∣xt−1
i − xt

i
∣∣) < η, (4.41)

where η denotes the termination tolerance.
This approach has two benefits compared to single-scale optimization. First,

it reduces the risk of getting stuck in local minimums as the non-convexity of the
energy function in a lower dimensional space is less crucial. Second, it reduces the
computational costs as more iterations of the computational demanding hyper-
parameter estimation are done more efficiently for smaller magnification factors.

4.4.2 Algorithm Analysis

In this section, we analyze Algorithm 4.1 regarding the following aspects. First and
foremost, we discuss the relationship of iteratively re-weighted minimization to
MM algorithms. This links the proposed weighted optimization to the solution of a
non-convex energy minimization problem. Afterwards, based on this relationship
to the MM theory, we prove the convergence of the underlying iteration scheme.
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Algorithm 4.1 Super-resolution using iteratively re-weighted minimization

Input: Initial guess for x0 (high-resolution image), α0 and β0 (confidence weights), s0

(magnification factor), and [log λl , log λu] (regularization weight search range)
Output: Final high-resolution image x, confidence weights α and β, and regularization

weight λ
1: while Convergence criterion in Eq. (4.41) not fulfilled and t ≤ Tirwsr do
2: Select magnification factor st = min(st−1 + ∆s, s)
3: Propagate xt−1 in coarse-to-fine scheme using magnification factor st

4: Compute scale parameters σt
noise and σt

prior according to Eq. (4.27) – (4.29)
5: Compute confidence weights αt and βt according to Eq. (4.22) – (4.25)
6: Compute regularization weight λt according to Eq. (4.31) with Tt

cv iterations
7: tscg ← 1
8: while Convergence criterion in Eq. (4.41) not fulfilled and tscg ≤ Tscg do
9: Update xt by SCG iteration for Eq. (4.36)

10: tscg ← tscg + 1
11: end while
12: t← t + 1
13: end while

Relationship to Majorization-Minimization Algorithms. The proposed super-
resolution method can be considered as MM algorithm, see Section 4.3. The basic
notion of this class of algorithms is to replace the direct minimization of a difficult
– potentially non-convex function – with the minimization of a surrogate function.
Compared to the original non-convex function, this surrogate function is easier to
optimize. A surrogate function that can be employed in this context is referred to
as majorizing function [Hunt 04] and is defined as follows.

Definition 4.1 (Majorizing function). Let F(x) be a real-valued function. Then, the
real-valued function F̃(x, xt−1) is called a majorizing function for F(x) at xt−1 ∈ RN if:

1. F̃(x, xt−1) ≥ F(x) for all x ∈ RN, and

2. F̃(xt−1, xt−1) = F(xt−1).

Let us now consider the robust and sparse reconstruction given by the mini-
mum of the non-convex energy function:

F(x) =
KM

∑
i=1

φHuber([y−Wx]i) + λ
NS

∑
i=1

φp([Sx]i) , (4.42)

where the data fidelity is given by the Huber loss with scale parameter σnoise:

φHuber(z) =

{
z2 if |z| ≤ σnoise

2σnoise|z| − σ2
noise, otherwise.

, (4.43)

and the regularization term is defined by the mixed L1/Lp norm with p ∈ [0, 1]
and scale parameter σprior:

φp(z) =

{
|z| if |z| ≤ σprior

σ
1−p
prior|z|p otherwise,

. (4.44)
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This function comprises an outlier-insensitive data fidelity term and sparse regu-
larization. Moreover, let us define the convex energy:

F̃(x, xt−1) = Ft(x, xt−1) +
KM

∑
i=1

ρ
([

y−Wxt−1
]

i

)
+ λ

NS

∑
i=1

τ
([

Sxt−1
]

i

)
, (4.45)

where:

ρ(z) =

{
0 if z ≤ σnoise

σ2
noise

(
z

σnoise
− 1
)

otherwise
, (4.46)

τ(z) =

{
0 if |z| ≤ σprior

(1− p)σ1−p
prior|z|p otherwise

, (4.47)

and Ft(x, xt−1) is the energy function in Eq. (4.34) as optimized by Algorithm 4.1
with regularization weight λ. Notice that F̃(x, xt−1) and Ft(x, xt−1) are equal up to
the non-negative terms ρ(·) and τ(·) that are independent of x. Thus, F̃(x, xt−1) is
an upper bound for Ft(x, xt−1) and the minimizer of these functions w. r. t. x are
equivalent.

The relation of iteratively re-weighted minimization to MM algorithms is es-
tablished by the following theorem.

Theorem 4.1. The convex energy function F̃(x, xt−1) in Eq. (4.45) is a majorizing func-
tion for the non-convex energy function F(x) in Eq. (4.42) at x = xt−1.

Proof. The proof of this theorem is given in Appendix A.2.1.

If the scale parameters σnoise and σprior as well as the regularization weight λ
are assumed to be constant, the proposed algorithm can be considered as an MM
algorithm to minimize the non-convex energy in Eq. (4.42). The basic principle of
this scheme is to successively construct majorizing functions F̃(x, xt−1) at xt−1 to
obtain a refined estimate xt, see Fig. 4.8. Thus, direct optimization of a non-convex
energy function is casted to a sequence of weighted but convex optimizations.
This relationship also clarifies the properties of the proposed algorithm regarding
robustness as minimization of the confidence-aware observation model is related
to minimizing the Huber loss. Similarly, minimization based on the WBTV prior
is related to minimizing the sparsity-promoting L1/Lp regularization term.

Convergence Analysis. Based on this relationship, we establish a convergence
proof of iteratively re-weighted minimization. In order to study the convergence,
let x0 be the initial guess and σnoise, σprior as well as λ constant parameters over
the iterations. Then, the objective value F(x) in Eq. (4.42) converges within a finite
number of iterations, which is stated by the following theorem.

Theorem 4.2. Let x1, . . . , xT be an iteration sequence obtained by iteratively re-weighted
minimization. Then, for all t = 2, . . . , T there exists a strict positive β such that:

F(xt−1)− F(xt) ≥ β
∣∣∣∣Wxt−1 −Wxt∣∣∣∣2

2. (4.48)
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Figure 4.8: Illustration of the MM principle. The minimization of the non-convex function
F(x) is casted to the iterative minimization of convex majorizing functions F̃(x, xt−1).

Proof. The proof of this theorem is given in Appendix A.2.2.

This theorem states that the objective value F(xt) is monotonically decreasing.
Since F(x) is a lower-bounded function, F(xt) converges to an extreme value, and
so does Algorithm 4.1. For a detailed experimental convergence study with adap-
tive scale and regularization parameters, we refer to Section 4.5.3.

4.5 Experiments and Results

The experimental results reported in this section provide a comparison of the pro-
posed method to several state-of-the-art algorithms as well as an in-depth analysis
of its numerical properties. This includes quantitative evaluations on simulated
data and qualitative assessment of super-resolution on real images. We focus on
super-resolution under challenging conditions in real-world applications, includ-
ing motion estimation uncertainty or image noise with space variant properties.

4.5.1 Experiments on Simulated Data

To enable quantitative evaluations, simulated low-resolution data with a known
ground truth for the desired high-resolution data was used. The ground truth im-
ages were projected by the image formation model to obtain their low-resolution
counterparts. This mapping was described by rigid motion with uniform dis-
tributed translation t = (tu, tv)>, tu, tv ∈ [−3, 3] and rotation angle ϕ ∈ [−1, 1],
a Gaussian PSF (σPSF = 0.5), and subsampling according to the desired magni-
fication factor s. Each frame was corrupted by a superimposition of intensity-
dependent Poisson noise, Gaussian noise with standard deviation σnoise, and salt-
and-pepper noise at level νnoise that specifies the amount of invalid pixels. For
each ground truth, the simulation was performed ten times and all results were
averaged over these randomized realizations. Grayscale converted reference im-
ages were taken from the LIVE database [Shei 16] consisting of color photographs
of natural scenes. The peak-signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [Wang 04b] were used to compare super-resolution to a ground truth.
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Figure 4.9: Mean ± standard deviation of the PSNR and SSIM achieved by the competing
super-resolution algorithms under exact subpixel motion estimation. The benchmark in-
cludes ten simulated datasets with ten randomly generated image sequences per dataset.

Iteratively re-weighted minimization was used with Tirwsr = 10, Tscg = 10,
Tcv = 20, and termination tolerance η = 0.001. The WBTV parameters were set to
NBTV = 2 and αBTV = 0.7 with sparsity parameter p = 0.5. The tuning constants of
the underlying weighting functions were set to cbias = 0.02 and clocal = cprior = 2.0
for images given in the intensity range [0, 1] according to [Kohl 16b].

The proposed approach was compared to several related spatial domain recon-
struction algorithms, namely L2 norm minimization coupled with Tikhonov reg-
ularization (L2-TIK) [Elad 97], L1 norm minimization coupled with BTV regular-
ization (L1-BTV) [Fars 04b], Lorentzian M-estimator based super-resolution (LOR)
[Pata 07], and adaptive super-resolution with bilateral edge preserving regulariza-
tion (BEP) [Zeng 13]. For a fair evaluation of these algorithms, their regularization
weights were selected for each dataset individually using a grid search on a train-
ing sequence and maximization of the PSNR. Notice that the proposed algorithm
does not require off-line regularization parameter selections.

Effect of Image Noise. Figure 4.9 depicts a benchmark of the competing super-
resolution algorithms in a baseline experiment by utilizing the exact subpixel mo-
tion from the simulation process. In this experiment, ten datasets with sequences
of K = 8 low-resolution frames were employed for super-resolution with mag-
nification s = 2. Each frame was degraded by a fixed level of Gaussian noise
(σnoise = 0.02). Note that the proposed algorithm consistently outperformed the
state-of-the-art in terms of both measures. In comparison to L1-BTV, the PSNR and
SSIM measures were improved by 1.2 decibel (dB) and 0.03, respectively. A qual-
itative comparison is shown in Fig. 4.10, where the proposed algorithm achieved
decent results in terms of the reconstruction of image structures while the compet-
ing methods were prone to oversmoothing or residual noise.
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(a) Original (b) L2-TIK [Elad 97] (c) L1-BTV [Fars 04b]

(d) LOR [Pata 07] (e) BEP [Zeng 13] (f) Proposed

Figure 4.10: Super-resolution (K = 8 frames, magnification s = 2) with exact subpixel
motion and additive Gaussian noise (σnoise = 0.02) on the simulated lighthouse dataset with
a comparison of different combinations of observation models and prior distributions.

The influence of image noise was investigated by varying the levels of Gaussian
noise (σnoise ∈ [0, 0.04]) and salt-and-pepper noise (νnoise ∈ [0, 0.15]). The averaged
PSNR and SSIM measures over ten realization of these experiments are plotted in
Fig. 4.11. In the presence of invalid pixels, the L2-TIK method failed to reconstruct
reliable high-resolution data as this approach does not compensate for outliers.
The different robust models (L1-BTV [Fars 04b], LOR [Pata 07], BEP [Zeng 13], and
the proposed method) were less sensitive. Moreover, the proposed method quan-
titatively outperformed the competing robust models for both noise types. See
Fig. 4.12 for a comparison on example data with salt-and-pepper noise.

Effect of Motion Estimation Uncertainty. The effect of motion estimation uncer-
tainty was studied by simulating deviations between the true and the actual mo-
tion model. For this purpose, for two out of eight frames, an isotropic scaling fac-
tor to simulate camera zoom was considered such that the motion associated with
these frames deviated from the rigid motion model. Motion estimation was per-
formed using the enhanced correlation coefficient (ECC) optimization framework
proposed by Evangelidis and Psarakis [Evan 08] assuming rigid motion. Hence,
the frames affected by scaling can be considered as outliers.



4.5 Experiments and Results 69

0 0.01 0.02 0.03 0.04
24

26

28

30

32

Noise std. σnoise

PS
N

R
[d

B]
L2-TIK LOR Proposed

L1-BTV BEP

0 0.01 0.02 0.03 0.04
0.7

0.75

0.8

0.85

0.9

0.95

Noise std. σnoise

SS
IM

L2-TIK LOR Proposed

L1-BTV BEP

0 2.5 5 7.5 10
22

24

26

28

30

32

Invalid pixel ν [%]

PS
N

R
[d

B]

L2-TIK LOR Proposed

L1-BTV BEP

(a) PSNR vs. noise level

0 2.5 5 7.5 10
0.55

0.65

0.75

0.85

0.95

Invalid pixel ν [%]

SS
IM

L2-TIK LOR Proposed

L1-BTV BEP

(b) SSIM vs. noise level

Figure 4.11: PSNR and SSIM of super-resolution with image noise. Top row: performance
of the competing algorithms under Gaussian noise of varying standard deviations σnoise.
Bottom row: influence of salt-and-pepper noise at different levels νnoise.

Figure 4.13 depicts a benchmark of super-resolution on ten simulated datasets
in this situation, where the scaling factor followed a normal distributionN (c; 1, σ2

c )
with standard deviation σc = 0.05. Notice that the L2-TIK method was prone to
inaccurate motion estimation while the different robust methods were less sensi-
tive. In this benchmark, the proposed method outperformed the state-of-the-art
on most of the datasets. Compared to L1-BTV, the PSNR and SSIM measures were
enhanced by 0.7 dB and 0.04, respectively. See Fig. 4.14 for a qualitative compari-
son among the competing algorithms. The effect of motion estimation uncertainty
is visible by ghosting artifacts that were avoided by the proposed method.

Effect of Photometric Variations. The image formation models widely used in
literature ignore several effects of digital imaging, see Section 3.2.3. This includes
varying photometric conditions during image acquisition caused by camera white
balancing or time variant lighting conditions. If varying photometric conditions
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(a) Original (b) L2-TIK [Elad 97] (c) L1-BTV [Fars 04b]

(d) LOR [Pata 07] (e) BEP [Zeng 13] (f) Proposed

Figure 4.12: Super-resolution (K = 8 frames, magnification s = 2) on the simulated
monarch dataset with mixed Gaussian noise (σnoise = 0.02) and salt-and-pepper noise with
a comparison of different combinations of observation models and prior distributions.
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Figure 4.13: Mean ± standard deviation of the PSNR and SSIM measures in Fig. 4.9 in the
presence of inaccurate motion estimation.
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(a) Original (b) L2-TIK [Elad 97] (c) L1-BTV [Fars 04b]

(d) LOR [Pata 07] (e) BEP [Zeng 13] (f) Proposed

Figure 4.14: Super-resolution (K = 8 frames, magnification s = 2) on the simulated ceme-
tery dataset in the presence of inaccurate motion estimation. The uncertainty of motion
parameters led to ghosting artifacts in case of a non-robust observation model (L2-TIK
[Elad 97]), while robust models (L1-BTV [Fars 04b], LOR [Pata 07], BEP [Zeng 13], and the
proposed method) compensated for this uncertainty.

should be taken into account, the image formation model needs to be extended
and photometric registration has to be employed to estimate photometric param-
eters [Cape 03, Cape 04]. However, photometric registration might be error prone
and its uncertainty leads to outliers in super-resolution reconstruction. To eval-
uate the impact of photometric variations, an original low-resolution frame y(k)

is corrupted according to z(k) = γ
(k)
m y(k) + γ

(k)
a 1 to obtain a distorted frame z(k)

[Cape 04]. For two randomly selected frames, photometric variations were simu-
lated by choosing uniform distributed parameters in [−1

2 σp,+1
2 σp] for γ

(k)
a and in

[1− 1
2 σp, 1 + 1

2 σp] for γ
(k)
m , where σp reflects the parameter uncertainty.

Figure 4.15 depicts the impact of photometric variations at different levels σp.
In this situation, the L2-TIK approach was affected by an intensity bias as captured
by the PSNR. The robust algorithms were less sensitive to photometric variations.
In particular, the proposed method consistently achieved the highest quality mea-
sures since photometric variations were successfully compensated by bias detec-
tion. See Fig. 4.16 for a visual comparison of this behavior on the lighthouse dataset.
Here, photometric variations in the input frames caused an intensity bias that is
apparent in the L2-TIK reconstruction but compensated by the proposed method.
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Figure 4.15: PSNR and SSIM of super-resolution at different levels of photometric varia-
tions. All photometric variations were simulated by uniform distributed global contrast
and brightness changes with standard deviation σp relative to a reference image.

(a) Original (b) L2-TIK [Elad 97] (c) L1-BTV [Fars 04b]

(d) LOR [Pata 07] (e) BEP [Zeng 13] (f) Proposed

Figure 4.16: Super-resolution (K = 8 frames, magnification s = 2) on the lighthouse dataset
with photometric variations (σp = 0.15). Photometric variations in input frames led to an
intensity bias under non-robust models (L2-TIK [Elad 97]), while robust models (L1-BTV
[Fars 04b], LOR [Pata 07], BEP [Zeng 13], and the proposed method) were less sensitive.
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Figure 4.17: PSNR and SSIM of super-resolution for different numbers of input frames.

Effect of the Sequence Length. One relevant parameter for super-resolution is
the number of low-resolution input frames. This parameter was investigated for
the magnification factor s = 3 as larger magnifications typically require more in-
put frames. Throughout this experiment, the fraction of invalid pixels was set to
νnoise = 0.01 to simulate outliers and the exact subpixel motion was utilized.

In Fig. 4.17, we depict the quality measures versus the number of low-resolution
input frames. As expected, a larger number of frames resulted in more accurate
reconstructions indicated by an increasing PSNR and SSIM. However, even in the
case of long input sequences, the performance of L2-TIK was limited due to the
presence of outliers. In comparison to the competing algorithms, the proposed
method performed best in terms of both quality measures. Notice that the pro-
posed method with K = 8 provided competitive results to L1-BTV and BEP with
K = 20 frames. Hence, it is more economical regarding the number of input
frames. This study also considered the important use case of underdetermined
super-resolution, which is the case for K < s2. Even in this challenging situation
that appeared for K < 9, the proposed algorithm provided reliable reconstructions
w. r. t. the ground truth and outperformed the state-of-the-art.

4.5.2 Experiments on Real Data
The proposed method was qualitatively evaluated on real image data in two differ-
ent applications. First, experiments with natural images were conducted. These
are challenging due to the uncertainty of subpixel motion estimation. Second,
experimental results in the field of 3-D range imaging are presented. Here, super-
resolved range data was reconstructed from low-resolution range images captured
with a Time-of-Flight (ToF) sensor that is affected by space variant noise.

Evaluation on Natural Images. For the experiments on natural scenes, image
sequences with different types of subpixel motion were used. Figure 4.18 com-
pares the different super-resolution algorithms on the car sequence taken from the
MDSP database [Fars 16]. This experiment aims at super-resolving a license plate
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(a) Original (b) L2-TIK [Elad 97] (c) L1-BTV [Fars 04b]

(d) LOR [Pata 07] (e) BEP [Zeng 13] (f) Proposed

Figure 4.18: Super-resolution on the car dataset to identify a license plate (K = 12 frames,
magnification s = 3). The subpixel motion is related to out-of-plane movements of the car.
Figure reused from [Kohl 16b] with the publisher’s permission ©2016 IEEE.

using K = 12 frames. Super-resolution was applied with magnification s = 3
and a Gaussian PSF (σPSF = 0.4). The subpixel motion across these frames fol-
lowed an affine model with a substantial amount of scaling related to out-of-plane
movements of the car. The motion estimation for this sequence was performed
by ECC optimization [Evan 08]. Note that large car movements made motion es-
timation difficult and resulted in outliers due to misregistrations for individual
frames. Consequently, L2-TIK was affected by ghosting artifacts, while the robust
algorithms were less sensitive. In terms of the recovery of the license plate, the
proposed method provided an artifact-free and sharp reconstruction.

Figure 4.19 depicts super-resolution on the globe sequence [Kohl 17] acquired
with a Basler acA2000-50gm CMOS camera. For this experiment, K = 17 low-
resolution frames captured by 4×4 hardware binning on the sensor array relative
to the maximum pixel resolution were used. Super-resolution was performed with
magnification s = 4 and a Gaussian PSF (σPSF = 0.4). The subpixel motion was
related to a superposition of rigid camera movements and an independent rotation
of the globe. In order to handle this non-rigid model, the variational optical flow
algorithm proposed by Liu [Liu 09] was employed for motion estimation. Notice
that optical flow computation was error-prone due to occlusions that were caused
by large rotations of the globe. Such outliers resulted in artifacts on the globe
surface in the L2-TIK reconstruction. The proposed method was robust against
these outliers and achieved a decent recovery of text on the globe surface.

Evaluation on Range Images. For the experiments in range imaging, a PDM
CamCube 3.0 ToF camera was used to measure the 3-D scene in Fig. 4.20. Range
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(a) Original (b) L2-TIK [Elad 97]

(c) L1-BTV [Fars 04b] (d) LOR [Pata 07]

(e) BEP [Zeng 13] (f) Proposed

Figure 4.19: Super-resolution on the globe dataset (K = 17 frames, magnification s = 4).
The subpixel motion is a mixture of camera movements and a rotation of the globe.

data was acquired with 200× 200 px at a frame rate of 30 Hz and super-resolution
was applied to sets of range images. In addition to the low spatial resolution,
the reliability of the ToF sensor was affected by intensity-dependent errors on the
black surface of the punch. This resulted in space variant noise, i. e. larger un-
certainties of range data on the punch surface compared to regions with brighter
illumination, which is a common issue in ToF imaging. Super-resolution was ap-
plied with K = 16 frames, a Gaussian PSF (σPSF = 0.5) and magnification s = 3.
Motion estimation was performed by ECC optimization with an affine model.

In this example, the proposed method achieved the best behavior under space
variant noise as shown by the reconstruction of flat surfaces and object edges.
Range data with lower confidence, i. e. measurements affected by higher noise lev-
els, was successfully determined as a by-product of iteratively re-weighted min-
imization. This is visible in the visualization of the observation confidence map



76 Robust Multi-Frame Super-Resolution with Sparse Regularization

(a) Original (b) L2-TIK [Elad 97] (c) L1-BTV [Fars 04b] (g) Weights β(1)

(d) LOR [Pata 07] (e) BEP [Zeng 13] (f) Proposed (h) Weights α

Figure 4.20: Super-resolution for ToF range images in the presence of space variant noise
(K = 16 frames, magnification s = 3). (b) - (f) Super-resolved images obtained by the com-
peting algorithms. (g) - (h) Observation weights β(1) associated with the first frame and
prior weights α visualized in grayscale (brighter regions denote higher weights). Figure
reused from [Kohl 16b] with the publisher’s permission ©2016 IEEE.

β(1) associated with the first frame. Here, lower weights were assigned to surfaces
affected by intensity-dependent noise. Similarly, the confidence map α of WBTV
steers the regularization to improve the reconstruction of depth discontinuities.

4.5.3 Convergence and Parameter Sensitivity

To confirm the convergence of iteratively re-weighted minimization experimen-
tally, the parameter estimates provided by the proposed algorithm were traced
over the iterations. The convergence is studied on simulated images under a mix-
ture of Gaussian noise (σnoise = 0.02) and salt-and-pepper noise (νnoise ∈ [0, 0.1]).
To evaluate the sensitivity of the algorithm regarding the initial guess, the pro-
posed initialization computed by the motion-compensated temporal median was
compared to an initialization computed by bicubic upsampling of a single frame.
Super-resolved images at different iterations with magnification factor s = 3 using
K = 12 frames and the temporal median as initial guess are shown in Fig. 4.21.

Figure 4.22 depicts the average PSNR and SSIM measures of the super-resolved
images at different iterations and different amounts of invalid pixels over ten ran-
dom realizations of the experiment. Independently of the noise level and the initial
guess, iteratively re-weighted minimization converged within the first five itera-
tions. This also appeared in case of a large amount of outliers and confirms the
convergence of the iteration scheme. In addition, the behavior of the adaptive
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(a) Original (b) Iteration 1 (c) Iteration 2 (d) Iteration 10

Figure 4.21: Illustration of the convergence of iteratively re-weighted minimization. The
example depicts super-resolved images (K = 12 frames, magnification s = 3) at different
iterations for the parrots dataset. The low-resolution input images are affected by a mixture
of Gaussian noise (σnoise = 0.02) and salt-and-pepper noise (νnoise = 0.1).

scale and regularization parameter estimation is depicted. Similar to the latent
high-resolution image, these estimates converged within a few iterations.

One relevant parameter of iteratively re-weighted minimization is the sparsity
parameter p of the underlying prior weighting function. This parameter controls
how strong sparsity is enforced and p < 1 implements a heavy-tailed prior distri-
bution, see Section 4.4.2. The impact of this parameter is studied at different noise
levels. To this end, low-resolution images were corrupted by a mixture of Gaus-
sian noise (σnoise ∈ [0, 0.04]) and salt-and-pepper noise (νnoise = 0.01). Figure 4.23
compares BTV (p = 1.0) to the proposed WBTV (p < 1) on an example dataset.
Notice that WBTV regularization contributed to an improved reconstruction of
fine textures. Furthermore, it was less sensitive to staircasing in homogenous im-
age regions. The means and the standard deviations of the PSNR and SSIM mea-
sures for ten random realizations of this experiment are plotted in Fig. 4.24 for
different noise levels. In these experiments, p < 1 enhanced the accuracy of super-
resolution due to the edge-aware reconstruction compared to the unweighted BTV
prior. The contributions of the sparse prior were more substantial for larger noise
levels. In this work, p is chosen in the range [0.3, 0.8] as a too small p decreases
the numerical stability of weight computation and increases the degree of non-
convexity of the underlying optimization problem. Conversely, a too large p lim-
its the benefit of the WBTV prior. In summary, p = 0.5 is a reasonable choice for
natural images and generalizes fairly well to scenes with different content.

4.5.4 Computational Complexity

This section reports the computational complexity of the proposed algorithm in
terms of computation time as well as the number of energy function evaluations
for numerical optimization. In Tab. 4.2, we compare these performance charac-
teristics on image sequences of different sizes3. To this end, the car and the globe
sequences (see Section 4.5.2) were used. In both experiments, L2-TIK converged

3These experiments were performed on an Intel Xeon CPU E5-1630v4 with 3.7 GHz and 64 GB
RAM using a non-parallelized MATLAB implementation.
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Figure 4.22: Convergence analysis of iteratively re-weighted minimization. (a) - (b) PSNR
and SSIM depicted for different amounts of invalid pixels on the dataset in Fig. 4.21. The
iterations were initialized by the temporal median (med) and bicubic upsampling of a
single frame (bic). (c) - (e) adaptive estimates of σnoise, σprior, and λ.

quite fast and required the lowest computation time while the different robust al-
gorithms required more iterations.

To examine the complexity of the different computational stages, iteratively re-
weighted minimization was evaluated with the proposed hyperparameter selec-
tion (adaptive λ) and with a bypass of this stage (constant λ). Here, the adaptive
algorithm increased the computation time compared to the competing methods
that do not provide an automatic parameter selection. Notice that a bypass of
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(a) Original (b) BTV (p = 1.0) (c) WBTV (p = 0.5) (d) WBTV (p = 0.3)

Figure 4.23: Impact of the sparsity parameter p of the proposed prior weighting function
on the parrots dataset. The low-resolution frames are affected by a mixture of Gaussian
noise (σnoise = 0.04) and salt-and-pepper noise (νnoise = 0.01). This example compares the
BTV prior (p = 1.0) to the proposed WBTV prior using different settings of the sparsity
parameter (p = 0.3 and p = 0.5). Notice the recovery of the texture for p < 0.5.
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Figure 4.24: Impact of the sparsity parameter p of the prior weighting function to the per-
formance of iteratively re-weighted minimization. The parameter sensitivity was assessed
on the dataset in Fig. 4.23 at different Gaussian noise levels. The proposed choice p = 0.5
led to superior results for all noise levels.

this stage considerably reduced the complexity. In this case, the computation time
was comparable to those of the state-of-the-art. Moreover, the proposed coarse-
to-fine optimization was compared to a single-scale implementation. Note that
by-passing the coarse-to-fine optimization increased the computation time, which
reveals the benefit of the proposed iteration scheme.

4.6 Conclusion

This chapter introduced a robust super-resolution algorithm from a Bayesian per-
spective. This approach is based on adaptive confidence weighting to define space
variant observation and prior distributions. The confidence weights are treated
as latent variables in the Bayesian model and are inferred simultaneously to the
super-resolved image in an adaptive scheme by means of iteratively re-weighted
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Table 4.2: Computational complexity of iteratively re-weighted minimization and several
state-of-the-art algorithms. This analysis includes the computation times and the num-
ber of energy function evaluations for numerical optimization. The L2-TIK method is
considered as baseline and the numbers in brackets denote the relative increase of the
computation time and the number of function evaluations compared to L2-TIK. Iteratively
re-weighted minimization was evaluated with (w/) and without (w/o) coarse-to-fine opti-
mization as well as with adaptive regularization and with constant regularization weight.

Super-resolution algorithm Globe sequence Car sequence
(510× 270, K = 17 frames) (70× 50, K = 12 frames)

Time [s] # Fun. eval. Time [s] # Fun. eval.

State-of-the-art
L2-TIK [Elad 97] 174 (×1.0) 50 (×1.0) 2 (×1.0) 48 (×1.0)
L1-BTV [Fars 04b] 383 (×2.2) 50 (× 1.0) 4 (×2.0) 50 (× 1.0)
LOR [Pata 07] 323 (×1.9) 50 (×1.0) 4 (×2.0) 50 (× 1.0)
BEP [Zeng 13] 2291 (×13.2) 50 (×1.0) 18 (×9.0) 50 (× 1.0)

Proposed
w/ coarse-to-fine (adapt. λ) 1198 (×6.9) 75 (× 1.5) 15 (×7.5) 82 (×1.7)
w/ coarse-to-fine (const. λ) 914 (×5.3) 50 (× 1.0) 8 (×4) 50 (×1.0)
w/o coarse-to-fine (adapt. λ) 3098 (×17.8) 80 (×1.6) 26 (×13.0) 90 (×1.9)

minimization. Mathematically, this technique can be derived as an MM algorithm.
Iteratively re-weighted minimization combines the advantages of robustness re-
garding outliers in image formation with sparse regularization to enhance the re-
construction of edges and texture. As an additional merit, it does not require an
extensive manual parameter tuning and provides an automatic parameter selec-
tion in a computationally efficient way.

In a baseline benchmark with mixed Gaussian and Poisson noise, iteratively
re-weighted minimization achieved average gains of 1.2 dB and 0.03 in terms of
PSNR and SSIM over related robust algorithms. In a benchmark that considered
inaccurate motion estimation, it improved the PSNR and SSIM by 0.7 dB and 0.04,
respectively. The iteration scheme showed fast convergence and converged to sta-
tionary points within five iterations regardless of the initialization and the fraction
of outliers in the image formation.

Notice that throughout this chapter, subpixel motion is initially estimated on
low-resolution frames prior to super-resolution. However, the proposed frame-
work is extensible to treat subpixel motion as hidden information. In [Berc 16],
iteratively re-weighted minimization has been formulated via confidence-aware
Levenberg-Marquardt optimization [Marq 63]. This enables joint motion estima-
tion and super-resolution to enhance the accuracy of an initial motion estimate.
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The algorithms investigated in Part I of this work provide super-resolution of a sin-
gle modality only. Part II of this thesis examines the extension of super-resolving
images of one modality in the presence of a complementary modality. The key idea
of this approach termed multi-sensor super-resolution is to steer image reconstruc-
tion by guidance images. For this purpose, we present a computational framework
that employs guidance data to enhance motion estimation and regularization com-
pared to conventional algorithms dealing with a single modality only. Moreover,
we present an outlier detection scheme for multi-sensor super-resolution as an
extension of this framework. As an important application of practical relevance,
the proposed method is evaluated in the field of hybrid range imaging. In this ap-
plication, high-resolution photometric data is used as guidance to super-resolve
low-resolution 3-D range data. The presented experimental evaluation reveals
that multi-sensor super-resolution outperforms conventional reconstruction algo-
rithms that work solely on range data.

This methodology has been introduced by Köhler et al. [Kohl 13b, Kohl 14b,
Kohl 15b] and later presented by Haase [Haas 16] for interventional imaging.

5.1 Introduction

Over the past decades, the vast majority of super-resolution algorithms has been
designed to handle image data of a single modality. As these traditional approaches
exploit information acquired with a single sensor, they are referred to as single-
sensor super-resolution. While this concept has the benefit of great flexibility re-
garding its applicability in different imaging systems, it suffers from the inherent
drawback that only information present in low-resolution data is utilized. For

83
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instance, motion estimation as one of the most essential prerequisites of super-
resolution needs to be carried out on low-resolution images, which might be er-
ror prone in practical applications. In addition, all algorithmic stages of these
approaches are formulated for a single modality, e. g. to design image priors in
Bayesian methods. If super-resolution is applied in hybrid imaging as the major
goal of this chapter, this basic concept essentially ignores the presence of addi-
tional information captured by different modalities. In this context, hybrid imag-
ing refers to a class of techniques that combines a set of complementary modalities
in a common system by means of sensor data fusion.

Hybrid Imaging Technologies. Let us first review several popular hybrid imag-
ing technologies that have emerged in literature along with their basic character-
istics. All of these techniques have in common that the involved modalities are
complementary in terms of their properties. Hence, their fusion enables a compre-
hensive representation of the underlying scene.

Some of the most popular hybrid imaging systems have been developed for
healthcare. This includes the fusion of functional nuclear imaging such as positron
emission tomography (PET) with structural imaging modalities such as computed
tomography (CT) or magnetic resonance imaging (MRI) that are widely used in
radiology. Combinations of these technologies have been engineered in PET/CT
[Beye 00] or PET/MRI [Jude 08] scanners. For instance in this context, structural
imaging features the acquisition of anatomical information with high spatial res-
olution while nuclear imaging provides an acquisition of functional processes in
lower resolution. Hybrid imaging has also been proposed for 3-D range imag-
ing as the primary application in this chapter. In this field, measurements of 3-D
surface information can be gained by means of active sensor technologies such
as ToF [Kolb 10] or structured light [Scha 03]. In addition to the surface informa-
tion encoded by range images that are acquired with these technologies, other
optical techniques are used to capture photometric information of the same scene
simultaneously [Han 13]. The modalities are complementary, as photometric data
provides high-resolution color and texture information while active range sensors
acquire the corresponding surface information.

One common observation in most of these systems is that some modalities fea-
ture a high spatial resolution while others are available in lower resolution. In
practice, these gaps of the sensor characteristics are caused by technological or
economic reasons. This initiates the development of novel super-resolution algo-
rithms that exploit multiple modalities and their complementary natures in order
to enhance the traditional single-sensor approaches.

Multi-Sensor Super-Resolution. The target of the proposed super-resolution ap-
proach for hybrid imaging is to identify one modality that is available at high spa-
tial resolution as a guidance modality. Accordingly, in contrast to the conventional
single-sensor approaches, this chapter shows how resolution enhancement for one
modality can be steered by such guidance images. Guidance images are exploited
in various ways including 1) motion estimation, 2) spatially adaptive regulariza-
tion, and 3) outlier detection as vital parts of multi-sensor super-resolution. This
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method is driven by the hypothesis that guidance images of high quality in terms
of their spatial resolution and signal-to-noise ratio (SNR) hold the potential to en-
hance super-resolution of another modality.

The remainder of this chapter is organized as follows. Section 5.2 provides a lit-
erature survey on related super-resolution and filtering techniques. In Section 5.3,
we introduce a multi-sensor framework that employes guidance data for motion
estimation and spatially adaptive regularization. Afterwards, Section 5.4 extends
this method by outlier detection that is driven by guidance data. Section 5.5 stud-
ies the application of this framework in hybrid 3-D range imaging, where low-
resolution range images are super-resolved under the guidance of high-resolution
photometric data. Finally, Section 5.6 presents a summary of this chapter.

5.2 Related Work

Compared to the great number of algorithms for single-sensor resolution enhance-
ment, there are only a few approaches that deal with the problem of multi-sensor
super-resolution. Prior work in this field typically addresses specific imaging se-
tups. An early method has been introduced in the pioneering work of Zomet and
Peleg [Zome 02]. This method addresses super-resolution of multi-channel im-
ages and is driven by the strategy that super-resolution of one of the channels
can be guided by the remaining channels. For this purpose, it exploits statistical
redundancies across the channels to derive an observation model with a virtual
prediction error. Instead of minimizing the residual error as done in single-sensor
algorithms, this virtual prediction error is minimized. Super-resolution for color
and infrared data have been considered as example applications but the experi-
ments are limited to single-image upsampling. One limitation in comparison to
the approach presented in this chapter is that it does not consider motion estima-
tion as an integral part of super-resolution reconstruction.

Methods that are conceptually closely related to the approach of Zomet and
Peleg [Zome 02] include local image filters. Some of the well known techniques
are guided upsampling [He 13, He 10] or joint bilateral upsampling [Kopf 07] to
upsample an image under the guidance of a second one. Here, range imaging
is one important application, where range data upsampling is guided by high-
resolution color images. More recently, these filters have been extended by various
approaches, e. g. non-local means regularization [Park 11], anisotropic total gener-
alized variation regularization [Fers 13] or photometric and range co-sparse anal-
ysis [Kiec 13]. However, despite their success, these approaches were designed for
single-image upsampling and use image formation models of limited flexibility
compared to the models proposed for multi-frame super-resolution. In particular,
effects of the camera PSF are seldom modeled by these local filters. For a general-
ization of such filters towards multi-frame super-resolution, we refer to Chapter 6.

Another mentionable approach that employs the concept of guidance images
has been proposed by Kennedy et al. [Kenn 07] for PET/CT scanners in medicine.
This method super-resolves PET scans by using anatomical information gained
from CT data. Even if this approach is conceptually interesting, it is limited to PET
resolution enhancement and does not generalize to other imaging setups.
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5.3 Multi-Sensor Super-Resolution Framework

In this section, we present the basis of the proposed multi-sensor super-resolution
framework that processes low-resolution images under the guidance of a comple-
mentary modality. The main novelty of this methodology is two-fold. First, a filter-
based technique is presented that uses high-resolution guidance data to obtain a
reliable motion estimate for super-resolution. In addition, a regularization tech-
nique is introduced that exploits high-resolution guidance images to adaptively
regularize super-resolution on a second modality. Both techniques have the goal
to improve robustness and accuracy of the framework compared to a single-sensor
approach that does not exploit guidance data.

5.3.1 Framework Overview

The proposed framework aims at reconstructing a high-resolution image x from
a set of low-resolution frames y(1), . . . , y(K) termed input images. For each input
image y(k), there exists a corresponding frame z(k) that is acquired with another
modality and termed guidance image1. Each guidance image z(k) is encoded as a
Lu × Lv image. In fact, the pixel resolution L = LuLv can be much higher than
those of the associated input image y(k) given by M = MuMv to take advantage of
the guidance data.

We assume that each pair (y(k), z(k)) is aligned to each other by means of sensor
data fusion. This alignment is described by the pixel-wise mapping:

uy = Φ(uz) , (5.1)

where uy ∈ Ωy denotes a pixel in an input image and uz ∈ Ωz denotes the
corresponding pixel position in the guidance image that encodes the same posi-
tion in the captured scene but with a different modality. Note that the mapping
Φ : Ωz → Ωy needs not be bijective. In particular, one important situation is
the case of a surjective mapping. In this situation, a set of pixel coordinates in a
guidance image maps to the same pixel in the corresponding input image, which
appears if the pixel resolution of the guidance data is higher than those of the in-
put images. In the most common setup, a set of pixels vz ∈ ωyz(uz) is mapped
to the same position uy, see Fig. 5.1. Conversely, Φ−1(uy) denotes a set of pixels
in the guidance image that are associated with uy under the assumption that the
mapping is invertible2. If the underlying mapping is applied to fuse guidance and
input images, both domains are aligned up a scale factor to preserve their pixel
resolutions. For the sake of convenience, we limit ourselves to static systems, i. e.
the sensors involved in the system have a fixed relative orientation. Hence, the
mapping is constant over all frames. In this case, sensor data fusion can be either
achieved by a software-based calibration involving image registration or can be
directly implemented by the imaging system.

1Each guidance image z(k) is synchronized in time with the respective input image y(k).
2Notice that depending on the implementation of the sensor data fusion, the mapping might not

be invertible and occlusions needs to be considered. For instance, this is the case in stereo vision
setups used for hybrid range imaging [Kohl 15b].
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Figure 5.1: Illustration of sensor data fusion between low-resolution input images and
the associated high-resolution guidance data for multi-sensor super-resolution. Each pair
(y(k), z(k)) is geometrically aligned up to a scale factor. In the proposed framework, the lo-
cal neighborhood ωyz(uz) centered at the pixel position uz in a guidance image is mapped
to the pixel position uy in an input image according to the mapping Φ(uz). We assume a
fixed mapping Φ(uz) over the sequence of input and guidance images.

Once the guidance data z is fused with the low-resolution input data y, the
proposed framework builds on the MAP estimator for the high-resolution image
x̂ according to:

xMAP = argmin
x
{LMSR(x, z) + λRMSR(x, z)} . (5.2)

The guidance data z is involved in two components. In terms of the observation
model defined by the data fidelity term LMSR(x, z), guidance images are used to es-
timate subpixel motion. This avoids a direct motion estimation on low-resolution
frames with the goal to enhance the accuracy of super-resolution. In terms of the
image prior, a spatially adaptive regularization term RMSR(x, z) weighted by λ ≥ 0
is used. This term exploits both, a super-resolved image x as well as the guid-
ance data z with the goal of taking advantage of structural correlation across both
modalities. Both novelties of the multi-sensor framework over the single-sensor
counterpart are introduced in the following subsections.

5.3.2 Motion Estimation using Guidance Images
The proposed framework explicitly employs displacement vector fields as the most
flexible approach to model subpixel motion. For this purpose, motion estimation
is realized by means of optical flow computation [Liu 09]. In [Zhao 02], Zhao and
Sawhney suggested that reconstruction-based super-resolution is feasible with this
kind of motion estimation under the prerequisite of small noise in the estimated
flow. However, the accuracy of optical flow is limited by noise, blur or aliasing
present in low-resolution data. For this reason, many attempts have been made to
treat image reconstruction and optical flow estimation in a joint framework, e. g.
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by probabilistic methods [Fran 07]. This has the goal to compensate for inaccurate
optical flow.

To meet the requirement regarding precise optical flow and to circumvent its
direct estimation on low-resolution data, the proposed motion estimation is driven
by guidance images and implemented as computationally efficient local filtering
of dense displacement vector fields. In this filter-based approach, we determine
displacements fields m(k)

z (uz) of each guidance image z(k) relative to a fixed refer-
ence frame z(r) with r 6= k. In order to obtain the associated displacements in the
domain of the input images, we take advantage of the sensor data fusion with the
guidance data. For the realization of motion estimation, we assume that motion
present in input data is also encoded by the guidance data if both modalities are
co-aligned. Intuitively this means that both sensors involved in this setup „see“
the same scene and describe the same motion.

Based on sensor data fusion, a displacement vector field my
(
uy
)

for a single
input frame y relative to the reference frame is obtained from mz(uz) estimated on
guidance images as depicted in Fig. 5.2. This process consists of two steps:

1. The displacement field mz(uz) that is given in terms of pixel units in the
domain of the guidance images is first rescaled element-wise to:

m̃z(uz) =

(Mu
Lu
·mz,u(uz)

Mv
Lv
·mz,v(uz)

)
. (5.3)

Thus, the displacements m̃z(uz) are defined in units of low-resolution pixels.

2. The displacements on the input frames are determined from the intermedi-
ate displacements obtained in the first stage by resampling described by the
filter operation my(u) = ∆{m̃z(u)}. The filtering of the displacement field is
performed element-wise according to:

my
(
uy
)
= ∆{m̃z(uz)}

:=

(
∆ωyz(uz),u{m̃z,u(uz)}
∆ωyz(uz),v{m̃z,v(uz)}

)
,

(5.4)

where ωyz(uz) denotes the set of pixels in a local window centered at position
uz that corresponds to a single pixel position uy in the low-resolution input
image, see Fig. 5.2.

This filter-based technique enables noise suppression to deal with single er-
roneously estimated displacements. In addition to noise suppression, it needs to
preserve motion discontinuities in the original displacement fields. To this end,
the resampling used in the second stage of the proposed technique is formulated
as local median filtering:

∆ωyz(uz),i{m̃z,i(uz)} = medianvz∈ωyz(uz)(m̃z,i(vz)) , (5.5)

where medianv∈ωyz(u)(·) computes the median of the displacements estimated in
the local neighborhood ωyz(u) in the coordinate direction i ∈ {u, v}.
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Figure 5.2: Flowchart of filter-based motion estimation using guidance images. First, the
displacement field mz(uz) is gained by optical flow estimation of the frame z(k) towards
the reference frame z(r). Then, the displacement field my

(
uy
)

is determined from mz(uz)
using patch-wise filtering with the neighborhood ωyz(uz).

5.3.3 Spatially Adaptive Regularization using Guidance Images
Spatially adaptive regularization exploits the fact that input and guidance images
capture the same structural content but are encoded by different modalities. In
particular, we make use of the assumption that there exist correlations between
both image types due to common structures. While this is of course not com-
pletely true over the entire image, one can assume correlations in terms of a set of
structural features, e. g. areas or edges. This idea takes the same line as related con-
cepts that became a standard in hybrid image processing, e. g. color-guided range
upsampling [Park 11, Fers 13, Kiec 13] or CT-guided PET reconstruction [Kenn 07].

In this chapter, correlations among modalities are modeled by a weighting
function α : Ωx ×Ωz → R+N

0 that exploits the image x and a corresponding guid-
ance image z. This function is used to control the regularization term:

RMSR(x, z) = α (x, z)> φMSR(Qx) , (5.6)

where φMSR(·) denotes a loss function applied on a high-pass filtered version of x
to penalize residual noise3. This is done using a discrete filter modeled by the cir-
culant matrix Q ∈ RN×N. Similar to the sparse regularization proposed in Chap-
ter 4, the adaptive weights α(x, z) are controlled in such a way that the regularizer
does not penalize discontinuities in x. In contrast to Chapter 4, the selection of the
weights is steered by guidance data. For this purpose, the guidance images are
used to extract discontinuities that are considered as relevant structural features.
This process is driven by edge detection on the guidance image z to obtain an edge
map τ : Ωz → {0, 1}L, where τ(u) = 1 indicates an edge at position u.

The adaptive weights are first computed in the domain of the guidance data as:

α̃ (x̃, z) =
(
α̃1 (x̃, z) α̃2 (x̃, z) . . . α̃L (x̃, z)

)> ∈ R+L
0 , (5.7)

3Since the proposed framework is flexible regarding the choice of the loss function φMSR(·), we
tailor the regularization to the characteristics of specific applications. For instance, the Huber loss
can be used to implement piecewise-smooth regularization, see [Kohl 13b].
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where x̃ is the image x resampled to the size of the guidance image z using bicubic
interpolation. The weight at the i-th pixel position ui is computed by:

α̃i (x̃, z) =

{
exp

{
− ρ(x̃,z,ωxz(ui))

τ0

}
if τ(ui) = 1

1 otherwise
, (5.8)

where ρ(x̃, z, ωxz(ui)) reflects the degree of correlation computed by a similarity
measure between the image x̃ and guidance data z in a Nxz × Nxz local neigh-
borhood ωxz(ui) centered at ui. The parameter τ0 denotes a contrast factor to
map the local image similarity at positions corresponding to an edge to a weight
α̃i(x̃, z) ∈ [0, 1]. Finally, the weights α(x, z) ∈ R+N

0 for the regularization term in
Eq. (5.6) are obtained by bicubic interpolation of α̃(x̃, z) ∈ R+L

0 to the domain of
super-resolved data. This reduces the impact of regularization for image regions
associated with edges in the guidance data according to the similarity measure.

In Eq. (5.8), the similarity measure ρ(x̃, z, ωxz(u)) indicates how reasonable the
assumption of correlations in terms of discontinuities actually is. In particular, it
needs to downweight the impact of guidance data if this assumption does not hold
true for certain image regions. Multi-modal measures are utilized to analyze these
similarities. This can be achieved by cross correlation as used in mutual-structure
filters [Shen 15] or by information theoretic measures. In this work, the similarity is
assessed by local mutual information (LMI) that has been also successfully applied
in related fields of image enhancement like adaptive TV denoising [Guo 08]. The
LMI is computed following the definition of Pluim et al. [Plui 03]:

ρmi(x̃, z, ωxz(u)) = ∑
x̃i,zi∈ωxz(u)

p(x̃i, zi) log
(

p(x̃i, zi)

p(x̃i) p(zi)

)
, (5.9)

where p(x̃i, zi) is an estimate of the joint PDF of the samples extracted from the
local neighborhood ωxz(u) in the images x̃ and z. Similarly, p(x̃i) and p(zi) are the
corresponding marginals. To define ρ(x̃, z, ωxz(u)), we use the normalized LMI:

ρ(x̃, z, ωxz(u)) = −
ρmi(x̃, z, ωxz(u))

∑
x̃i,zi∈ωxz(u)

p(x̃i, zi) log p(x̃i, zi)
. (5.10)

The size of ωxz(u) in Eq. (5.10) is adjusted to balance between too many empty
bins in the joint histogram p(x̃i, zi) and a too low resolution of LMI.

5.3.4 Numerical Optimization
In this basic approach to multi-sensor super-resolution, we solve Eq. (5.2) with a
Gaussian observation model. This leads to the data fidelity term:

LMSR(x, z) =
K

∑
k=1

∣∣∣∣∣∣y(k) −W(k)
z x
∣∣∣∣∣∣2

2
, (5.11)

where the system matrix W(k)
z is parametrized with the displacement fields ob-

tained from the optical flow on the guidance images, see Section 5.3.2. The regu-
larization term is driven by the adaptive weights α, see Section 5.3.3.
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Algorithm 5.1 Two-stage multi-sensor super-resolution

Input: Initial guess for high-resolution image x
Output: Final high-resolution image x and spatially adaptive regularization weights α

1: for k = 1, . . . , K do
2: Compute optical flow m(k)

z (uz) of z(k) towards the reference z(r)

3: Compute m(k)
y (uz) by local filtering of m(k)

z (uz) according to Eq. (5.4)
4: end for
5: while SCG convergence criteria not fulfilled do
6: Update x by SCG iteration for Eq. (5.2) using uniform weights α = 1
7: end while
8: Set z to the temporal motion-compensated median of z(1), . . . , z(K)

9: Compute spatially adaptive weights α according to Eq. (5.8)
10: while SCG convergence criteria not fulfilled do
11: Update x by SCG iteration for Eq. (5.2) using the adaptive weights α
12: end while

The optimization of Eq. (5.2) is performed in an alternating fashion to jointly
estimate the super-resolved image and the weights α. We limit this scheme to two
stages corresponding to two optimization loops as outlined in Algorithm 5.1.

In the first stage, we reconstruct an intermediate solution for the super-resolved
image using SCG iterations [Nabn 02] given uniform weights in the regulariza-
tion term. The initial guess for these iterations is obtained by bicubic interpola-
tion of the reference input image. In the second stage, we compute the spatially
adaptive weights α using the super-resolved image of the first stage and the re-
spective guidance image. Instead of using a single image, the spatially adaptive
weights are obtained from the motion-compensated temporal median of the se-
quence z(1), . . . , z(K) to enhance the accuracy of edge detection. Finally, given the
weights α, the image reconstructed in the first stage is iteratively refined by SCG
and spatially adaptive regularization.

5.4 Outlier Detection for Robust Multi-Sensor Super-
Resolution

The framework presented in the previous section is based on several idealizing
assumptions limiting its robustness in real-world applications. First and fore-
most, it neglects outliers in the optical flow estimated on guidance data. While
noise in the displacement fields can be compensated by the proposed filter-based
technique, motion estimation is prone to occlusions or inaccurate flows in texture-
less regions. In addition, we derived Algorithm 5.1 under a Gaussian observation
model that neglects outliers in low-resolution data.

In order to deal with the aforementioned issues, this section presents an out-
lier detection scheme as extension of the two-stage framework. This approach is
divided into two separate detection schemes applied on guidance and input data.
These techniques yield confidence maps associated with the input data and their
displacement fields, which are combined for robust super-resolution.
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5.4.1 Outlier Detection on Guidance Images
Similar to the filter-based technique in Section 5.3.2, the detection of outliers in
terms of motion estimation is driven by guidance images. The proposed outlier
detection is inspired by the image similarity based method of Zhao and Sawhney
[Zhao 02] but adopted in such a way that it is applicable on guidance images in-
stead of using the low-resolution input frames directly. This approach determines
the reliability of the estimated displacement fields that affects the robustness of
super-resolution.

For outlier detection, the reference frame in the domain of the guidance im-
ages denoted as z(r) is warped towards each of the remaining frames z(k), k 6= r
according to the estimated displacements. Then, we assess the consistency of each
target frame z(k) relative to the warped reference z̃(k) as shown in Fig. 5.3 for one
of these pairs. Similar to the approach in [Zhao 02], this consistency is assessed by
the normalized cross correlation (NCC) that is used as a local similarity measure.
The local NCC at the i-th pixel position ui in the guidance images is computed for
the local window ωyz(ui) centered at ui according to:

ρncc

(
z(k), z̃(k), ωyz(ui)

)
=

∑
vj∈ωyz(ui)

(
z(k)j − µi

)(
z̃(k)j − µ̃i

)
√√√√ ∑

vj∈ωyz(ui)

(
z(k)j − µi

)2
∑

vj∈ωyz(ui)

(
z̃(k)j − µ̃i

)2
, (5.12)

where z(k)j and z̃(k)j are the elements in z(k) and z̃(k) at the position vj ∈ ωyz(ui),
and µi and µ̃i are the local means of z(k) and z̃(k) in ωyz(ui), respectively. In order
to transform this local similarity to the domain of the low-resolution images, it is
computed by means of patch-wise processing as shown in Fig. 5.3.

The local similarity measures the fidelity of the image warping according to the
optical flow and is used for outlier detection. In the proposed detection scheme,
the local NCC computed in the range [−1,+1] is used to determine the confidence
weight:

βz,i

(
z(k)
)
=

{
1
2 ρncc

(
z(k), z̃(k), ωyz(ui)

)
+ 1

2 if ρncc

(
z(k), z̃(k), ωyz(ui)

)
≥ ρ0

0 otherwise
,

(5.13)

where ρ0 ∈ [−1,+1] is a fixed threshold to classify observations associated with
a poor local similarity as an outlier. For the remaining observations that are not
classified as outliers, a higher local image similarity due to more accurate optical
flow estimation indicates a higher confidence. The confidence map for the k-th
frame is assembled as:

βz

(
z(k)
)
=
(

βz,1

(
z(k)
)

βz,2

(
z(k)
)

. . . βz,M

(
z(k)
))>

. (5.14)

Then, the joint confidence map for the entire image sequence is constructed as:

βz (z) =
(

βz

(
z(1)
)

βz

(
z(2)
)

. . . βz

(
z(K)

))>
. (5.15)
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Figure 5.3: Illustration of outlier detection on guidance images. The local image similar-
ity between the k-th frame z(k) and the warped reference z̃(k) according to the estimated
optical flow is used to calculate the confidence weight βz,i(z(k)). The resulting confidence
map βz

(
z(k)
)

is constructed by patch-wise processing with the neighborhood ωyz(ui) and
defined in the domain of the input images.

5.4.2 Outlier Detection on Input Images
In addition to outlier detection in the estimated displacement fields based on the
guidance images, the low-resolution input frames themselves are assessed to re-
move outliers. This takes outliers due to non-Gaussian noise into account that
cannot be detected on the guidance images. This outlier detection is formulated in
an implicit way in accordance to the algorithm presented in Section 4.4.

Let x be an estimate for the super-resolved image. Then, we define the confi-
dence weight associated with the i-th pixel in the k-th frame y(k) according to:

βy,i

(
x, y(k)

)
= βbias,i

(
x, y(k)

)
βlocal,i

(
x, y(k)

)
, (5.16)

where the weighting functions are given by:

βbias,i

(
x, y(k)

)
=

{
1 if

∣∣∣median
(

y(k) −W(k)
z x
)∣∣∣ ≤ cbias

0 otherwise
, (5.17)

βlocal,i

(
x, y(k)

)
=


1 if

∣∣∣[y(k) −W(k)
z x
]

i

∣∣∣ ≤ clocalσnoise
clocalσnoise∣∣∣[y(k)−W(k)

z x
]

i

∣∣∣ otherwise , (5.18)

with noise level σnoise and tuning constants cbias and clocal to detect biased frames
along with local outliers as shown in Section 4.4.1. The confidence map for the k-th
low-resolution frame is assembled according to:

βy

(
x, y(k)

)
=
(

βy,1

(
x, y(k)

)
βy,2

(
x, y(k)

)
. . . βy,M

(
x, y(k)

))>
. (5.19)

Then, the joint confidence map for all low-resolution observations is given by:

βy (x, y) =
(

βy

(
x, y(1)

)
βy

(
x, y(2)

)
. . . βy

(
x, y(K)

))>
. (5.20)
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5.4.3 Numerical Optimization
For an outlier-aware numerical optimization, super-resolution is performed by
means of iteratively re-weighted minimization. We estimate the super-resolved
image iteratively via a sequence of weighted minimization problems:

xt = argmin
x

{
(y−Wzx)> Bt (y−Wzx) + λRMSR(x, z)

}
, (5.21)

where RMSR(x, z) denotes the spatially adaptive regularization term defined in
Eq. (5.6) with constant regularization weight4 λ ≥ 0. In this weighted minimiza-
tion, Bt denotes the confidence map at iteration t. In order to take outliers in the
displacement fields and the low-resolution observations into account, Bt is con-
structed according to:

Bt = diag
(

βz (z)� βy

(
xt−1, y

))
, (5.22)

where� is the Hadamard (element-wise) product and βz(z) is the confidence map
determined from the local image similarity according to Eq. (5.15). Notice that
these confidence weights can be pre-computed and kept fixed over the iterations.
The confidence map βy(xt−1, y) is updated dynamically according to Eq. (5.20)
based on the estimate xt−1 obtained at the previous iteration. In this dynamic
weighting scheme, we use an adaptive estimate of the noise standard deviation
σnoise at each iteration according to the MAD rule, see Section 4.4.1.

This iterative procedure is initialized by the super-resolved image x0 and the
corresponding adaptive weights α for the regularization term. These initializations
are obtained by the two-stage approach introduced in Algorithm 5.1. Afterwards,
the super-resolved image is gradually refined using SCG iterations. The overall
optimization scheme is outlined in Algorithm 5.2.

5.5 Application to Hybrid Range Imaging

This section validates the proposed multi-sensor framework in the field of hy-
brid range imaging that is considered as example application. In this area, we
aim at reconstructing high-resolution surface information from sequences of low-
resolution range images to overcome resolution limitations of current range sen-
sors. Prior work in this field approached this task solely on range images as shown
by Schuon et al. [Schu 08, Schu 09] or Bhavsar and Rajagopalan [Bhav 12]. Unlike
these single-sensor approaches, we employ high-resolution color images as a guid-
ance to super-resolve low-resolution range data.

We first introduce a tailor-made image formation model for range imaging.
Subsequently, this model is adopted in the multi-sensor framework to formulate
range super-resolution reconstruction. Eventually, we present a proof-of-concept
evaluation for ToF imaging based on simulated datasets. For a thorough experi-
mental evaluation on real image data within the scope of interventional medical
imaging, we refer to Chapter 8.

4An adaptive version of this algorithm, where the regularization weight λ is re-computed per
iteration can be developed using the cross validation scheme presented in Section 4.4.1.
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Algorithm 5.2 Robust multi-sensor super-resolution using outlier detection

Input: Initial guess for high-resolution image x0 and adaptive regularization weights α
Output: Final high-resolution image x and joint confidence map B

1: for k = 1 . . . K do
2: Construct confidence map βz(z(k)) according to Eq. (5.14)
3: end for
4: Construct confidence map βz(z) for all guidance images according to Eq. (5.15)
5: t← 1
6: while Convergence criterion not fulfilled do
7: Update confidence map βy(xt−1, y) according to Eq. (5.20)
8: Update joint confidence map Bt according to Eq. (5.22)
9: while SCG convergence criterion not fulfilled do

10: Update xt by SCG iteration for Eq. (5.21) using adaptive weights α
11: end while
12: t← t + 1
13: end while

5.5.1 Image Formation Model for Range Imaging

In terms of the image formation model, we need to adopt the model presented
in Chapter 3 to describe the formation of low-resolution range images from high-
resolution ones. Here, one crucial aspect is the formulation of the motion model.
Following the concept of multi-sensor super-resolution, the motion associated with
the k-th range image y(k) is first estimated by means of optical flow from the color
image z(k) and subsequently projected to the domain of the range data. Then, the
motion on the range images encoded by dense displacement fields should ideally
represent the motion that appears in the 3-D space.

However, under a general type of camera motion, the actual motion that ap-
pears in range images cannot be described solely based on 2-D displacement fields.
One prominent example is camera motion orthogonal to the measured surface and
the sensor image plane, which is referred to as out-of-plane motion. In this case, the
motion in color images and hence the estimated displacements on range images
provide only a 2-D view on the actual scene motion. For this reason, it does not
explain the out-of-plane component appropriately. A similar situation appears if
there is a tilting of a surface across two frames. Notice that related range super-
resolution techniques [Schu 08, Schu 09, Bhav 12] ignore this limitation of the mo-
tion model. However, neglecting this aspect is only reasonable for situations that
allow an accurate description of the actual motion by 2-D displacement fields,
whereas more general types of motion lead to a bias in super-resolution recon-
struction [Kohl 15b]. Therefore, we extend the image formation model to better
explain the actual motion.

Formulation of the Model. To enhance the modeling of scene motion and to take
out-of-plane movements into account, a transformation of the measured range val-
ues is used in addition to 2-D displacement fields. For the derivation of the motion
model, let y(r) be the reference range image and y(k) be the frame that needs to be
explained under this model. The most simplest but non-trivial transformation be-
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tween y(r) and y(k) as a better approximation to the actual 3-D motion is given
by:

y(k) = γ
(k)
m M{y(r)}+ γ

(k)
a , (5.23)

where the motion operatorM{y(r)} describes the subpixel motion in the domain
of the range data, and γ

(k)
m ∈ R and γ

(k)
a ∈ R are called the range correction param-

eters. While the former describes motion on the image plane, the latter account for
more general types of 3-D motion. The additive parameter γ

(k)
a describes a global

shift of the range values and can roughly explain out-of-plane motion. Similarly,
the multiplicative parameter γ

(k)
m describes a shearing of the range values.

The range correction parameters are used to formulate the image formation
model:

y(k) = γ
(k)
m W(k)

z x + γ
(k)
a + ε(k), (5.24)

which describes the formation of the k-th range image from the high-resolution
range data x according to the system matrix W(k)

z and the observation noise ε(k).
The system matrix is defined by the motion information on the image plane given
by displacement vector fields as well as the underlying sampling model.

Model Parameter Estimation. The range correction parameters need to be esti-
mated from the low-resolution range images y(k), k 6= r relative to the reference
frame y(r). From a conceptual point of view, this is equivalent to a photometric
registration of intensity images acquired under varying photometric conditions as
shown in the work of Capel and Zisserman [Cape 03]. Let (yi, ỹi) be a pair of range
values that are obtained from y(r) and ỹ(k), where ỹ(k) is the k-th frame y(k) warped
towards the reference frame according to the estimated displacement fields. Then,
the range correction parameters can be determined by pair-wise registration. The
registration associated with the k-th frame is formulated as the line fitting problem:

(γ̂m, γ̂a) = argmin
γm,γa

M

∑
i=1

φrange(ỹi − γmyi − γa) , (5.25)

where φrange(r) denotes a loss function applied to the residual errors for M pairs
of range values. A simulated example is depicted in Fig. 5.4.

Estimating the range correction parameters is challenging due to random mea-
surement noise, systematic errors in the range data, or outliers in optical flow. To
deal with these issues, the range correction needs to be performed by robust pa-
rameter estimation and is applied on a median filtered version of original range
values. In this work, Eq. (5.25) is solved by probabilistic optimization using the
M-estimator sample consensus (MSAC) algorithm [Torr 00]. The loss function that
is used for MSAC is given by the truncated least-squares term:

φrange(r) = min
(

δ2
msac, r2

)
. (5.26)

This loss function assigns a constant penalty δ2
msac to residual errors that exceed the

threshold δ2
msac, which are referred to as outliers. Residual errors that fall below

this threshold are penalized quadratically and are considered as inliers. In this
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Figure 5.4: Range correction for a pair of range images in presence of out-of-plane motion.
Left: Reference frame y(r) and k-th frame y(k), k 6= r warped towards the reference accord-
ing to the displacement field on the image plane. Right: Scatter plot of the range values
(yi, ỹi) drawn from y(r) and y(k) shown in blue. Inliers detected by MSAC (σnoise = 0.025,
Tmsac = 200) are marked in green and the fitted model is visualized by the black line.

work, the threshold is adaptively set to δmsac = 1.96σnoise to achieve a correct
classification of 95 % of the true inliers under the assumption that the range values
are affected by zero-mean Gaussian noise with standard deviation σnoise.

For a probabilistic optimization of Eq. (5.25), the initial parameter values for
MSAC are set to γm = 1 and γa = 0, and only parameter settings that result
in lower objective values are accepted within estimation to avoid unreliable solu-
tions. Then, at each iteration, two pairs of range values (y1, ỹ1) and (y2, ỹ2) are
randomly drawn from the images y(r) and ỹ(k). From these pairs, (γm, γa) is com-
puted in closed form. Accordingly, the pairs (yi, ỹi) for i = 1, . . . , M are classified
either as inliers or outliers in accordance to the objective value, which yields an
inlier set associated with the current iteration. This procedure is repeated for Tmsac
iterations to detect the optimal inlier set Ymin that leads to a minimum objective
value. Finally, the inlier set Ymin is used to gain (γ̂m, γ̂a) by linear least-squares
estimation, see Fig. 5.4. Algorithm 5.3 summarizes the overall procedure to deter-
mine the range correction parameters for one pair of range images.

5.5.2 Range Super-Resolution Reconstruction

Let us next adopt Algorithm 5.1 and Algorithm 5.2 to the desired application. This
requires custom observation and prior models.

The observation model for range data is described by a weighted normal distri-
bution to account for space variant noise characteristics of current range sensors.
Hence, we employ the confidence-aware data fidelity term:

LMSR(x) =
K

∑
i=1

(
y(k) − γ

(k)
m W(k)

z x− γ
(k)
a

)>
B(k)

(
y(k) − γ

(k)
m W(k)

z x− γ
(k)
a

)
, (5.27)
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Algorithm 5.3 M-estimator sample consensus (MSAC) based range correction

Input: Pair of range images y(r) (reference) and y(k) (template)
Output: Range correction parameters γ̂m and γ̂a

1: Determine ỹ(k) by warping y(k) towards the reference y(r)

2: Initialize γm ← 1, γa ← 0, and φmin ← ∑M
i=1 φ(ỹi − γmyi − γa)

3: for t = 1, . . . , Tmsac do
4: Draw randomly selected pairs (y1, ỹ1) and (y2, ỹ2) from y(r) and ỹ(k)

5: Estimate range correction parameters (γm, γa) from (y1, ỹ1) and (y2, ỹ2)
6: Initialize objective value φt ← 0 and inlier set Y t ← {}
7: for i = 1, . . . , M do
8: Determine residual error ri = ỹi − γmyi − γa
9: if r2

i < δ2
msac then

10: Update inlier set according to Y t ← Y t ∪ {(yi, ỹi)}
11: end if
12: Update objective value according to φt ← φt + min(δ2

msac, r2
i )

13: end for
14: if φt < φmin then
15: φmin ← φt and Ymin ← Y t

16: end if
17: end for
18: Determine γ̂m and γ̂a by least-squares estimation on the optimal inlier set Ymin

which is derived from the image formation model in Eq. (5.24). B(k) denotes the
joint confidence map of the k-th frame constructed from the range and color data.
In the two-stage approach according to Algorithm 5.1, this confidence map is set
to B(k) = I. For robust super-resolution according to Algorithm 5.2, the confidence
map is computed dynamically.

The image prior is formulated via piecewise smooth regularization to describe
the appearance of smooth surfaces and depth discontinuities captured in range
data. This type of regularization can be achieved by the Huber prior, see Sec-
tion 3.3.2. Combined with the proposed spatially adaptive scheme, the regulariza-
tion term for range super-resolution is defined as:

RMSR(x, z) =
N

∑
i=1

αi(x, z) ·

δHuber

√
1 +

(
[Qx]i
δHuber

)2

− δHuber

 , (5.28)

where δHuber denotes the Huber threshold parameter. Q ∈ RN×N denotes the filter
kernel of a discrete Laplacian expressed as a circulant matrix to exploit the curva-
ture of range data for regularization. We define this circulant matrix according
to:

Qx ≡ 1
4

0 1 0
1 −4 1
0 1 0

 ? X, (5.29)

where X ∈ RMu×Mv is a representation of x ∈ RMu Mv in matrix notation and ?
denotes the discrete 2-D convolution.
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(a) Simulated data (b) Ground truth (c) Simulated data (d) Ground truth

Figure 5.5: Simulated range and color data along with the ground truth data obtained
from the artificial Stanford Bunny and the Dragon scenes.

5.5.3 Experiments and Results

Let us now present an experimental evaluation of the proposed multi-sensor super-
resolution techniques in hybrid range imaging. The goal of this study is two-fold.
On the one hand, we aim at comparing multi-sensor super-resolution to the con-
ventional single-sensor approach as implemented by state-of-the-art algorithms
[Schu 08, Schu 09, Bhav 12]. On the other hand, the influence of the different multi-
sensor techniques including motion estimation, spatially adaptive regularization
and outlier detection to the performance of the proposed framework is studied.

In order to conduct a quantitative evaluation, we limited ourselves to experi-
ments on artificial datasets with known ground truth. Experiments on real range
data corrupted with systematic errors within the scope of a medical application are
presented in Chapter 8. This simulation addresses the conditions of commercially
available ToF sensors that are characterized by a low spatial resolution compared
to color sensors. Figure 5.5 depicts the Stanford Bunny and the Dragon scenes that
were taken form the Stanford 3-D Scanning Repository5 for this study. Geomet-
rically aligned range and color images were obtained from 3-D mesh represen-
tations of these scenes using the Range Imaging Toolkit (RITK) [Wasz 11a]. The
ground truth data was captured in a pixel resolution of 640×480 px and is avail-
able online6. For the simulation of a realistic color sensor, the color images were
encoded in a pixel resolution of 640×480 px but blurred according to a Gaussian
PSF (σPSF = 0.5) and disturbed by zero-mean Gaussian noise (σnoise = 0.002).
The corresponding range images were simulated in a pixel resolution of 80×60 px
with a Gaussian PSF (σPSF = 0.5) and additive Gaussian noise (σnoise = 0.025).
This setup was used to generate four datasets showing the artificial scenes from
different perspectives and with different textures. The displacements across the
frames of these image sequences were related to rigid camera movements.

5http://graphics.stanford.edu/data/3Dscanrep
6https://www5.cs.fau.de/research/data/multi-sensor-super-resolution-datasets

http://graphics.stanford.edu/data/3Dscanrep
https://www5.cs.fau.de/research/data/multi-sensor-super-resolution-datasets
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(a) Direct (b) Filter-based (c) Confidence map

Figure 5.6: Comparison of motion estimation strategies to obtain displacement fields on
range images. (a) Displacement field magnitudes obtained by the direct approach using
optical flow estimation on range images. (b) Displacement field magnitudes obtained by
the proposed filter-based approach that exploits color images as guidance (bright regions
denote higher magnitudes). (c) Confidence map computed on the color data for the dis-
placement field in (b) (bright regions denote higher weights).

In the following experiments, the algorithms summarized in Tab. 5.1 along
with their model parameters were analyzed. All reconstruction algorithms are
based on a Huber prior with δHuber = 5 · 10−4 and λ = 0.08. To evaluate the
impact of the techniques proposed in this chapter, the algorithms differ in the
way of how color images are exploited. Single-sensor super-resolution (SSR) that
works solely on the range data is considered as the baseline. Multi-sensor super-
resolution (MSR) utilizes color images in Algorithm 5.1 for filter-based motion
estimation using uniform weights for regularization. The adaptive multi-sensor
super-resolution (AMSR) uses the color images also for spatially adaptive regu-
larization. Adaptive multi-sensor super-resolution with outlier detection (AMSR-
OD) augments AMSR with the outlier detection scheme in Algorithm 5.2.

Direct vs. Filter-Based Motion Estimation. Let us first present a comparison of
the different strategies for motion estimation as a prerequisite for super-resolution.
In these experiments, the computation of displacement fields was performed by
the variational optical flow algorithm introduced by Liu [Liu 09]. In the single-
sensor approach, optical flow was obtained directly on the range images, whereas
the multi-sensor approaches used the proposed filter-based technique on color im-
ages. A qualitative comparison among these strategies is shown in Fig. 5.6. While
direct motion estimation (Fig. 5.6a) was error prone and resulted in noisy displace-
ment fields, the filter-based technique (Fig. 5.6b) accurately recorded camera mo-
tion. As shown in the experiments reported below, this substantially affects the
accuracy of super-resolved range information.

In the context of motion estimation, the proposed outlier detection that is driven
by color images provides a confidence map associated with the estimated displace-
ment fields (Fig. 5.6c). This can further enhance the robustness of super-resolution
compared to a reconstruction without proper outlier detection.

Single-Sensor vs. Multi-Sensor Super-Resolution. In Fig. 5.7, we compare the
different reconstruction algorithms on the Dragon-1 dataset using K = 25 frames
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Table 5.1: Overview of the reconstruction approaches that are examined for their use in
hybrid range imaging along with their optimization parameters. The multi-sensor frame-
work is employed in different versions (MSR, AMSR, AMSR-OD) using filter-based mo-
tion estimation, spatially adaptive regularization, and outlier detection for range data
based on color images. The single-sensor algorithm (SSR) that is not guided by color im-
ages is considered as the baseline.

Reconstruction algorithm Algorithm properties

Motion Adaptive Outlier
estimation regularization detection

Single-sensor super-resolution direct 7 7

(SSR)

Multi-sensor super-resolution filter-based 7 7

(MSR)

Adaptive multi-sensor super-resolution filter-based 3 7

(AMSR) τ0 = 0.06, Nxz = 5

Adaptive multi-sensor super-resolution filter-based 3 3

with outlier detection (AMSR-OD) τ0 = 0.06, Nxz = 5 ρ0 = 0.5

and a magnification factor s = 4. In comparison to SSR that is affected by in-
accurate motion estimation, the different multi-sensor approaches (MSR, AMSR,
AMSR-OD) improved the accuracy of range information. More specifically, the
reconstruction algorithms that implement spatially adaptive regularization en-
hanced the reconstruction of depth discontinuities compared to the non-adaptive
methods.

These properties are confirmed by a quantitative comparison based on the
PSNR and SSIM measures of super-resolved range data relative to the ground
truth. Figure 5.8 summarizes the statistics of both measures on four datasets,
where each dataset comprises 15 randomly generated image sequences. This re-
veals that the different multi-sensor approaches outperformed the single-sensor
approach in terms of both measures. Among the different multi-sensor algorithms,
the highest accuracy was obtained by AMSR-OD that uses color images for motion
estimation, spatially adaptive regularization and outlier detection. In compari-
son to the SSR reconstruction, AMSR-OD improved the mean PSNR and SSIM by
0.9 dB and 0.02, respectively.

Influence of the Model Parameters. Figure 5.9 reports the behavior of the com-
peting methods on the Dragon-2 dataset regarding the choice of the regulariza-
tion weight λ on a logarithmic scaled axis. It is worth noting that the different
multi-sensor algorithms considerably outperformed the single-sensor algorithm
regardless of the choice of the regularization weight over several orders of mag-
nitude (−2 ≤ log λ ≤ 0.5). In the case of an overestimation of this parameter
(log λ ≥ 0.5), which resulted in oversmoothing of the range data, the different
approaches showed a similar behavior.
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(a) Original (b) SSR (c) MSR

(d) AMSR (e) AMSR-OD (f) Ground truth

Figure 5.7: Comparison of original, low-resolution range data, single-sensor super-
resolution (SSR) and the different multi-sensor approaches (MSR, AMSR and AMSR-OD)
to the ground truth range data on the Dragon-1 dataset. The reconstructions were obtained
from K = 25 frames with magnification factor s = 4.
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(a) PSNR on four datasets
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(b) SSIM on four datasets

Figure 5.8: Mean ± standard deviation of the PSNR and SSIM measures on four datasets
obtained from the artificial Stanford Bunny and Dragon scenes. Both measures were evalu-
ated for 15 randomly generated image sequences per dataset.

Another relevant model parameter is the contrast factor τ0 that is used for spa-
tially adaptive regularization. Figure 5.10 depicts the influence of this parameter
on the Dragon-2 dataset. If the contrast factor was overestimated (log τ0 ≥ −1.0),
one can observe that the adaptive approaches (AMSR and AMSR-OD) behave like
the non-adaptive algorithms (SSR and MSR) that can be considered as the baseline.
In case of an underestimation (log τ0 ≤ −1.5), the adaptive approaches were prone
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(b) SSIM vs. regularization weight λ

Figure 5.9: Parameter sensitivity study for the regularization weight λ. The PSNR and
SSIM measures at each parameter setting are averaged over 15 random realizations of the
experiment on the Dragon-2 dataset. The classical single-sensor approach (SSR) is com-
pared to the different proposed multi-sensor approaches (MSR, AMSR, AMSR-OD).

to texture copying artifacts as texture in the color images was erroneously trans-
ferred to the super-resolved range data. This behavior was captured quantitatively
by the SSIM. Notice that this texture copying is comparable to related color-guided
range filtering and upsampling techniques [Park 11, Kiec 13, Fers 13] but is control-
lable by limiting the contrast factor to a reasonable range (−1.5 ≤ log τ0 ≤ −1.0).

5.6 Conclusion

This chapter studied super-resolution for a single modality under the guidance
of a complementary modality. In contrast to the algorithms presented in the first
part of this thesis, the proposed multi-sensor framework takes advantage of addi-
tional guidance data. This aims at enhancing accuracy and robustness of super-
resolution reconstruction. The computational stages that are steered by guid-
ance images include motion estimation, spatially adaptive regularization as well
as outlier detection. These concepts yield two algorithms: In the two-stage al-
gorithm, a filter-based technique to obtain displacement fields in the domain of
low-resolution data from guidance images and spatially adaptive regularization
steered by the guidance images is utilized for image reconstruction. In the itera-
tively re-weighted minimization algorithm, confidence maps for outlier detection
are constructed by exploiting guidance data.

In order to prove the benefit of multi-sensor super-resolution over the single-
sensor counterpart, hybrid range imaging was considered as example applica-
tion. The goal was to super-resolve range data acquired with low-cost sensors
under the guidance of color images fused with the range data. Multi-sensor super-
resolution was tailored to range imaging by extending the underlying image for-
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Figure 5.10: Parameter sensitivity study for the contrast factor τ0 of spatially adaptive reg-
ularization. Top row: PSNR and SSIM for different τ0. Both measures are averaged over
15 random realizations of the experiment on the Dragon-2 dataset. The non-adaptive al-
gorithms (SSR and MSR) are the baseline and are compared to the adaptive algorithms
(AMSR and AMSR-OD). Bottom row: AMSR-OD for an underestimated, an optimal, and
an overestimated τ0, respectively. Note the texture copying artifacts in case of a too low τ0
(log τ0 = −2.0). For an appropriate parameter setting (log τ0 = −1.3), spatially adaptive
regularization shows good tradeoffs between unwanted texture copying and the recon-
struction of depth discontinuities.

mation model. We demonstrated in a simulation study that the proposed multi-
sensor approach is able to take advantage of color images. The combination of
the multi-sensor techniques provided superior surface reconstructions compared
to the single-sensor approach and led to improvements of the PSNR and SSIM of
0.9 dB and 0.02, respectively.
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This chapter introduces a generalization of multi-sensor super-resolution that is
applicable for an arbitrary number of modalities in hybrid imaging but does not
require reliable guidance information. For this problem formulation, the modali-
ties are represented by multi-channel images. This framework builds on a Bayesian
model that features a novel image prior to exploit sparsity of the channels in a
transform domain as well as locally linear regressions across them. Super-resolution
is then derived via joint estimation of high-resolution image channels along with
latent hyperparameters of the Bayesian model. In order to solve this non-convex
optimization problem efficiently, an alternating minimization algorithm is devel-
oped. The proposed methodology is validated for resolution enhancement in var-
ious applications in computer vision, including color- and multispectral imaging
as well as 3-D range imaging.

Parts of this chapter have been originally published in [Ghes 14] and [Kohl 15c].

6.1 Introduction

In Chapter 5, a first multi-sensor super-resolution method for hybrid imaging has
been presented. In principle, this concept relies on two fundamental prerequi-
sites. First and foremost, the underlying reconstruction algorithm super-resolves
only a single modality. In addition, it relies on the existence of a reliable guid-
ance modality that is used to steer super-resolution. Despite the advantages over
a single-sensor formulation, these requirements limit the use of this approach for

105
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(a) Guidance image framework (Chapter 5) (b) Multi-channel framework (Chapter 6)

Figure 6.1: Comparison of the different approaches to multi-sensor super-resolution. The
guidance image framework in (a) uses static guidance information of a single modality to
steer super-resolution for another modality. The multi-channel framework in (b) exploits
dependencies among C ≥ 2 modalities (image channels) to jointly super-resolve them.

many target applications. Some prominent examples are color or multispectral
imaging, where current systems feature the acquisition of multiple spectral bands
ranging from three to several hundreds. Since it is inadequate to super-resolve sin-
gle spectral bands only, this initiated the development of color [Goto 04, Fars 06]
and multispectral [Akgu 05, Ague 06, Zhan 12a] super-resolution techniques. The
second shortcoming is that the required guidance data might not be available or
it requires unjustifiable efforts to provide them. This situation appears in range
imaging with devices that lack reliable high-resolution color sensors to gain guid-
ance data [Ghes 14]. This is connected with the feature extraction from the guid-
ance, e. g. in terms of spatially adaptive regularization [Kohl 15b] or outlier detec-
tion [Kohl 14b], that deteriorates in case of insufficient image quality.

In this chapter, we sacrifice the concept of guidance images to circumvent
the aforementioned limitations and approach multi-sensor super-resolution from
a generalized perspective. For this purpose, a set of modalities is represented
by multi-channel images in the underlying mathematical framework. In contrast
to processing the individual channels one after another, super-resolution is per-
formed jointly for the entire set of channels. The basic assumption of this approach
is the existence of inter-channel dependencies, such as geometrical structures that are
visible in multiple channels. A well known example are color images that exhibit
a high degree of correlation among their spectral bands as widely studied in color
image processing [Gala 91, Kats 93, Schu 95]. In the context of multi-sensor super-
resolution, inter-channel dependencies can be exploited in a Bayesian formulation
as prior knowledge for the reconstruction of high-resolution multi-channel im-
ages. We capture these dependencies by a novel locally linear regression (LLR)
image prior that is flexible with regard to the number of channels and does not
rely on additional guidance information. This prior steers super-resolution dy-
namically as opposed to the static, feature-based techniques in Chapter 5. Based on
this Bayesian model, we derive the simultaneous estimation of the unknown high-
resolution channels along with latent prior hyperparameters as a joint energy min-
imization problem that is solved by confidence-aware optimization. In Fig. 6.1, we
illustrate this methodology in comparison to the guidance image framework.
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The remainder of this chapter is structured as follows. Section 6.2 provides
a literature review regarding related methods. Section 6.3 introduces a Bayesian
model of multi-channel images that is used in Section 6.4 to formulate multi-sensor
super-resolution via joint energy minimization. Section 6.5 presents an in-depth
analysis of this model and theoretical comparisons to related methods. In Sec-
tion 6.6, we report an experimental evaluation by studying multiple target appli-
cations including color, multispectral and range imaging along with comparisons
to the state-of-the-art in these domains. Finally, Section 6.7 draws a conclusion.

6.2 Related Work

The proposed approach to multi-sensor super-resolution exploits mutual depen-
dencies among image channels to jointly super-resolve them. In particular, as
shown in this chapter, we are interested in modeling statistical dependencies across
the channels as a prior distribution for Bayesian estimation. Below, we provide a
survey on similar concepts that have been successfully applied in related areas.

Color Imaging. In color imaging, dependencies among spectral bands have been
widely investigated. Here, most commercially available cameras acquire red (R),
green (G) and blue (B) spectral bands that form the RGB space. However, due
to economic reasons, the sensor array is usually equipped with a CFA and is
made sensitive to a single color per pixel. The interpolation of full RGB mea-
surements referred to as demosaicing [Kimm 99] can be considered as some sort
of super-resolution. To avoid inconsistencies among interpolated color channels,
inter-channel dependencies are exploited for demosaicing, which can be done via
color ratios [Kimm 99] or color correlation terms [Kere 99].

Later, correlations among color bands have been studied for various tasks such
as denoising [Kere 98], deconvolution [Moli 03, Vega 06], and sparse representation
of color images [Mair 08], among others. In the area of image restoration, Ono and
Yamada [Ono 16] have proposed local color nuclear norm regularization based on
the color-line property [Omer 04], which states that color bands in local image re-
gions are linearly dependent. In [Fatt 14], Fattal employed this property for color
image dehazing. Moreover, demosaicing of color images has been augmented
with the notion of multi-frame super-resolution as proposed in the work of Go-
toh and Okutomi [Goto 04]. This approach considers dependencies between color
channels by a transformation of the highly correlated RGB space into luminance
and chrominance components that are modeled by different prior distributions. In
[Fars 06], Farsiu et al. proposed a related method based on an inter-channel reg-
ularization in the RGB space. This regularization enforces consistency in terms of
locations and orientations of edges captured in the different channels. Such tech-
niques avoid color artifacts, e. g. color bleeding, and serve as a strong prior for
image super-resolution.

Multi- and Hyperspectral Imaging. In the area of multi- and hyperspectral im-
age processing, different attempts have been made at extending color image restora-
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tion to a larger number of spectral bands. In [Akgu 05], Akgun et al. proposed a
generalized image formation model for hyperspectral images. Similar to color im-
age restoration, such methods benefit from incorporating dependencies among the
spectral bands to their underlying model. In the method of Zhang et al. [Zhan 12a],
statistical dependencies are considered by applying a principal component analy-
sis (PCA) on the original spectral bands. Then, super-resolution is performed on
PCA compressed hyperspectral data. A different notion is to employ correlations
with a high spatial but a low spectral resolution image [Ague 06, Akht 15, Lana 15]
to steer hyperspectral super-resolution. Notice that this concept is closely related
to guidance image based super-resolution in Chapter 5.

Joint and Mutual Structure Filtering. Joint image filters process a single input
image driven by a guidance image. In this area, the guidance is assumed to be
static following the same line of thought as guidance image based super-resolution.
Local filters related to this concept include joint bilateral [Kopf 07], guided [He 13,
Hore 14] or weighted median filtering [Ma 13, Zhan 14b], see Section 5.2. Such fil-
ters can also be learned from example data using convolutional neural networks
[Li 16]. Global filters that are formulated via regularized energy minimization
have been developed for range image upsampling [Park 11, Fers 13, Kiec 13] as
well as cross-field image restoration [Yan 13]. These approaches impose properties
of the filter output based on the given guidance image using implicit regulariza-
tion terms. Contrary to the method proposed in this chapter, joint filtering has the
common prerequisite of high-quality guidance data similar to guided image based
super-resolution. Another limitation is that joint filtering is prone to erroneously
transfer image structures to the filter output that are only present in the guidance
image.

In contrast to the aforementioned techniques, Shen et al. [Shen 15] introduced
mutual structure filtering to simultaneously filter input and guidance data with
consideration of structural inconsistencies. This inconsistency-aware and dynamic
formulation alleviates the erroneous structure transfer compared to filters with
pure static guidance. In [Ham 15], Ham et al. proposed with a similar motiva-
tion static and dynamic guided filtering that combines regularization gained by
static guidance data and the filter input. Although these methods improve flexi-
bility and robustness of joint filtering, they ignore reasonable models of the image
formation process and address denoising problems rather than super-resolution.
Contrary to the proposed super-resolution approach, these filters are developed as
single-image methods without considering multi-frame processing.

6.3 Bayesian Modeling of Multi-Channel Images

In this chapter, an unknown, high-resolution multi-channel image is represented
as the composite of C disjoint channels denoted by x = (x>1 , . . . , x>C )

>, where each
channel xi, i = 1, . . . , C is represented by a Ni × 1 vector. For the sake of notational
brevity, we limit ourselves to channels with consistent dimensions, i. e. Ni = N
for all i = 1, . . . , C. Each high-resolution channel xi is related to a sequence of K
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low-resolution frames yi = (y(1)
i , . . . , y(K)

i )>. Here, y(k)
i is the k-th frame associated

with the i-th channel and is represented by a Mi× 1 vector, where we again assume
the same dimension in all channels, i. e. Mi = M for all i = 1, . . . , C. Furthermore,
we denote the composite of C channels by y = (y>1 , . . . , y>C )

> that represents the
entire set of low-resolution observations as (C · K ·M)× 1 vector.

Let us consider the low-resolution observations y along with the unknown
multi-channel image x as random variables. We aim at determining the joint pos-
terior probability over all channels:

p(x, Φ | y) = p(x1, . . . , xC, Φ | y1, . . . , yC)

=
p(y1, . . . , yC | x1, . . . , xC) · p(x1, . . . , xC |Φ) · p(Φ)

p(y1, . . . , yC)
,

(6.1)

where p(y | x) = p(y1, . . . , yC | x1, . . . , xC) is the conditional probability of obtain-
ing the entire set of observations y from the unknown multi-channel image x and
p(x |Φ) = p(x1, . . . , xC |Φ) is the prior probability for x. In Eq. (6.1), Φ are latent
hyperparameters of the imaging process with the assigned distribution p(Φ).

This section proceeds with the definition of these distributions in a hierarchical
way as follows. First, the observation model p(y | x) is developed. Accordingly,
a prior distribution p(x |Φ) is assigned to the multi-channel image x to model its
statistical appearance. Eventually, we introduce a prior distribution p(Φ) that is
employed for an inference of the hyperparameters Φ.

6.3.1 Multi-Channel Observation Model
In order to calculate the posterior probability in Eq. (6.1), the following assump-
tions are made to derive the conditional probability p(y | x) that represents the
observation model: 1) The low-resolution channels y1, . . . , yC are mutually inde-
pendent assuming statistically independent noise among the channels, and 2) the
formation of a low-resolution channel yi depends only on the corresponding high-
resolution channel xi but is independent on the remaining channels, see Fig. 6.2.
Hence, the conditional probability p(y | x) can be factorized according to:

p(y1, . . . , yC | x1, . . . , xC) =
C

∏
i=1

p(yi | xi) =
C

∏
i=1

K

∏
k=1

p
(

y(k)
i | xi

)
, (6.2)

where p(yi | xi) is the joint conditional probability of observing the frames of the
low-resolution channel yi from the high-resolution channel xi and p(y(k)

i | xi) is
the conditional probability of observing a single frame y(k)

i . The formation of the
low-resolution observations yi from the high-resolution channel xi is described by:

yi = W ixi + εi =


DHiM

(1)
i xi

...
DHiM

(K)
i xi

+


ε
(1)
i
...

ε
(K)
i

 , (6.3)

where W i is the system matrix and εi is additive measurement noise for this chan-
nel. The system matrix W i comprises subsampling modeled by D, which is as-
sumed to be constant over the channels. The circulant matrix Hi denotes space
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+

+

. . .
Figure 6.2: Formation of low-resolution multi-channel observations y encoded in C chan-
nels and K frames from the high-resolution multi-channel image x.

invariant blur associated with the PSF of the i-th channel that might be varying
over the channels. M(k)

i models subpixel motion relative to the reference coordi-
nate grid for the k-th frame associated with the i-th channel.

Based on the factorization in Eq. (6.2) and the image formation in Eq. (6.3), the
observation model is given by the distribution:

p(y1, . . . , yC | x1, . . . , xC) ∝ exp

{
−

C

∑
i=1

KM

∑
m=1

φyi

(
[yi −W ixi]m

)}
, (6.4)

where φyi
: R → R+

0 denotes a loss function to model the noise distribution for
the i-th channel. In spirit of the weighted normal distribution proposed in Chap-
ter 4 and to make the model robust to space variant noise and outliers, we define
Eq. (6.4) based on the Huber loss:

φyi
(z) =

{
z2 if |z| ≤ σnoise,i

2σnoise,i|z| − σ2
noise,i otherwise

, (6.5)

where σnoise,i denotes the distribution scale parameter that characterizes the noise
level associated with the i-th channel.

6.3.2 Multi-Channel Image Prior Model

Let us now define the image prior p(x |Φ) employed in the posterior probability
in Eq. (6.1). In general, this prior needs to be factorized according to:

p(x |Φ) = p(x1 |Φ) p(x2 | x1, Φ) . . . p(xC | x1, . . . , xC−1, Φ)

= p(x1 |Φ)
C

∏
i=2

p(xi | x1, . . . , xi−1, Φ) .
(6.6)
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Figure 6.3: Schematic representation of the prior distribution p(x). The proposed model
consists of an inter-channel prior to describe statistical dependencies among pairs of chan-
nels and an intra-channel prior to describe the appearance of the individual channels.

Contrary to the observation model, this factorization considers dependencies among
the high-resolution channels as the key notion of the Bayesian formulation.

The prior distribution p(x |Φ) considers two complementary aspects. On the
one hand, it models the statistical appearance of each individual channel xi, which
is related to an intra-channel prior. On the other hand, it accounts for statistical
dependencies of each channel xi relative to all other channels xj, i 6= j that is con-
sidered by an inter-channel prior. Using a pair-wise approach to consider these
dependencies, the joint distribution p(x |Φ) in Eq. (6.6) is given by:

p(x |Φ) =
C

∏
i=1

p(xi | Xi, Φ) , (6.7)

and the prior distribution p(xi | Xi, Φ) associated with the channel xi is written as:

p(xi | Xi, Φ) ∝ exp

{
−λiRintra(xi)−

C

∑
j=1,j 6=i

µijRinter
(
xi, xj, Φij

)}
, (6.8)

where Xi = {x1, . . . , xi−1, xi+1, . . . , xC}. In Eq. (6.8), Rintra(xi) denotes the regular-
ization term for the intra-channel prior distribution associated with xi. Similarly,
Rinter

(
xi, xj, Φij

)
denotes the regularization term of the inter-channel prior for the

channel pair (xi, xj) parametrized by a set of hyperparameters Φij as shown below.
The regularization weight λi ≥ 0 denotes the contribution of the intra-channel
prior to model the statistical appearance of the multi-channel image solely based
on the individual channels. The regularization weight µij ≥ 0 denotes the contri-
bution of the inter-channel prior between xi and xj. Hence, it considers statistical
dependencies according to Eq. (6.6), whereas in case of µij = µji = 0 the channels
xi and xj are treated as independent. We call the prior distribution symmetric, if the
regularization weights fulfill the property µij = µji for all i, j = 1, . . . , C.
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Intra-Channel Prior. Following the state-of-the-art in image restoration for single-
channel images [Kris 09], the intra-channel prior needs to account for the sparsity
of the individual channels in a certain transform domain. The corresponding reg-
ularization term adopts WBTV [Kohl 16b] as previously introduced in Chapter 4
and is given by:

Rintra(xi) :=
NS

∑
n=1

φxi([Sxi]n) , (6.9)

where S ∈ RNS×N with NS = (2NBTV + 1)2N denotes the linear sparsifying trans-
form:

S =


αBTV

|−NBTV|+|−NBTV|
(

IN×N − S−NBTV
v S−NBTV

h

)
...

αBTV
|+NBTV|+|+NBTV|

(
IN×N − S+NBTV

v S+NBTV
h

)
 . (6.10)

Here, αBTV ∈]0, 1] is the BTV weighting factor, NBTV ≥ 1 is the BTV window size,
and Sm

v and Sn
h model vertical and horizontal shifts of xi by m and n pixels, respec-

tively. The loss function φxi : R → R+
0 in Eq. (6.9) is given by the mixed L1/Lp

norm:

φxi(z) =

{
|z| if |z| ≤ σprior,i

σ
1−pi
prior,i · |z|

pi otherwise
, (6.11)

where σprior,i and pi ∈ [0, 1] are the prior distribution scale parameter and the
sparsity parameter for the channel xi, respectively.

Inter-Channel Prior. In Eq. (6.8), the inter-channel prior accounts for pair-wise
statistical dependencies among the image channels. For this purpose, we follow
the assumption that such dependencies can be described locally by means of linear
regressions on a patch-wise basis. Let xi and xj be a pair of disjoint image channels.
Then, the regression of xi towards xj at the n-th pixel position is given by:

xj,m = Cij,nxi,m + bij,n, for all m ∈ ωLLR(n), (6.12)

where the parameters Cij,n and bij,n denote the local regression coefficients for a
(2NLLR + 1)× (2NLLR + 1) image patch ωLLR(n) centered at the n-th pixel. These
coefficients are assumed to be constant for all pixel positions m ∈ ωLLR(n), see
Fig. 6.4. Based on this patch-wise relationship, the inter-channel prior for the
channel xi is defined via the fidelity of a regression towards each of the remain-
ing channels xj, j 6= i over all local patches. This fidelity is stated by the LLR
model:

Rinter
(
xi, xj, Φij

)
:=

N

∑
n=1

φxij

([
Cijxi + bij − xj

]
n

)
, (6.13)

where Cij = diag
(
Cij,1, . . . , Cij,N

)
∈ RN×N and bij =

(
bij,1, . . . , bij,N

)> ∈ RN are re-
gression coefficients over the entire image assembled from the pixel-wise coeffi-
cients Cij,n and bij,n in Eq. (6.12), respectively. We denote by Φij = {Cij, bij} the
set of coefficients that are treated as hyperparameters of the prior distribution. In
Eq. (6.13), φxij : R→ R+

0 denotes a loss function to measure the regression fidelity.
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Figure 6.4: Schematic representation of the locally linear regression (LLR) model of the
channel xi towards the channel xj depicted for pairs of color channels. We establish the
LLR model for image patches ωLLR(n) and define the corresponding prior distribution
based on the regression residual error and an outlier-insensitive loss function.

In order to tolerate outliers regarding the linear regression assumption, we define
the LLR model according to Tukey’s biweight function [Meer 91]:

φxij(z) =


1
6 σ2

LLR,ij

(
1−

(
1− z2

σ2
LLR,ij

)3
)

if |z| ≤ σLLR,ij

1
6 σ2

LLR,ij otherwise
, (6.14)

where σLLR,ij is the distribution scale parameter for the channels xi and xj.
It is worth noting that similar regression models have been proposed previ-

ously for multi-sensor super-resolution [Zome 01, Ghes 14] as well as joint filtering
[He 13, Shen 15]. In particular, the regression in Eq. (6.13) generalizes the concept
of guided filtering as proposed by He et al. [He 13]. However, the key novelty
is that the proposed prior is applicable to an arbitrary number of image channels
and represents a Bayesian interpretation of mutual dependencies, while guided
filtering considers only dependencies of a filter input relative to a static guidance.
Moreover, since Eq. (6.13) is formulated via an outlier-insensitive loss function, it
is spatially adaptive and features robustness regarding image regions that violate
the linear regression assumption. We elaborate on these properties with compar-
isons to related methods in more detail in Section 6.5.

Prior on the Hyperparameters. The LLR prior distribution relies on knowledge
regarding the regression coefficients but in general these parameters are unknown.
For this reason, they are treated as latent hyperparameters and in order to estimate
them, we need to assign a meaningful prior distribution p(Φ). Let us assume that
the coefficients associated with the different channels are mutually independent
random variables. Then, the joint prior distribution p(Φ) = p(Φ11, . . . , ΦCC) with
Φij = {Cij, bij} can be factorized to:

p(Φ) =
C

∏
i=1

C

∏
j=1,j 6=i

p
(
Cij
)

p
(
bij
)

. (6.15)
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In this work, p(bij) is assumed to be a uniform distribution. In addition, p(Cij)
is adopted from ridge regression [He 13] and is given by the normal distribution:

p
(
Cij
)

∝ exp
{
−εij

∣∣∣∣Cij
∣∣∣∣2

F

}
, (6.16)

where || · ||F is the Frobenius norm that is given by ||Cij||F = ||diag
(
Cij
)
||2 for the

diagonal matrix Cij and εij ≥ 0 denotes a hyperparameter regularization weight
for the channels xi and xj. Intuitively, this prior distribution penalizes large coef-
ficients Cij. As shown in Section 6.4, the benefit of this prior is that the regression
coefficients can be estimated in closed-form within the proposed algorithm1.

6.4 Bayesian Multi-Channel Super-Resolution

This section aims at the development of parameter estimation techniques based on
the proposed Bayesian model of multi-channel images. More specifically, we are
interested in obtaining point estimates of the high-resolution channels x given the
low-resolution, multi-channel observations y. For this purpose, two approaches
can be distinguished.

6.4.1 Sequential Maximum A-Posteriori Estimation

Let us first discuss the sequential estimation of the unknown high-resolution im-
age channels, which serves as a baseline approach in this chapter. Therefore, let
the inter-channel prior p(xi | xj, Φij) for each pair of channels be a uniform distri-
bution. Accordingly, statistical dependencies among the channels can be ignored
and the MAP estimate for the high-resolution image x is given by:

xMAP = argmax
x

C

∏
i=1

p(yi | xi)
C

∏
i=1

p(xi) . (6.17)

Based on this simplifying assumption, the unknown high-resolution channels xi
for i = 1, . . . , C are reconstructed independently by minimizing the negative log-
likelihood of Eq. (6.17):

xi , MAP = argmin
xi

{L(xi) + λiRintra(xi)} . (6.18)

This approach is based solely on the observation model related to the data
fidelity term L(xi) ∝ − log p(yi | xi) and the intra-channel regularization term
Rintra(xi) associated with the considered channel. The advantage of sequential es-
timation is its conceptual simplicity, as Eq. (6.18) can be solved straightforwardly
using super-resolution for single-channel images. However, its limitation is that
statistical dependencies are ignored, which might cause inconsistencies among the
super-resolved image channels.

1This prior leads to a ridge regression problem to determine the regression coefficients [He 13].
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6.4.2 Joint Maximum A-Posteriori Estimation
Our aim is to jointly estimate the image channels under consideration of inter-
channel dependencies. Using the joint posterior distribution in Eq. (6.1), the goal
is to determine the high-resolution image x along with the latent regression coeffi-
cients Φ by the joint MAP estimation:

(xMAP, ΦMAP) = argmax
x,Φ

p(y | x) p(x |Φ) p(Φ) . (6.19)

Notice that Eq. (6.19) is non-convex due to the non-convexity of the regularization
terms related to the prior distribution. Moreover, the dimension of the parame-
ter space (x, Φ) is CN + C(C − 1)N = C2N and the number of observations is
CKM. Thus, the dimension of the parameter space grows quadratically as a func-
tion of the number of channels and joint MAP estimation is underdetermined if
KM < CN. These properties make iterative optimization challenging and a joint
numerical optimization would be computationally prohibitive due to the high di-
mensionality of the parameter space.

For an efficient numerical solution, we alternatively solve Eq. (6.19) w. r. t. the
high-resolution image x and the regression coefficients Φ while keeping the other
parameters fixed. Starting at an initial guess (x0, Φ0), this leads to a sequence of
estimates (xt, Φt) according to the iteration scheme:

Φt = argmax
Φ

p
(

xt−1 |Φ
)

p(Φ) , (6.20)

xt = argmax
x

p(y | x) p
(
x |Φt) , (6.21)

for t = 1, . . . , Tam. Let us now derive efficient solutions for both substeps.

Estimation of the Regression Coefficients. Given the estimate xt−1 for the im-
age channels at iteration t − 1, the latent regression coefficients are obtained by
minimizing the negative log-likelihood of Eq. (6.20):

Φt = argmin
Φ

C

∑
i=1

C

∑
j=1,j 6=i

Ft
ij(Cij, bij). (6.22)

This energy minimization is separable and the regression coefficients among the
i-th and j-th channel are obtained by optimizing the negative log-likelihood of the
corresponding prior distributions. In order to solve Eq. (6.22) efficiently, an upper
bound of this log-likelihood term is minimized. For this purpose, the non-convex
biweight loss function φxij(z) is rewritten by means of an MM algorithm [Hunt 04],
see Appendix A.3.1. This leads to the confidence-aware energy function:

Ft
ij(Cij, bij) =

(
Cijxt−1

i + bij − xt−1
j
)>Kt

ij
(
Cijxt−1

i + bij − xt−1
j
)
+ εij

∣∣∣∣Cij
∣∣∣∣2

F . (6.23)

The confidence weights Kt
ij used in this convex energy function at iteration t are

assembled as the diagonal matrix:

Kt
ij = diag

(
κ1

(
Ct−1

ij , bt−1
ij

)
κ2

(
Ct−1

ij , bt−1
ij

)
. . . κN

(
Ct−1

ij , bt−1
ij

))
, (6.24)
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and the weighting function to obtain the k-th weight is given by:

κk(Cij, bij) =


(

1−
(

rij,k(Cij,bij)

cLLR·σt
LLR,ij

)2
)2

if
∣∣rij,k(Cij, bij)

∣∣ ≤ cLLRσt
LLR,ij

0 otherwise

, (6.25)

rij(Cij, bij) = QωLLR

(
Cijxt−1

i + bij − xt−1
j

)
, (6.26)

where rij(Cij, bij) denotes a filtered version of the regression residual error among
the given channels. Notice that in order to reduce the influence of isolated pix-
els with large regression error and to avoid the origination of pseudo-structures
by the inter-channel prior, QωLLR(·) is implemented as median filter with window
size (2NLLR + 1) × (2NLLR + 1). The tuning constant cLLR for Tukey’s biweight
loss is set to be cLLR = 4.6851 to achieve a 95 % asymptotic efficiency under a nor-
mal distribution of the regression error [Meer 91]. The unknown distribution scale
parameter σt

LLR,ij is adaptively updated at each iteration based on the weighted
MAD rule under the weights Kt−1

ij according to:

σt
LLR,ij = σ0 ·mad

(
rij(Ct−1

ij , bt−1
ij ), Kt−1

ij

)
, (6.27)

where σ0 = 1.4826 to obtain a consistent estimate under a normal distribution for
the regression inliers [Scal 88].

The minimization of the energy function in Eq. (6.23) needs to consider over-
lapping image patches to establish linear regressions. However, the regression
coefficients are defined to be constant within each patch according to the defini-
tion of the LLR model, see Section 6.3.2. It is worth noting that this constraint
avoids the trivial solution for the regression coefficients (Ct

ij = 0 and bt
ij = −xt−1

i ).
In order to consider this constraint, we utilize the separability of Eq. (6.23) and
estimate local regression coefficients associated with the image ωLLR(k) centered
at the k-th pixel position in the image channels xi and xj according to:

(C̃t
ij,k, b̃t

ij,k) = argmin
Cij,k,bij,k

∑
l∈ωLLR(k)

κij,l

(
Cij,kxt−1

i,l + bij,k − xt−1
j,l

)2
+ εijC2

ij,k , (6.28)

where the confidence weights are computed by κij,l = κl(Ct−1
ij , bt−1

ij ) according to
Eq. (6.25). This ridge regression problem is equivalent to confidence-aware guided
filtering [Hore 14]. Hence, the local coefficients are computed in closed-form:

C̃t
ij,k =

EωLLR(k)

(
xt−1

i � xt−1
j , Kt

ij

)
− EωLLR(k)

(
xt−1

i , Kt
ij

)
· EωLLR(k)

(
xt−1

j , Kt
ij

)
EωLLR(k)

(
xt−1

i � xt−1
i , Kt

ij

)
+ εij

,

(6.29)

b̃t
ij,k = EωLLR(k)

(
xt−1

j , Kt
ij

)
− C̃t

ij · EωLLR(k)

(
xt−1

i , Kt
ij

)
, (6.30)

where EωLLR(k)(z, K) denotes the weighted mean in the image patch ωLLR(k) cen-
tered at the k-th pixel in z under the confidence weights K, see Appendix A.3.2.
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The regression coefficients over the entire image are computed by averaging
the local coefficients C̃ij and b̃ij corresponding to overlapping image patches fol-
lowing related strategies in image filtering [Hore 14, He 13]. Thus, the regression
coefficients for the image channels xi and xj are obtained by:

Ct
ij = diag

(
EωLLR(1)

(
C̃t

ij, Kt
ij

)
. . . EωLLR(N)

(
C̃t

ij, Kt
ij

))
, (6.31)

bt
ij =

(
EωLLR(1)

(
b̃t

ij, Kt
ij

)
. . . EωLLR(N)

(
b̃t

ij, Kt
ij

))>
. (6.32)

It is important to note that this calculation of the regression coefficients for a single
pair of image channels can be implemented with a time complexity ofO(N) using
box filtering, see Section 6.5.2. This considerably accelerates the hyperparameter
estimation compared to the use of gradient-based optimization.

Estimation of the Image Channels. Given the estimate Φt for the regression co-
efficients, the high-resolution image xt is estimated by jointly minimizing the neg-
ative log-likelihood of Eq. (6.21) w. r. t. the individual channels x1, . . . , xC. That is,
we obtain xt as the solution of the energy minimization problem:

xt = argmin
x1,...,xC

Ft(x). (6.33)

Similar to the estimation of the regression coefficients, the optimization of this
non-convex log-likelihood term is rewritten as an MM algorithm [Hunt 04]. This
leads to a weighted but convex minimization problem, see Section 4.4.2. Thus, the
joint energy function is given by:

Ft(x) =
C

∑
i=1

(yi −W ixi)
> Bt

i (yi −W ixi) + λi
∣∣∣∣At

ixi
∣∣∣∣

1

+
C

∑
j=1,j 6=i

µij

(
Ct

ijxi + bt
ij − xj

)>
Kt

ij

(
Ct

ijxi + bt
ij − xj

)
,

(6.34)

where the confidence weights for the i-th channel at iteration t are assembled as
the diagonal matrices:

At
i = diag

(
αi,1

(
xt−1

)
αi,2

(
xt−1

)
. . . αi,NS

(
xt−1

))
, (6.35)

Bt
i = diag

(
βi,1

(
xt−1

)
βi,2

(
xt−1

)
. . . βi,KM

(
xt−1

))
, (6.36)

using the weighting functions αi,k(xt−1) ≡ αk(xt−1
i ) and βi,k(xt−1) ≡ βk(xt−1

i ) with
adaptive scale parameter selection as previously introduced in Section 4.4.1, see
Eqs. (4.21) - (4.25). Note that both weighting functions can be applied channel-wise
to determine the corresponding confidence weights and to majorize the negative
log-likelihood of Eq. (6.19).

Numerical optimization of Eq. (6.33) is performed by means of SCG iterations
starting from xt−1 obtained at the previous iteration. This gradient-based iteration
scheme seeks a stationary point:

∇xFt(x) =
(

∂Ft

∂x1
(x) ∂Ft

∂x2
(x) . . . ∂Ft

∂xC
(x)
)>

= 0, (6.37)
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where the gradient of the joint energy function w. r. t. the k-th channel, k = 1, . . . , C
is computed in closed-form:

∂Ft

∂xk
=− 2Bt

kW>
k

(
yk −Wkxk

)
+ λk ·At

kS>sign
(
At

kSxk
)

+
C

∑
j=1,j 6=k

2µkj ·Kt
kjC

t
kj

(
Ct

kjxk + bt
kj − xj

)
−

C

∑
i=1,i 6=k

2µik ·Kt
ik

(
Ct

ikxi + bt
ik − xk

)
.

(6.38)

To facilitate gradient-based optimization, the derivatives of non-smooth L1 norm
terms are approximated by the Charbonnier function, i. e. sign(z) ≈ z/(

√
z2 + τ),

where τ is a small constant (τ = 10−4) to ensure differentiability at z = 0 [Char 94].

Overall Optimization Algorithm. We divide the proposed alternating minimiza-
tion scheme in an outer and two inner optimization loops, see Algorithm 6.1. In
order to provide an initialization for the iterations, a sequential estimation of the
high-resolution image channels is performed. This can be done by minimizing
Eq. (6.33) without inter-channel prior (i. e. µij = 0 for all i, j = 1, . . . , C), which is
equivalent to a channel-wise iteratively re-weighted reconstruction as previously
introduced in Chapter 4 using constant regularization weights λi. Subsequently,
the regression coefficients are computed pair-wise based on Eqs. (6.29),(6.30) while
the high-resolution channels are estimated jointly by SCG iterations for Eq. (6.33).

In total, we perform a maximum number of Tam iterations for alternating min-
imization and a maximum number of Tscg iterations for SCG to estimate the high-
resolution image channels. As a termination criterion we choose the maximum
absolute difference among consecutive iterations:

max
i=1,...,C

(
max

k=1,...,N

(∣∣∣xt
i,k − xt−1

i,k

∣∣∣)) < η, (6.39)

where η denotes the termination tolerance.

6.5 Model and Algorithm Analysis

In this section, we present an in-depth analysis of the proposed Bayesian model
along with the joint MAP estimation approach. In particular, this covers a study re-
garding the adaptivity of the prior distribution as well as the computational com-
plexity and the convergence of the algorithm. Eventually, a theoretical comparison
of the Bayesian model to related state-of-the-art methods is presented.

6.5.1 Adaptivity of the Regression Model

Unlike many of the closely related joint filters [Kopf 07, Zhan 14b, He 13], the pro-
posed inter-channel prior is robust against inconsistent structures among chan-
nels. Prominent examples for this issue appear in range imaging, where texture
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Algorithm 6.1 Multi-sensor super-resolution using locally linear regression (LLR)

Input: Initial guess for high-resolution multi-channel image x0

Output: Final high-resolution multi-channel image x with LLR coefficients Cij, bij and Kij
1: t← 1
2: while Convergence criterion in Eq. (6.39) not fulfilled and t ≤ Tam do
3: for i = 1, . . . , C do
4: for j = 1, . . . , C do
5: Estimate confidence weights Kt

ij for LLR prior by Eq. (6.25)
6: Estimate LLR coefficients Ct

ij and bt
ij by Eqs. (6.29),(6.30)

7: end for
8: end for
9: tscg ← 1

10: while Convergence criterion in Eq. (6.39) not fulfilled and tscg ≤ Tscg do
11: Update high-resolution channels xt by SCG iteration for Eq. (6.33)
12: tscg ← tscg + 1
13: end while
14: t← t + 1
15: end while

does not necessarily coincide with surface information, or in multispectral restora-
tion with structural inconsistencies among the spectral bands [Shen 15]. One es-
sential property of the inter-channel prior is its adaptivity regarding these incon-
sistencies to avoid the erroneous transfer of structures from original channels to
complementary reconstructed ones.

Figure 6.5 investigates this adaptivity in the context of joint upsampling of sin-
gle range and color images. In this simulated data example, the inter-channel prior
is adopted in two different versions. On the one hand, we analyze the proposed
regression based on Tukey’s biweight loss that tolerates outliers related to incon-
sistent structures and is referred to as adaptive LLR. On the other hand, Tukey’s
biweight is replaced by the L2 norm, which leads to a simplified model that is re-
ferred to as non-adaptive LLR. The inter-channel regularization weight µ controls
the impact of the regressions among range and color data to the upsampled chan-
nels2. Figure 6.5b and Fig. 6.5c demonstrates that the non-adaptive model is prone
to texture-copying artifacts in case of an overestimated regularization weight µ.
Moreover, structural inconsistencies cause an oversmoothing of the color data. The
adaptive regression depicted in Fig. 6.5d and Fig. 6.5e features higher robustness
against unwanted texture-copying. This behavior is quantitatively analyzed in
Fig. 6.6 (left) by the PSNR of upsampled range and color data over a wide range of
parameter settings. Here, the adaptive model features a lower sensitivity regard-
ing an overestimation of the regularization weight. Note that the non-adaptive
model might converge to a solution that is even inferior to a simple sequential
upsampling, which is considered as the baseline.

In addition, Fig. 6.6 (right) depicts the parameter sensitivity analysis regarding
the hyperparameter regularization weight ε. Notice that the adaptive model is

2In this analysis, we limit ourselves to uniform inter-channel weights µ and LLR hyperparame-
ter regularization weights ε for the regression between all pairs of channels.
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(a) Original (b) Non-adaptive
(µ = 0.01)

(c) Non-adaptive
(µ = 1.00)

(d) Adaptive
(µ = 0.01)

(e) Adaptive
(µ = 1.00)

Figure 6.5: Analysis of the LLR prior for joint upsampling of range and color data (4× up-
sampling). (a) Simulated range and color data. (b) and (c) Upsampled range and color data
using a non-adaptive version of the LLR prior based on the L2 norm with different inter-
channel regularization weights µ. (d) and (e) Upsampled range and color data with the
proposed adaptive LLR prior based on Tukey’s biweight loss. Notice the texture-copying
artifacts and the oversmoothing caused by the non-adaptive version of the prior.

stable over a wide range of parameter settings and outperforms the non-adaptive
counterpart by a large margin.

6.5.2 Computational Complexity and Convergence

The time complexity of Algorithm 6.1 is related to two phases. First, given C chan-
nels, the regression coefficients for C(C − 1) pairs of channels are computed ac-
cording to Eqs. (6.29),(6.30) at each iteration. This involves element-wise vector
products as well as confidence-aware box filtering. Given N pixels per channel,
this can be implemented with time complexity O(N) for each pair by means of
integral images and is independent on the regression patch size [Crow 84, He 13].
Hence, the regression coefficient estimation hasO

(
C2N

)
time complexity. Second,

the estimation of the high-resolution channels using SCG requires the computation
of the joint energy function and its gradient based on Eqs. (6.34) - (6.37). Given K
frames of size M pixels, this can be implemented by sparse matrix-vector products
as well as element-wise vector products and has O

(
CKM + C2N

)
time complex-

ity at each inner iteration. For Tscg iterations for SCG in the inner optimization
loop, the overall time complexity of a single alternating minimization iteration in
Algorithm 6.1 is O

(
C2N + Tscg(CKM + C2N)

)
.

In addition to the complexity, let us also investigate the convergence of Algo-
rithm 6.1 experimentally. In Fig. 6.7, the convergence is analyzed for the joint range
and color upsampling example in Fig. 6.5. This depicts the progress of the PSNR
of the range data as well as the sum of absolute differences between the channels
for successive iterations. Furthermore, we show a comparison regarding the in-
fluence of the initial guess to the solution of the underlying non-convex energy
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(b) Sensitivity analysis using the PSNR on range data

Figure 6.6: Sensitivity analysis of the LLR prior for joint range and color upsampling in-
cluding a comparison of a non-adaptive version of the prior using the L2 norm to the adap-
tive one based on Tukey’s biweight loss. Sequential upsampling of the channels (SEQ)
is considered as the baseline. (a) Sensitivity regarding the inter-channel regularization
weight µ. (b) Sensitivity regarding the hyperparameter regularization weight ε. Notice
that adaptive LLR features a higher stability over a wider range of parameter settings.

minimization problem. For this purpose, let us compare the proposed initializa-
tion provided by a sequential reconstruction without inter-channel prior to bicubic
and nearest-neighbor interpolations. While the former provides a more accurate
starting point, the latter are easy to compute. Albeit different initializations are
used, alternating minimization converges to comparable solutions. We found that
Tam = 10 iterations for alternating minimization with Tscg = 10 iterations for SCG
are typically sufficient for convergence.

6.5.3 Connection to Related Methods

The Bayesian model introduced in Section 6.3 features a combination of two com-
plementary paradigms of image filtering and restoration. On the one hand, this
includes local filtering (e. g. [Kopf 07, Zhan 14b]), where the goal is to obtain a
filter output image from an input by considering relationships between both in
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Figure 6.7: Convergence analysis of alternating minimization for multi-channel super-
resolution. We compared different initializations including a sequential reconstruction of
the channels (SEQ) as well as channel-wise bicubic and nearest-neighbor interpolation.

local patches. Global methods (e. g. [Ham 15, Shen 15]) on the other hand aim at
an implicit reconstruction of a filter output by optimizing global energy functions.
For the sake of notational brevity, let us study the relationship to these paradigms
for C = 2 channels. Here, a single iteration of alternating minimization aims at
optimizing the joint energy function:

F(x1, x2, Φ) = φy(y1 −W1x1) + φy(y2 −W2x2) + λ1φx(x1) + λ2φx(x2)︸ ︷︷ ︸
global term Fglobal(x1,x2)

+ µ12φx12(C12x1 + b12 − x2) + µ21φx21(C21x2 + b21 − x1)︸ ︷︷ ︸
local term Flocal(x1,x2,Φ)

+ ε12
∣∣∣∣diag(C12)

∣∣∣∣2
2 + ε21

∣∣∣∣diag(C21)
∣∣∣∣2

2︸ ︷︷ ︸
hyperparameter regularization

.

(6.40)

The observation model and the intra-channel prior are related to the global energy
Fglobal(x1, x2), while the inter-channel prior forms the local energy Flocal(x1, x2, Φ).
This local term appears as an additional regularizer in this inverse problem. Simi-
lar formulations appear in two closely related filtering techniques.

Relation to Guided Filtering. The mixed local/global formulation in Eq. (6.40)
provides a generalization of the well known guided filter [He 13] as a prominent
example for a local operator. For this consideration, let λ1 = λ2 = 0 and let us drop
the global data fidelity term. Moreover, let µ21 = ε21 = 0. Then, the optimization
of Eq. (6.40) can be simplified to the minimization of the energy function:

FGF(x1, x2, Φ) = φx12(C12x1 + b12 − x2) + ε12
∣∣∣∣diag(C12)

∣∣∣∣2
2. (6.41)

If we keep the channel x1 fixed, optimizing FGF(x1, x2, Φ) is a generalized ver-
sion of guided filtering for x2 under the guidance of x1. Compared to conven-
tional guided filtering, the proposed algorithm provides several valuable exten-
sions. First and foremost, the local model adopts the robust loss function φxij(z)
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to establish linear regressions, while guided filtering relies on simple least-squares
estimation making it prone to outliers. This extension is sensible in case of incon-
sistent structures, see Section 6.5.1. In addition, the proposed formulation couples
local filtering with a global model. This offers the flexibility to model the image
formation for multi-frame super-resolution in contrast to a purely local filtering
that might exhibit halo artifacts [He 13]. Similar relations applies in comparison to
other local filters, e. g. joint bilateral filtering [Kopf 07].

Relation to Mutual Structure Filtering. Eq. (6.40) also provides a generalization
of mutual structure filtering as proposed by Shen et al. [Shen 15]. To outline this
relationship, let us assume that the system matrices of the individual channels are
given by the identity, i. e. W1 = W2 = I. In addition, let us drop the intra-channel
prior, i. e. λ1 = λ2 = 0. Then, Eq. (6.40) can be simplified to:

FMS(x1, x2, Φ) = φy(y1 − x1) + φy(y2 − x2)

+ µ12φx12(C12x1 + b12 − x2) + µ21φx21(C21x2 + b21 − x1)

+ ε12
∣∣∣∣diag(C12)

∣∣∣∣2
2 + ε21

∣∣∣∣diag(C21)
∣∣∣∣2

2.

(6.42)

Joint minimization of FMS(x1, x2, Φ) w. r. t. the regression coefficients Φ and
the channels x1 and x2 is conceptually equivalent to mutual structure filtering.
However, notice that the algorithm in [Shen 15] considers a denoising problem
(W1 = W2 = I) and employs the L2 norm for φx(z) and φxij(z). These simplifica-
tions make joint minimization efficient to compute, since closed-form solutions can
be derived for the latent image channels and the regression coefficients. In contrast
to this approach, the proposed algorithm enables multi-frame super-resolution.

6.6 Experiments and Results

This section presents a detailed experimental evaluation of the proposed multi-
channel super-resolution. Several applications that are of great interest in com-
puter vision are being investigated. The main focus of this study lies on resolution
enhancement for color and 3-D range images as two classical applications. In ad-
dition, further experiments including multispectral image upsampling as well as
joint segmentation and super-resolution are presented.

6.6.1 Applications in Color Imaging

In terms of color image resolution enhancement, we aim at simultaneously super-
resolving color channels in the RGB space. For this purpose, the LLR model is
adopted to exploit dependencies among the spectral bands that are common in
case of natural images [Omer 04]. The proposed algorithm was compared to the
following approaches to color super-resolution. As a baseline approach, a sequen-
tial super-resolution of the color channels that served as initial guess for multi-
channel super-resolution was evaluated. This is conceptually equivalent to the
algorithm introduced by Köhler et al. [Kohl 16b] for single-channel images. In
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(a) Original (b) Sequential (c) IDP [Fars 06] (d) LLR

Figure 6.8: Color super-resolution (K = 10 frames, magnification s = 3) on simulated data
with a comparison of a sequential reconstruction of the color channels to a multi-channel
reconstruction using IDP regularization [Fars 06] and the LLR prior.

addition, multi-channel super-resolution was evaluated using the inter-color de-
pendency penalty (IDP) proposed by Farsiu et al. [Fars 06] as an alternative to the
proposed prior3. This regularization term penalizes mismatches in terms of the
location and orientation of edges among the color channels. In the sequel, experi-
ments on simulated and real color image sequences are presented.

Simulated Data. In order to conduct a quantitative evaluation, simulated color
image sequences (K = 10 frames) with randomly generated rigid motion were
generated from the LIVE Database [Shei 16]. This simulation comprises a Gaus-
sian PSF (σPSF = 0.5), subsampling (s = 3) as well as additive Gaussian noise
(σnoise = 0.03) for each color channel. Throughout these experiments, the exact
subpixel motion was used for super-resolution to explicitly study the impact of
the different prior models. The inter-channel regularization weights µij as well as
the hyperparameter weights εij were defined in a symmetric way (µij = µji and
εij = εji). The intra-channel prior parameters were set to λi = 4 · 10−3 with BTV
window size NBTV = 1 and weighting factor αBTV = 0.5 for each channel. The
inter-channel parameters were set to µij = 0.5 and εij = 10−4 with LLR patch size
NLLR = 3 for all pairs of channels.

Figure 6.8 compares sequential super-resolution of the individual color chan-
nels to multi-channel super-resolution. In contrast to the sequential approach,
both multi-channel methods avoided inconsistencies between the super-resolved
color channels. This resulted in lower noise levels in homogeneous areas while
the sequential approach caused color artifacts in these regions. In a quantitative
comparison on 20 simulated datasets, the proposed method achieved the highest
PSNR and SSIM measures, see Fig. 6.9. On average, compared to the sequential
and the IDP super-resolution, the proposed algorithm improved the PSNR (SSIM)
by 1.5 dB (0.04) and 0.5 dB (0.01), respectively.

3Chrominance and luminance regularization as well as demosaicing as proposed in [Fars 06]
were omitted to exclusively evaluate the influence of the inter-channel regularization.
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Figure 6.9: Mean± standard deviation of the PSNR and the SSIM of 20 simulated color im-
age datasets obtained from the LIVE database [Shei 16]. For each dataset, 15 randomly sim-
ulated image sequences were generated to determine the quality measure statistics. This
benchmark compares sequential super-resolution of the color channels (SEQ) to multi-
channel super-resolution using IDP regularization [Fars 06] and the LLR prior.

Real Data. Figure 6.10 shows a qualitative comparison of the competing meth-
ods on the Bookcase sequence (K = 30 frames) taken from the MDSP benchmark
dataset [Fars 16]. Each pixel in these color images reflects full RGB information to
make additional demosaicing unnecessary. Super-resolution was conducted with
magnification s = 3 and a Gaussian PSF (σPSF = 0.4). The unknown subpixel
motion was described by an affine model and estimated by ECC optimization
[Evan 08]. Throughout these experiments, we set the intra-channel prior parame-
ters to λi = 5 · 10−3, NBTV = 1 and αBTV = 0.5 for each channel. The inter-channel
parameters were set to µij = 20, εij = 10−4 and NLLR = 1 for all pairs of channels.

Similar to the previous experiments, multi-channel super-resolution gets rid
of color artifacts that appeared in the super-resolved color channels obtained by
the sequential approach. Examples regarding these artifacts are jagged edges and
color bleeding as shown in the highlighted region that contains text. These artifacts
were better compensated by multi-channel super-resolution using the LLR prior.

6.6.2 Applications in Range Imaging

In Chapter 5, super-resolution for 3-D range data was investigated by exploiting
color images as a static guidance. The multi-channel technique presented in this
chapter is applicable to similar setups but does not rely on the existence of accurate
guidance data. The following experiments consider single-image upsampling as
well as multi-frame super-resolution in the context of range imaging.
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(a) Original (b) Sequential (c) IDP [Fars 06] (d) LLR

Figure 6.10: Color super-resolution (K = 30 frames, magnification s = 3) on the Bookcase
sequence [Fars 16] with a comparison of sequential color channel reconstruction to multi-
channel reconstructions using IDP regularization [Fars 06] and the LLR prior.

Joint RGB-D Upsampling. In the domain of single image joint RGB-D upsam-
pling, we aim at simultaneously upsampling C = 4 channels (RGB color plus
depth) from their low-resolution counterparts. This is a highly underdetermined
reconstruction problem but exploiting mutual dependencies among range and
color data serves as a strong prior to alleviate this issue.

For the sake of a quantitative evaluation, artificial RGB-D images were ob-
tained from the ground truth color and disparity data of the Middlebury Stereo
Datasets [Hirs 07, Scha 07]. The formation of low-resolution images considered
the conditions of low-cost ToF sensors and comprises a Gaussian PSF (σPSF = 0.3)
and subsampling (s = 8) relative to the ground truth. These degradations were
jointly applied to all channels to consider the absence of reliable guidance infor-
mation. In addition, color and range channels were corrupted by additive Gaus-
sian noise with standard deviations 0.02 and 0.04, respectively. We adopted the
LLR prior with a symmetric distribution for joint multi-channel upsampling. The
inter-channel parameters were set to µij = 1.5, εij = 10−4 and NLLR = 5 for all
pairs of channels. For the intra-channel prior a BTV window size of NBTV = 2 with
weighting factor αBTV = 0.5 was used. The intra-channel regularization weights
were set to λi = 5 · 10−4 for the color channels (i ∈ {1, 2, 3}) and λi = 10−2 for the
range channel (i = 4) to reflect the noise levels of both modalities.

Figure 6.11 depicts a comparison of the proposed joint multi-channel upsam-
pling against various state-of-the-art filters for color guided range upsampling us-
ing publicly available reference implementations. This includes the guided fil-
ter (GF) [He 13], the weighted median filter (WMF) [Zhan 14b], the mutual struc-
ture filter (MSF) [Shen 15] as well as the static and dynamic guidance filter (SDF)
[Ham 15]. Among them, GF and WMF employ color data as a static guidance that
was obtained by bicubic upsampling of the input color image. As a consequence,
these methods gained a limited quality of the upsampled range data due to the
absence of reliable color data. In addition to a pure static guidance, MSF and SDF
also exploit range data regularization similar to the proposed model. Although
these approaches were less sensitive to erroneous texture-copying since structural
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(a) Range input (b) GF [He 13] (c) WMF [Zhan 14b] (d) MSF [Shen 15]

(e) SDF [Ham 15] (f) Sequential (g) LLR (h) Ground truth

Figure 6.11: Single image RGB-D upsampling (magnification s = 8) on the Middlebury
Stereo Datasets [Hirs 07, Scha 07] with visual comparison of the upsampled range im-
ages. (a) Low-resolution range image, (b) guided filter [He 13], (c) weighted median fil-
ter [Zhan 14b], (d) mutual structure filter [Shen 15], (e) static and dynamic guidance filter
[Ham 15], (f) sequential upsampling of range and color channels without inter-channel
prior, (g) multi-channel upsampling using the LLR prior, (h) ground truth range data.

inconsistencies could be considered, they do not incorporate an appropriate image
formation model. Thus, they were inherently limited for upsampling of structures
that were lost in low-resolution range and color data. Opposed to the state-of-the-
art, the proposed method simultaneously upsampled all channels under a reason-
able image formation model and profited from enhanced color data for the task of
range upsampling. This is depicted in Fig. 6.12 showing the original and bicubic
interpolation of the color channels in comparison to the color image reconstructed
as a by-product of joint multi-channel upsampling.

In Tab. 6.1, a benchmark on various Middlebury datasets is summarized. For
fair comparisons, the parameters of the different joint image filters were adjusted
to each dataset individually to optimize the PSNR, while the proposed joint multi-
channel upsampling was employed with the aforementioned default parameters.
In these experiments, joint multi-channel upsampling based on LLR considerably
outperformed a simple sequential upsampling of the channels. Moreover, the joint
upsampling considerably improved the accuracy of range information compared
to the state-of-the-art filters on most of the evaluated datasets.
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(a) Color input (b) Bicubic interp. (c) LLR (d) Ground truth

Figure 6.12: Single image RGB-D upsampling on the Middlebury Stereo Datasets [Hirs 07,
Scha 07] with visual comparison of the upsampled color data. (a) Low-resolution image,
(b) bicubic upsampling, (c) upsampling using the LLR prior, (d) ground truth color image.

Table 6.1: Quantitative evaluation of joint RGB-D image upsampling on the Middlebury
Stereo Datasets [Hirs 07, Scha 07] (8× upsampling). We compared the PSNR of upsampled
range data using different joint image filters (GF [He 13], WMF [Zhan 14b], MSF [Shen 15],
SDF [Ham 15]) to multi-channel upsampling using a sequential (channel-wise) approach
as well as the proposed LLR prior. All joint filters used the bicubic upsampled color images
as static guidance. For each dataset, the best and the second best results are highlighted.

Art Books Dolls Laundry Moebius Reindeer

Interpolation
Nearest-neighbor 26.04 26.44 26.90 26.93 26.80 26.75
Bicubic 27.82 27.99 28.56 28.62 28.42 28.46

Joint filters
GF [He 13] 30.57 32.69 34.46 33.25 33.48 32.55
WMF [Zhan 14b] 30.81)2 32.93)2 34.32 33.47 33.55)2 32.94
MSF [Shen 15] 30.43 33.14)1 34.50)2 33.49)2 33.50 33.10)2

SDF [Ham 15] 30.43 31.80 33.23 33.33 32.85 32.09

Multi-channel
Sequential 30.71 32.36 33.98 33.30 33.23 32.96
LLR 30.93)1 32.75 34.56)1 33.81)1 33.72)1 33.42)1

Photogeometric Super-Resolution. Contrary to related joint filters, the proposed
model can be directly applied to gain resolution enhancement of range and color
data from a multi-frame perspective referred to as photogeometric super-resolution
[Ghes 14]. We investigate this methodology for current ToF cameras that provide
geometric information by 3-D range images along with photometric information
encoded by amplitude images at the same pixel resolution at a video frame rate.
Figure 6.13 and Fig. 6.14 depict super-resolution on range and amplitude data of
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two datasets captured with a Mesa SR-4000 camera4. Both channels were acquired
at a resolution of 176× 144 px and subpixel motion across the sequences was in-
duced by camera translations. Motion estimation was implemented via variational
optical flow [Liu 09] on the amplitude images. We used the LLR prior for C = 2
channels with symmetric distribution. The inter-channel parameters were set to
µij = 102, εij = 10−4 and NLLR = 1 for all pairs of channels. The intra-channel pa-
rameters were set to λi = 5 · 10−4 for the amplitude data (i = 1) and λi = 2 · 10−3

for the range data (i = 2) with NBTV = 1 and αBTV = 0.5 for both channels.
We compared the proposed technique against adaptive multi-sensor super-

resolution (AMSR) as presented in Section 5.5. AMSR was applied to both chan-
nels separately using the amplitude data as static guidance for its feature-based
regularizer. In addition, we evaluated sequential super-resolution of both chan-
nels under the proposed model without inter-channel prior.

Photogeometric super-resolution simultaneously enhanced geometric and pho-
tometric information. In comparison to a sequential reconstruction of both chan-
nels, exploiting mutual dependencies between range and amplitude data boosted
range super-resolution even further. The LLR prior could also better capture such
dependencies compared to AMSR that used low-resolution amplitude data di-
rectly to steer the underlying regularization technique. Notice that in this setup,
amplitude images do not necessarily meet the quality requirements for a static
guidance. This improvement of the range regularization resulted in superior re-
constructions of depth discontinuities and surfaces.

6.6.3 Further Applications

The proposed methodology facilitates numerous vision tasks beyond classical res-
olution enhancement in color and range imaging. Below, we briefly investigate
two further example applications of practical relevance.

Multispectral Image Upsampling. The proposed multi-channel model general-
izes to multispectral imaging for C � 3 channels in a straightforward way as ex-
tension of color image processing. Let us consider the application of single-image
upsampling, where we target at estimating high-resolution multispectral images
from single low-resolution ones5. In this highly underdetermined reconstruction
problem, we exploit the high degree of correlations among the spectral bands of
multispectral images. Figure 6.15 depicts multispectral upsampling on an example
image taken from the Harvard dataset [Chak 11]. The multispectral data consists
of C = 31 bands that correspond to central wavelengths between 420 and 720 nm.
Here, we depict a false-color visualization using a self organizing map [Jord 14]
(top row) along with a single spectral band centered at 600 nm (bottom row).

For this application, we employed the LLR prior with a symmetric distribution.
The inter-channel parameters were set to µij = 5 · 10−3, εij = 10−4 and NLLR = 3

4The data acquisition for this study was done in collaboration with Peter Fürsattel at Metrilus
GmbH, Erlangen, Germany.

5The reconstruction algorithm can easily be extended to multi-frame reconstruction using mo-
tion estimation techniques tailored for multi- and hyperspectral data, see e. g. [Zhan 12a].
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(a) Original (b) AMSR

(c) Sequential (d) LLR

Figure 6.13: Photogeometric super-resolution on amplitude and range data (K = 16
frames, magnification s = 4) of the checkerboard dataset. The image data was captured with
a Mesa SR-4000 ToF camera. (a) Original amplitude (first row) and range data (second
row), (b) super-resolved data using the adaptive multi-sensor super-resolution (AMSR)
presented in Section 5.5, (c) super-resolved data using sequential processing of both chan-
nels and (d) super-resolved data gained by multi-channel processing using the LLR prior.
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(a) Original (b) AMSR

(c) Sequential (d) LLR

Figure 6.14: Photogeometric super-resolution on amplitude and range data (K = 21
frames, magnification s = 4) of the games dataset. The image data was captured with
a Mesa SR-4000 ToF camera. (a) Original amplitude (first row) and range data (second
row), (b) super-resolved data using the adaptive multi-sensor super-resolution (AMSR)
presented in Section 5.5, (c) super-resolved data using sequential processing of both chan-
nels and (d) super-resolved data gained by multi-channel processing using the LLR prior.
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(a) Original (b) Sequential (c) IDP [Fars 06] (d) LLR

Figure 6.15: Multispectral image upsampling (C = 31 spectral bands, magnification
s = 2). Top row: False-color visualization for the original image (a), sequential upsam-
pling of the different channels without inter-channel prior (b), multi-channel upsampling
using IDP regularization [Fars 06] (c), and multi-channel upsampling using the LLR prior
(d). Bottom row: Single spectral band at wavelength 600 nm. Notice that IDP produced
unwanted structure copying artifacts in the depicted image region.

for all pairs of channels. The corresponding intra-channel parameters were set to
λi = 5 · 10−4, NBTV = 1 and αBTV = 0.5 for all channels. For the sake of com-
parison to the LLR prior, sequential upsampling of the different channels without
inter-channel prior as well as multi-channel upsampling using IDP regularization
[Fars 06] extended to an arbitrary number of channels was applied.

In comparison to sequential upsampling, both multi-channel approaches led to
a decrease of color artifacts. Similar to color super-resolution, these color artifacts
appeared as residual noise due to disregarding mutual dependencies. However,
notice that in this example the assumption of strong mutual dependencies was
violated for certain pairs of channels due to inconsistent structures. In Fig. 6.15,
this assumption was violated for the image region that contains text. This resulted
in erroneously copied structure from other, original channels to the upsampled
ones in case of IDP regularization. The proposed outlier-insensitive prior based
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(a) Original (b) Sequential binarization & SR (c) Joint binarization & SR

Figure 6.16: Joint binarization and super-resolution on two-tone images (K = 20 frames,
magnification s = 3). (a) - (b) Single grayscale image and the decoupled use of super-
resolution (top row) along with the corresponding binarizations modeled as probability
maps (bottom row). (c) Joint binarization and super-resolution using the LLR prior. It is
worth noting that the joint approach better removed ringing and compression artifacts.

on Tukey’s biweight loss features higher robustness against inconsistencies and
avoided these structure copying artifacts.

Joint Segmentation and Super-Resolution. One recent trend in image process-
ing is to couple image analysis with retrospective image enhancement via joint
frameworks [Shen 07, Lela 15]. In [Kohl 15d], segmentation driven deblurring has
been proposed to boost both subtasks compared to their decoupled usage. Follow-
ing a similar notion, the multi-channel methodology can be adopted to joint seg-
mentation and super-resolution. We can employ consistency among images and a
corresponding segmentation as a strong prior to leverage resolution enhancement.
This assumption is reasonable for text document images that feature a correlation
among intensity values and the appearance of text and symbols.

We demonstrate this concept in Fig. 6.16 for binarization on compressed two-
tone frames of the Adyoron sequence [Fars 16]. Motion estimation across the se-
quence (K = 20 frames) was performed by ECC optimization [Evan 08] with an
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affine model. We employed the LLR prior with symmetric distribution for C = 2
channels with µij = 25, εij = 10−4 and NLLR = 3. The intra-channel parameters
were set to λi = 10−3 for the grayscale image (i = 1) and λi = 10−1 for the bina-
rization (i = 2) with NBTV = 2 and αBTV = 0.5 for both channels.

Figure 6.16a depicts a single grayscale image along with its binarization using
the intensity-based soft-clustering proposed in [Kohl 15d] for text images. We rep-
resent a binarization of an image x ∈ RN as a probability map s ∈ [0, 1]N, where
si = 0 indicates a dark structure, e. g. font, at the i-th pixel. Note that the binariza-
tion failed to detect text and symbols accurately on aliased low-resolution data.
For the sake of comparison, Fig. 6.16b depicts super-resolution on the grayscale
images followed by the binarization in a sequential manner. This served as ini-
tialization for the joint approach in Fig. 6.16c that considered grayscale data and
its binarization as coupled channels via the LLR prior. Notice that the joint ap-
proach better compensated ringing and compression artifacts and reconstructed
both channels simultaneously at a super-resolved scale. This can serve as a more
reliable basis for subsequent image analysis tasks like text detection and recogni-
tion [Espa 11] or writer identification [Chri 15] to name a few.

6.7 Conclusion

This chapter proposed a novel approach to multi-sensor super-resolution that is
applicable to a variety of current computer vision applications. As the core idea,
we introduced a Bayesian model that accounts for the image formation process of
multi-channel images as well as a LLR prior distribution to consider mutual de-
pendencies among different image channels. Subsequently, we developed Bayesian
parameter estimation techniques based on this model, where we proposed a joint
multi-channel reconstruction algorithm to take inter-channel dependencies into
consideration. We presented a thorough analysis of this model including compar-
isons to related methods, where we discussed connections to several popular im-
age filters. Eventually, we studied several target applications, where the proposed
method generalized fairly well and outperformed the state-of-the-art. In color im-
age super-resolution as a classical application, LLR improved the PSNR by 1.5 dB
and the SSIM by 0.04 compared to conventional channel-wise super-resolution.
Unlike related work, LLR can handle single- and multi-frame resolution enhance-
ment in a unified framework and does neither rely on guidance information nor
on a fixed number of image channels. We also presented potential applications be-
yond classical super-resolution including multispectral image upsampling as well
as joint segmentation and super-resolution on two-tone images.

Albeit its flexible and unified formulation, this approach can be further tailored
to specific domains. One extension is to optionally augment the prior distribution
by a static guidance as proposed for related image filters [Ham 15]. This might
further boost super-resolution for applications, where such guidance data is avail-
able. Another extension includes the acceleration of the algorithm. In this chapter,
we proposed a brute-force approach to exploit mutual dependencies among all
pairs of image channels but a suitable dimensionality reduction could enhance the
efficiency in case of a very large number of channels.
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Over the past years, super-resolution has found its entry into various fields of
medical imaging and has been examined for diagnostic or interventional work-
flows, e. g. in radiology [Gree 08, Robi 10]. This chapter presents new applications
of super-resolution in retinal video imaging that has recently emerged as a branch
of today’s ophthalmic imaging technologies. As the primary contribution, a tai-
lored method to reconstruct high-resolution retinal fundus images from video se-
quences taken from the human eye background is presented. Super-resolution
exploits natural human eye movements that occur during an examination and
cause subpixel motion across video frames. As an additional contribution, a novel
method to assess noise and sharpness characteristics in fundus images in a fully
automatic manner is presented. This quality measure is employed in a new auto-
matic hyperparameter selection scheme for super-resolution reconstruction.

The proposed super-resolution framework has been originally published in
[Kohl 14a] and image quality assessment has been first published in [Kohl 13a].

7.1 Introduction and Medical Background

In today’s ophthalmology, retinal fundus imaging is one of the most frequently used
techniques to gain information about the human eye background non-invasively
[Patt 06]. The primary scopes of this structural imaging technology are docu-
mentation [Abra 10] and computer-aided screening of eye diseases such as dia-
betic retinopathy [Abra 15] or glaucoma [Bock 10, Kohl 15a], among others. This
is mainly because of the cost efficiency and availability of fundus cameras com-
pared to other modalities like optical coherence tomography (OCT) [Huan 91]. The
most common approach in clinical practice are single-shot techniques that provide
high-resolution color photographs of the human retina. Consequently, they pro-
vide static information of the retina. Another trend that has recently emerged is
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fundus video imaging to gain dynamic measurements. The main motivation behind
the use of video capable cameras is to measure fast temporal changes of the retina,
e. g. the cardiac cycle [Torn 15]. Compared to single-shot imaging, video imaging
features a high temporal resolution but single frames are limited in terms of their
spatial resolution and SNR, see Fig. 7.1. This is mainly caused by technological
aspects, e. g. increased light exposure times, but also related to economic reasons
as the use of mobile and cost-effective hardware is desirable [Hohe 15].

Image enhancement and restoration is an emerging field of research in retinal
imaging in order to enhance the diagnostic usability of fundus images. One ap-
proach are temporal denoising schemes. In [Kohl 12], Köhler et al. have proposed
adaptive temporal averaging using a registration based compensation of natural
eye movements that appear during video imaging. This approach recovers sin-
gle denoised images from a set of noisy frames. Another direction of prior work
are blind deconvolution algorithms with the goal to recover a sharp retinal im-
age from a blurred one. These methods can be applied in a multi-frame scheme
to image pairs acquired in longitudinal examinations as shown by Marrugo et al.
[Marr 11c]. However, one limitation of blind deconvolution is that it does not en-
hance the spatial resolution in terms of pixel sampling.

This chapter investigates a different direction and aims at improving the di-
agnostic usability of retinal images by multi-frame super-resolution. The basic
idea behind this approach is to utilize natural eye movements [Rayn 98, Duch 07]
during video imaging as a cue for super-resolution reconstruction. In [Muri 11],
Murillo et al. proposed this idea to enhance scanning laser ophthalmoscopy. In
parallel to the work presented in this thesis, single- and multi-frame resolution en-
hancement for fundus imaging have also been studied by Thapa et al. [Thap 14].
In general, super-resolution applied to retinal images is challenging due to opti-
cal aberrations caused by the optics of the human eye. Other common issues are
photometric distortions or specular reflections that lead to oversaturations. These
effects are related to the external illumination and the imaging through a small
pupil, which makes homogeneous illuminations of the retina difficult to achieve.
Moreover, fundus video data might be affected by a poor SNR as the light expo-
sure during the examination needs to be low to avoid impairments of the patient.
Therefore, robust estimation techniques are required to deal with these conditions.

The remainder of this chapter is structured as follows. Section 7.2 develops a
domain-specific image formation model that provides the basis of super-resolution
in fundus video imaging. Section 7.3 presents a super-resolution algorithm that
employs a novel hyperparameter selection scheme termed quality self-assessment to
jointly estimate a super-resolved image along with optimal regularization param-
eters. Section 7.4 presents an experimental evaluation of the proposed framework
in fundus video imaging. Finally, Section 7.5 draws a conclusion.

7.2 Image Formation Model for Retinal Imaging

In order to reconstruct high-resolution retinal images, we exploit sequences of low-
resolution video frames. For the sake of notational brevity, we limit ourselves in
this chapter to monochromatic video data and hence a single frame represents the
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(a) (b)

Figure 7.1: Single-shot versus video techniques in retinal imaging. (a) Single frame
(640× 480 px, 15◦ field of view (FOV)) acquired from a glaucoma patient using the
video camera system developed by Tornow et al. [Torn 15]. (b) Single photograph
(1944× 1296 px, 22.5◦ FOV) captured from the same patient with a commercially avail-
able Kowa nonmyd fundus camera. For fair comparison to monochromatic video data,
the green color channel of the Kowa image is depicted.

luminance of a retinal image. For super-resolution in a Bayesian framework, we
need to formulate an image formation model that relates the individual frames to
the unknown high-resolution image. In the following subsections, we adopt the
model previously presented in Section 3.2 to the conditions in retinal imaging.

7.2.1 Derivation of the Motion Model

One of the most important aspects of the proposed model is the fact that subpixel
motion across video frames that are captured during an examination is related
movements of the eye relative to a fundus camera. According to Rayner [Rayn 98],
such eye movements can be categorized into pursuits, vergence, vestibular mo-
tion, and saccades that differ in their causes, amplitudes, and speeds. Pursuit and
vergence motion are related to continuously fixating moving targets and nearby,
static targets, respectively. Vestibular motion is caused by small motion of the head
or the entire body. Saccades refer to abrupt motion with high velocity that occur
during the fixation to a new target [Duch 07]. In addition to these movements, no-
tice that the human eye is never completely still when fixating a target due to nat-
ural eye motion caused by tremors, drifts and microsaccades [Rayn 98, Duch 07].
Such movements occur randomly and have small amplitudes. As they are un-
avoidable during an examination, there is no need to induce camera motion by
means of mechanical components to enable super-resolution reconstruction.

To describe eye movements mathematically, we follow the model developed by
Can et al. [Can 02] that approximates the human retina as a spherical surface. Let
us consider two views of the retina with eye movements among them. These views
are associated with two video frames x(r) and x(k) captured with one single camera,
where x(r) denotes the reference frame. Furthermore, let U(r) ∈ R3 and U(k) ∈ R3

be the coordinates of a single point on the retina in the 3-D space transformed to
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the local camera coordinate systems associated with these frames. According to
[Can 02], we obtain U(k) = (U, V, π(U, V))> by the quadratic surface model:

π(U, V) = π1U2 + π2V2 + π3UV + π4U + π5V + π6, (7.1)

where the parameter set π = {π1, . . . , π6} describes the retina shape. Since the
curvature of the retina is negligible compared to its distance to the camera center,
we can assume a weak-perspective camera model [Hart 04] that is represented by
the projection matrix P ∈ R3×4 for both views. Then, U(k) and U(r) are mapped
to u(k) = PU(k) and u(r) = PU(r) on the image plane in the two frames. As eye
motion can be considered as rigid [Duch 07], the relationship between U(k) and
U(r) is given by U(r) = RU(k) + t, where R ∈ R3×3 and t ∈ R3 denote a rotation
matrix and a translation vector, respectively. This leads to the relationship between
the 3-D point U(r) = (U′, V′, π(U′, V′))> and its 2-D projection u(k) according to:

U′ = R11 ·
s0u− cu

fu
+ R12 ·

s0v− cv

fv
+ R13 · ζ(u, v) + tu, (7.2)

V′ = R21 ·
s0u− cu

fu
+ R22 ·

s0v− cv

fv
+ R23 · ζ(u, v) + tv, (7.3)

where fu and fv are the focal lengths, (cu, cv)> is the camera center, and s0 is a scal-
ing parameter of the weak-perspective camera. ζ(u, v) is the quadratic equation:

ζ(u, v) = ζ1u2 + ζ2v2 + ζ3uv + ζ4u + ζ5v + ζ6, (7.4)

where the parameters ζ = {ζi, . . . , ζ6} depend on the shape parameters π in
Eq. (7.1) and the projection matrix P. Based on Eqs. (7.2),(7.3), we can establish
the relationship between the 2-D points u(r) = (u′, v′)> and u(k) = (u, v)> by the
quadratic image-to-image transformation:(

u′

v′

)
=

(
θ1 θ2 θ3 θ4 θ5 θ6
θ7 θ8 θ9 θ10 θ11 θ12

) (
u2 v2 uv u v 1

)> , (7.5)

where the transformation parameters θi depend on the shape parameters π, the
projection matrix P, as well as the eye movement characterized by R and t.

In contrast to the derivation in [Can 02] for general types of rigid eye motion,
the proposed model considers video imaging with high frame rates. For super-
resolution, we exploit miniature movements when fixating static targets over short
time intervals, i. e. tremors and microsaccades [Rayn 98], but neglect movements
with larger amplitudes over longer intervals. As this motion is small compared to
the FOV (see Fig. 7.2), we assume that t ≈ 0 and R ≈ I. Therefore, we trade the
accuracy of the quadratic transformation in Eq. (7.5) against improved robustness
of parameter estimation using the affine transformation [Fang 06]:u′

v′

1

 =

θ1 θ2 θ3
θ4 θ5 θ6
0 0 1

u
v
1

 . (7.6)

This homography relates eye motion to translation, rotation, scaling and shearing
on the image plane. These effects are described by six degrees of freedom given by
Θ = {θ1, . . . , θ6} (see Section 3.2.2) as opposed to the twelve degrees of freedom
in Eq. (7.5). Notice that related eye motion models are based on globally rigid
homographies [Kola 15, Kola 16], which is a specialization of the affine model.
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(a) Frame 1 (b) Frame 12 (c) Checkerboard overlay

Figure 7.2: Illustration of natural, miniature eye movements in retinal fundus video imag-
ing. (a) - (b) Two frames (frames 1 and 12) with eye movements captured at a frame rate of
25 Hz. (c) Checkerboard visualization for both frames. Notice that miniature movements
can be perceived in the checkerboard visualization but are small compared to the FOV.

7.2.2 Derivation of the Photometric Model
In practice, intensity changes among fundus video frames are not exclusively re-
lated to eye motion. Another effect that needs to be modeled are photometric
variations, which can be distinguished in spatial and temporal ones, see Fig. 7.3.
Spatial variations are caused by illumination inhomogeneities within a single im-
age [Marr 11a]. Such variations occur due to the curved shape of the retina, which
makes it difficult to achieve homogenous illumination conditions at the image cen-
ter and in peripheral regions. Furthermore, the illumination depends on the eye
anatomy and the presence of diseases. Temporal variations are caused by bright-
ness changes across multiple frames, which can be caused by eye movements
or pulsatile changes [Torn 15]. Since both types of variations are unavoidable in
general, photometric registration is required to compensate for them. This can
be achieved by retrospective correction methods [Kola 11, Zhen 12] that are com-
monly applied as a preprocessing step in retinal image restoration [Marr 11c].

In this work, photometric variations are corrected jointly to super-resolution
instead of correcting the input frames in a preprocessing step. The proposed
model extends the global photometric model introduced by Capel and Zisserman
[Cape 03]. This model describes the relation between an image x(k) with photo-
metric variations and a reference image x according to:

x(k) = γ
(k)
m � x + γ

(k)
a 1. (7.7)

γm ∈ RN denotes a bias field associated with x ∈ RN to consider uneven illumi-
nation of the retina relative to the reference, which is formulated pixel-wise in a
multiplicative model. γa ∈ R denotes a global brightness offset to describe in-
tensity variations over time. Note that in this formulation, the set of photometric
parameters Γ = {γm, γa} is defined in the domain of high-resolution data.

7.2.3 Joint Photogeometric and Sampling Model

The formation of low-resolution video from a high-resolution image is described
by combining the motion model in Eq. (7.6) with the photometric one in Eq. (7.7).
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(a) Frame 1 (b) Frame 18 (c) Checkerboard overlay

Figure 7.3: Illustration of spatial and temporal photometric variations in fundus video
imaging. (a) - (b) Two frames (frames 1 and 18) with eye movements and varying pho-
tometric conditions. (c) Corresponding checkerboard visualization. Notice the temporal
brightness changes and the illumination inhomogeneities within both frames.

To describe this process in a physically appropriate manner, it is assumed that
the geometric transformation related to eye movements takes place as the first
operation, followed by the photometric transformation and the sampling onto the
domain of the low-resolution data. We limit ourselves to space and time invariant
modeling of the sampling process as a reasonable assumption for retinal images
captured over a short time period with a high frame rate and a small FOV. Hence,
the formation of the k-th low-resolution frame is described by:

y(k) = DH
(

γ
(k)
m �

(
M(k)x

)
+ γ

(k)
a 1
)
+ ε(k), (7.8)

where M(k) denotes the subpixel motion related to eye movements, γ
(k)
m and γ

(k)
a

are the photometric parameters, and ε(k) denotes additive noise for the k-th frame.
D and H are time invariant and describe subsampling and a LSI blur kernel. The
latter approximates the superposition of the camera PSF and unavoidable optical
aberrations in the human eye [Marr 11c].

In Eq. (7.8), photometric variations are modeled as atmospheric effects in the
domain of high-resolution data. However, under spatially smooth variations as
a common assumption of retrospective illumination correction [Hou 06], we can
simplify Eq. (7.8) using the approximations1:

DH
(

γ
(k)
m �M(k)x

)
≈ Dγ

(k)
m �DHM(k)x, (7.9)

γ
(k)
a DH1 ≈ γ

(k)
a D1. (7.10)

Based on these approximations, Eq. (7.8) can be rewritten to explain the formation
of low-resolution frames from a high-resolution image according to:

y(k) = γ
(k)
m �W(k)x + γ

(k)
a 1 + ε(k), (7.11)

where the system matrix W(k) is assembled element-wise from the blur kernel
and motion parameters (see Eq. (3.20)). Notice that in Eq. (7.11) the photometric
parameters γ

(k)
m and γ

(k)
a are defined in the domain of low-resolution frames.

1Similar approximations regarding the photometric parameters have also been proposed for
related image formation models in the field of blind deconvolution [Marr 11c].
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7.3 Super-Resolution with Quality Self-Assessment

The proposed framework aims at reconstructing an eye movement compensated
high-resolution fundus image from multiple low-resolution video frames while
simultaneously compensating photometric variations. The algorithm developed
in this section is divided into a registration and a reconstruction stage as follows:

1. Given a sequence of low-resolution frames, a photogeometric registration is ac-
complished to estimate the latent eye motion as well as the photometric pa-
rameters that describe the image formation process according to Eq. (7.11).

2. Given the estimate of the photogeometric model, a high-resolution image is
reconstructed by MAP estimation from the low-resolution frames.

First, this section presents photogeometric registration for fundus videos employed
in the initial registration stage. Subsequently, an iterative optimization scheme is
developed referred to as super-resolution with quality self-assessment to jointly
estimate latent Bayesian hyperparameters along with the high-resolution image.
Eventually, a tailored quality measure for a fully automatic assessment of image
noise and sharpness within quality self-assessment is proposed.

7.3.1 Photogeometric Registration Algorithm

Photogeometric registration is accomplished in two steps. First, the photomet-
ric parameters that are related to spatial and temporal illumination variations are
estimated from the observed, low-resolution frames. Second, the geometric pa-
rameters that describe eye movements are determined under consideration of the
photometric parameters.

Photometric Registration. Given the set of low-resolution frames y(1), . . . , y(K),
the multiplicative bias fields that describe spatial photometric variations are esti-
mated for each frame separately. Following state-of-the-art retrospective illumina-
tion correction techniques [Hou 06], a bias field is assumed to be a spatially smooth
signal. In this chapter, a parametric approach is employed that represents a bias
field γ

(k)
m by the superposition of spatially smooth basis functions as a B-spline sur-

face [Kola 11]. Hence, γ
(k)
m is computed by B-spline fitting of the intensities in the

corresponding low-resolution frame y(k), which implicitly enforces the smooth-
ness condition.

The brightness offsets γ
(k)
a that describe temporal photometric variations are

determined by pair-wise registration. This is done in a robust manner by comput-
ing the median temporal brightness of each frame y(k) relative to the reference y(r)

under the estimated bias fields for both frames according to:

γ
(k)
a = median

((
γ
(k)
m

)−1
� y(k)

)
−median

((
γ
(r)
m

)−1
� y(r)

)
, (7.12)

where (γ(k)
m )−1 and (γ

(r)
m )−1 are the pixel-wise inverted bias fields of the k-th frame

and the reference frame, respectively.
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Geometric Registration. Once the photometric parameters are determined, the
geometric parameters that describe eye movements by the affine image-to-image
homography in (7.6) are obtained by pair-wise registration. For the k-th low-
resolution frame y(k), these motion parameters are determined as the solution of
the intensity-based registration problem:

Θ(k) = argmax
Θ

ρ

(
MΘ

{(
γ
(k)
m

)−1
� y(k) − γ

(k)
a 1
}

,
(

γ
(r)
m

)−1
� y(r)

)
, (7.13)

where MΘ{·} denotes image warping towards the reference frame according to
the motion parameters Θ and ρ : RM ×RM → R+

0 is an image similarity measure.
It is worth noting that Eq. (7.13) compensates for photometric variations us-

ing the photometric parameters in the similarity measure. In order to enhance the
robustness of the geometric registration regarding residual variations, the normal-
ized cross correlation is used for the similarity measure. This pair-wise registration
is implemented by ECC optimization [Evan 08], which iteratively solves Eq. (7.13)
for the motion parameters in a coarse-to-fine scheme.

7.3.2 Super-Resolution Reconstruction Algorithm

Given the low-resolution observations y and the photogeometric registration pa-
rameters {Θ(k), Γ(k)}K

k=1, the high-resolution image x is inferred according to the
MAP estimation:

xMAP = argmax
x

p
(

y | x, {Θ(k), Γ(k)}K
k=1

)
p(x) , (7.14)

where p(y | x, {Θ(k), Γ(k)}K
k=1) denotes the observation model related to Eq. (7.11).

For the prior distribution, we assign the exponential form p(x) ∝ exp(−λR(x))
with regularization term R(x) and regularization weight λ ≥ 0.

Notice that MAP estimation in Eq. (7.14) requires prior knowledge regarding
the regularization weight λ. However, in the desired application, the choice of
this parameter strongly depends on the imaging conditions. Thus, there might
be a considerable variance regarding the optimal parameter for video data of dif-
ferent subjects, which makes its off-line selection on training data difficult. To
this end, the regularization weight is treated as a latent hyperparameter. In con-
trast to data driven hyperparameter selection (see Section 4.4), the regularization
weight is inferred in a quality driven way termed image quality self-assessment.
This optimization scheme employs a quality measure that quantifies image noise
and sharpness. This enables a fully automatic parameter selection and provides an
objective quality measure for super-resolution as a by-product of the optimization
algorithm.

The estimations of the high-resolution image and the optimal regularization
weight are treated as two coupled subproblems. Our goal is to infer the regular-
ization weight λ according to:

λ̂ = argmax
λ

Q
(
x(λ)

)
, (7.15)
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Algorithm 7.1 Super-resolution with image quality self-assessment

Input: Initial guess for image x and regularization weight search range [log λl , log λu]
Output: Final high-resolution image x with optimal regularization weight λ̂

1: λ← λl and Qmax ← 0
2: while λ ≤ λu do
3: for t = 1, . . . , Tscg do
4: Update x by SCG iteration for Eq. (7.16) with current λ
5: end for
6: if Q(x) > Qmax then
7: λ̂← λ and Qmax ← Q(x)
8: end if
9: λ← 10log λ+∆λ

10: end while
11: while SCG convergence criterion not fulfilled do
12: Update x by SCG iteration for Eq. (7.16) with λ = λ̂
13: end while

where Q : RN → R+
0 denotes a no-reference image quality measure that quantifies

the level of noise and sharpness for a given image. Note that higher measures
Q(x) indicates a favorable image quality. Given the regularization weight λ, we
denote by x(λ) the image reconstructed under this parameter according to the
minimization:

x(λ) = argmin
x
{L(x) + λR(x)} , (7.16)

where:

L(x) =
K

∑
k=1

φdata

(
y(k) − γ

(k)
m �W(k)x− γ

(k)
a 1
)

, (7.17)

and φdata : RM → R+
0 is a loss function related to the underlying noise model. It

is worth noting that this optimization scheme is independent on the implementa-
tions of the observation and prior model. Hence, we omit their definitions in this
general derivation.

For the joint estimation of the optimal regularization weight and the high-
resolution image with consideration of their interdependence, the proposed al-
gorithm nests the solution of Eq. (7.15) and Eq. (7.16), see Algorithm 7.1. In or-
der to determine the regularization weight, Eq. (7.15) is approximated by a one-
dimensional discrete search. The reconstruction of the desired high-resolution im-
age in Eq. (7.16) is accomplished by Tscg iterations of SCG optimization. This seeks
the stationary point:

∇xL(x) + λ∇xR(x) = 0, (7.18)

where the gradient of the data fidelity term is given by:

∇xL(x) =
K

∑
k=1

γ
(k)
m �W(k)ψdata

(
y(k) − γ

(k)
m �W(k)x− γ

(k)
a 1
)

, (7.19)

and ψdata(z) = ∇xφdata(z) denotes the gradient of φdata(z). For this optimization
scheme, the initial guess for the high-resolution image is obtained by the tem-
poral median of the geometrically and photometrically registered low-resolution
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frames followed by bicubic interpolation according to the desired magnification
factor. The regularization weight is initialized by the log-transformed search range
[log λl, log λu]. Once the optimal regularization weight λ̂ under the given quality
measure is determined, the high-resolution image x(λ̂) is refined by SCG iterations
for Eq. (7.16) until convergence.

7.3.3 No-Reference Quality Measure for Retinal Imaging
Quality self-assessment requires a reliable measure of image quality. In general,
such measures can be divided into classification based and continuous scores.
The classification based approach aims at predicting a discrete quality measure
from discriminative image features. In the simplest case, this is restricted to two
classes to discriminate low-quality images from good ones. In retinal imaging, this
can be achieved by supervised learning using features of diagnostic significance
[Niem 06, Paul 10]. However, these classification methods are not well suited for
continuous optimization within the proposed quality self-assessment scheme.

In contrast to supervised learning, continuous quality measures are inferred
from low-level features in an unsupervised way such that the resulting measure
correlates with the human visual perception. Some well known features are the
image entropy [Gaba 07], spatial and spectral properties [Vu 12], or the image gra-
dient [Zhu 10]. Such features have previously been used for retinal image analysis
[Marr 11b]. In this work, we focus on continuous measures that are applicable for
quality self-assessment.

Derivation of the Quality Measure. The quality measure that is employed in this
work is based on the coherence feature proposed by Zhu et al. [Zhu 10] for natural
images that has been later adopted to retinal imaging by Köhler et al. [Kohl 13a].
To derive the measure for a given image x, we decompose x in disjoint Np × Np
patches p ∈ R

N2
p with domain Ω(p) ⊂ R2. We aim at quantifying noise and sharp-

ness based on two features that are related to the image gradient and the curvature.
In terms of the gradient information as proposed in [Zhu 10], a local gradient

matrix is constructed for the patch p according to:

G(p) =

 [Qup]1 [Qvp]1
...

...
[Qup]N2

p
[Qvp]N2

p

 , (7.20)

where Qu and Qv denote discrete derivative filters for the coordinate directions u
and v, respectively. For this local gradient matrix, we calculate the singular value
decomposition (SVD):

G(p) = U(p)
(

s1(p) 0
0 s2(p)

)
V(p)>, (7.21)

where U(p) and V(p) are orthogonal matrices, and s1(p) and s2(p) denote the
singular values of the gradient matrix associated with the patch p. In the noise and
sharpness measure presented below, the singular values are used as basic features.
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Figure 7.4: Computation of the no-reference quality measure Q(x) for retinal fundus im-
ages. For the given input image x, anisotropic patches are detected. Afterwards, Q(x)
is determined on a patch level from the coherence and the vesselness features that are
obtained from the image gradient and the curvature, respectively.

In terms of the curvature information as proposed in [Kohl 13a], we compute
the Hessian matrix in a pixel-wise manner according to:

Hi(σj) =

([
Quu(σj)x

]
i

[
Quv(σj)x

]
i[

Quv(σj)x
]

i

[
Qvv(σj)x

]
i

)
, (7.22)

where Quu(σj), Qvv(σj) and Quv(σj) denote discrete Laplacian of Gaussian filters
with the kernel standard deviation σj for the coordinate directions u and v. The
Hessian is employed to determine the vesselness, which represents a probability
map that enables the detection of tubular structures. In retinal imaging, the ves-
selness provides a blood vessel detection and image quality assessment is steered
by the detected vessel tree. The vesselness filter used in this work is based on the
approach of Frangi et al. [Fran 98] to detect dark tubular structures2 according to:

Vi(σj) =exp
(
− 1

2V2
β

λ1,i(σj)
2

λ2,i(σj)2

)(
1− exp

(
−λ1,i(σj)

2+λ2,i(σj)
2

2V2
c

))
if λ1,i(σj) ≥ 0

0 otherwise
,

(7.23)

where λ1,i(σj) and λ2,i(σj) with |λ1,i(σj)| ≤ |λ2,i(σj)| are the eigenvalues of the
Hessian at the i-th pixel associated with the kernel standard deviation σj. The
parameters Vβ and Vc are thresholds to control the vesselness filter response. The
filter responses over a set of Nσ kernel standard deviations are used to compute
the local variance of the vesselness in the patch p according to:

V(p) =
1

N2
p

∑
i∈Ω(p)

V∗i −
1

N2
p

∑
i∈Ω(p)

V∗i

2

, (7.24)

V∗i = max
j=1,...,Nσ

Vi(σj). (7.25)

2Without loss of generality, we limit our consideration to dark tubular structures as these struc-
tures correspond to blood vessels in fundus images.
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The proposed quality measure combines both feature types, i. e. the gradient
information and the vesselness, to assess the level of noise and sharpness in a given
image, see Fig. 7.4. In principle, noise and sharpness in a patch pi are characterized
by the singular values s1(pi) and s2(pi) of the local gradient matrix [Zhu 10]. The
local variance V(pi) is used to guide this measurement based on the hypothesis
that patches pi located on the boundaries of tubular structures, i. e. blood vessels,
should have a higher contribution to the local quality measure. We compute the
local quality q(pi) associated with the patch pi according to:

q(pi) = V(pi)s1(pi)c(pi), (7.26)

where c(pi) denotes the coherence that is computed from the singular values:

c(pi) =
s1(pi)− s2(pi)

s1(pi) + s2(pi)
. (7.27)

Then, the global quality measure Q(x) for the entire image is given by:

Q(x) = ∑
pi∈A(x)

q(pi), (7.28)

whereA(x) denotes a set of anisotropic patches. These anisotropic patches are char-
acterized by a dominant orientation of the image gradient and are meaningful to
characterize noise and sharpness. In accordance to [Zhu 10], these patches are de-
tected automatically by statistical significance testing of the local coherence c(pi).
This leads to the thresholding procedure:

A(x) = {pi : c(pi) ≥ τc} , (7.29)

τc =

√√√√(1− α

1
N2

p−1
c

)(
1 + α

1
N2

p−1
c

)−1

, (7.30)

with threshold τc that is determined from the significance level αc.

Correlation to Full-Reference Quality Assessment. Let us now investigate the
validity of the proposed measure for image quality self-assessment. For this pur-
pose, the agreement of the no-reference quality measure Q(x) to full-reference
quality assessment is studied on simulated data. Figure 7.5 shows the progress of
the no-reference measure over the search range of the unknown regularization pa-
rameter λ in Algorithm 7.1 averaged over 40 simulated fundus image sequences.
In addition, the PSNR for the super-resolved images associated with the differ-
ent parameter settings is depicted as an example full-reference measure. The re-
lationship between both measures confirms a reasonable agreement between no-
reference and full-reference assessment. Note that both measures result in com-
parable solutions in terms of the optimal regularization weight. Furthermore, a
Spearman rank correlation of 0.70± 0.34 averaged over all simulated datasets indi-
cates a reasonable correlation between both measures. This validates the proposed
no-reference measure as a surrogate for full-reference quality assessment in the
absence of ground truth data. For a comprehensive evaluation of the no-reference
measure in retinal fundus imaging and comparisons to other state-of-the-art meth-
ods, we refer to [Kohl 13a].
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Figure 7.5: Correlation analysis between no-reference and full-reference quality assess-
ment. Blue, solid line: mean ± standard deviation of the no-reference measure Q(x)
used for quality self-assessment versus the regularization weight λ on 40 image sequences.
Green, dotted line: mean ± standard deviation of the PSNR relative to the ground truth.
Both measures reach their optimal value within the range −1.0 ≤ log λ ≤ −0.8. The
Spearman rank correlation between both measures is 0.70± 0.34.

7.4 Experiments and Results

The experimental evaluation for the proposed framework is divided into three
parts. In the first part, super-resolution is quantitatively evaluated on simulated
fundus images to investigate the potential of the proposed framework in reti-
nal imaging. The second part addresses real data experiments with the target to
gain high-resolution fundus images from low-resolution video sequences acquired
with a low-cost camera. The third part presents super-resolved mosaicing [Kohl 16a]
as a novel application of super-resolution in ophthalmic imaging workflows.

Throughout all experiments, super-resolution was applied with the L1 norm
error model and a BTV prior with NBTV = 1 and αBTV = 0.4. The regularization
weight selection was performed in the search range given by log λl = −3.0 and
log λu = 0 with ∆ log λ = 0.15 and Tscg = 50 SCG iterations. Quality assessment
was performed with patch size Np = 8 and significance level αc = 0.001 to detect
anisotropic patches. The vesselness filter parameters were set to Vβ = 0.5 and
Vc = 15 for Nσ = 4 different filter standard deviations σi ∈ {1, 3, 5, 8}.

7.4.1 Experiments on Simulated Fundus Images

For the sake of a quantitative evaluation, simulated images generated from the
DRIVE database [Staa 05] were used. For this task, excerpts of 40 reference images
of size 360× 360 px served as ground truth data. The green color channels were
used to generate sequences of K = 15 monochromatic frames of size 120× 120 px
from the reference color images. Eye movements were simulated by uniformly
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Table 7.1: Performance of super-resolution on the DRIVE database [Staa 05]. The PSNR
and SSIM statistics were determined for 40 simulated images relative to ground truth data.
The sensitivity and specificity statistics were determined for automatic vessel segmenta-
tion [Buda 13] relative to a gold standard. All measures were evaluated for low-resolution
data, the initial guess for super-resolution, and the final super-resolved image.

Original SR (initial) SR (final) Ground truth

PSNR [dB] 35.19 ± 1.07 36.65 ± 1.55 38.64 ± 1.00 -
SSIM 0.84 ± 0.01 0.89 ± 0.02 0.91 ± 0.01 -

Sensitivity [%] 59.00 ± 6.08 66.66 ± 4.95 69.41 ± 5.49 74.96 ± 5.87
Specificity [%] 93.13 ± 1.26 95.04 ± 1.02 94.44 ± 1.27 94.48 ± 1.16

distributed inter-frame translations (−4 to +4 px) and rotation angles (−1◦ to +1◦)
relative to a the first frame. The formation of each frame considered a Gaussian
PSF (σPSF = 0.5) and additive, zero-mean Gaussian noise (σnoise = 0.01).

The impact of super-resolution was quantitatively assessed by four evaluation
measures. On the one hand, PSNR and SSIM were used to assess the fidelity of a
reconstruction relative to the ground truth. On the other hand, super-resolution
was studied in combination with automatic blood vessel segmentation. This was
done by applying the proposed framework as preprocessing for the state-of-the-art
segmentation method introduced by Budai et al. [Buda 13]. Super-resolution was
assessed by analyzing the sensitivity and specificity of the automatic segmentation
relative to a gold standard segmentation provided by a human expert. The statis-
tics of these measures are summarized in Tab. 7.1 for simulated low-resolution
data, the initial guess for the iterative super-resolution algorithm obtained by tem-
poral median filtering as well as the final super-resolved image. On average,
super-resolution improved the PSNR by 3.5 dB and the SSIM by 0.07 compared
to the original video data. The sensitivity of vessel segmentation was enhanced
by 10 % at a comparable specificity in comparison to a direct segmentation on the
low-resolution data. This reveals the potential performance boost achieved by
super-resolution in this application.

Figure 7.6 compares low-resolution data and super-resolution on one example
dataset along with the corresponding vessel segmentations. Notice that the gain
of super-resolution is revealed by a recovery of fine structures on the retina, e. g.
blood vessels, that are barely visible in low-resolution data. Consequently, vessel
segmentation achieved a higher sensitivity based on preprocessing by means of
super-resolution compared to a segmentation on low-resolution data.

7.4.2 Experiments on Real Fundus Videos
In order to conduct experiments on real images, we used fundus video data cap-
tured with the low-cost and mobile camera developed by Tornow et al. [Torn 15].
This camera system is based on a monochromatic charge-coupled device (CCD)
sensor and provides a spatial resolution of 640×480 px, a FOV of 20◦ in hori-
zontal direction and a temporal resolution of up to 50 Hz. In this study, the left
eyes of different human subjects including healthy subjects and glaucoma pa-
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(a) Original (b) SR (initial guess) (c) SR (final) (d) Ground truth

(e) Se: 0.64, Sp: 0.93 (f) Se: 0.71, Sp: 0.95 (g) Se: 0.75, Sp: 0.95 (h) Se: 0.82, Sp: 0.95

Figure 7.6: Super-resolution on simulated fundus images generated from the DRIVE
database [Staa 05] (K = 15 frames, magnification s = 3). (a) - (d) Low-resolution data, the
initial guess (temporal median), the super-resolved image, and the ground truth image.
(e) - (h) Blood vessel segmentation [Buda 13] along with the sensitivity (Se) and specificity
(Sp). True-positive and false-positive pixels are color-coded in green and red, respectively.

tients were examined. All examinations were done without dilating the pupil,
i. e. non-mydriatically. The acquired video sequences have durations between 5
and 15 seconds3. Super-resolution was applied on subsequences extracted from
these videos by processing K = 8 successive frames in a sliding window approach
with magnification s = 2. Throughout all experiments, the unknown PSF was
approximated by an isotropic Gaussian kernel (σPSF = 0.8).

Comparison to High-Resolution Reference Images. For the sake of a qualita-
tive comparison to super-resolved data, a commercially available Kowa nonmyd
camera4 was employed to capture color fundus images. This single-shot camera
features a spatial resolution of 1600×1216 px with a FOV of 25◦ and was used to
gain high-resolution reference photographs of the same subjects that were exam-
ined with the low-cost camera. For fair comparisons to monochromatic video data,
the green channels of the color photographs were used in this study.

The reconstruction of high-resolution fundus images from low-resolution video
was investigated for anatomical regions that are relevant for diagnostic purposes
and contain fine structures to outline the impact of super-resolution. Therefore, the
optic nerve head region that captures the optic disk and the cup as two relevant
structures for glaucoma detection [Bock 10, Josh 11] was examined.

3The data acquisition for this study was done in collaboration with Dr.-Ing. Ralf-Peter Tornow
at the Department of Ophthalmology, Eye Clinics Erlangen, Germany

4http://www.kowamedical.com/

http://www.kowamedical.com/
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(a) Single frame (w/o photometric registration) (b) Single frame (w/ photometric registration)

(c) Super-resolution (initial guess) (d) Super-resolution (final) (e) Kowa nonmyd reference image

Figure 7.7: Super-resolution on low-cost fundus video frames for a glaucoma patient. (a) - (b) Single low-resolution frames without (w/o)
and with (w/) photometric registration used in the proposed framework. (c) - (d) Initial guess determined by the temporal median of the
registered low-resolution frames as well as the final super-resolved image. (e) Reference photograph captured with a Kowa nonymd camera.
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(a) Single frame (w/o photometric registration) (b) Single frame (w/ photometric registration)

(c) Super-resolution (initial guess) (d) Super-resolution (final) (e) Kowa nonmyd reference image

Figure 7.8: Super-resolution on low-cost fundus video frames for a healthy subject. (a) - (b) Single low-resolution frames without (w/o)
and with (w/) photometric registration used in the proposed framework. (c) - (d) Initial guess determined by the temporal median of the
registered low-resolution frames as well as the final super-resolved image. (e) Reference photograph captured with a Kowa nonymd camera.
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Figure 7.9: Quality measure Q(x) for six healthy subjects (1 - 6) and six glaucoma patients
(7 - 12). For each dataset, ten consecutive sequences in a sliding window scheme were
processed. The quality assessments were compared for temporal median filtering used as
initial guess and the final super-resolved image. Notice that Q(x) is normalized by the
quality measurement of the corresponding low-resolution reference image.

Figure 7.7 compares original video data and different intermediate results of
the proposed framework applied in this region of a glaucoma patient to a reference
photograph captured with the Kowa camera. The comparison among a single low-
resolution frame in Fig. 7.7a and the frame in Fig. 7.7b depicts the impact of pho-
tometric registration as an initial stage of the super-resolution framework. Here,
the photometric registration compensated for spatially and temporally varying il-
lumination. Figure 7.7c depicts eye movement compensation implemented by the
geometric registration and shows the temporal median of K registered frames that
is used as an initial guess of iterative super-resolution. The final super-resolved
image is shown in Fig. 7.7d. Note that super-resolution substantially enhanced
the appearance of anatomical structures, e. g. thin blood vessels, which are barley
visible in noisy low-resolution frames. This resulted in a visual appearance that is
comparable to the Kowa reference image in Fig. 7.7e. Figure 7.8 depicts the same
comparison on an example dataset captured from a healthy subject.

In order to validate this quality enhancement quantitatively, the gain in terms
of the proposed no-reference quality measure was analyzed. The distribution of
Q(x) normalized by the quality of the reference low-resolution frames is summa-
rized in Fig. 7.9 for the optic nerve head regions of six healthy subjects and six
glaucoma patients. For each subject, ten consecutive image sequences extracted
in a sliding window scheme were analyzed. This comparison among the tem-
poral median and the final super-resolved image confirms that super-resolution
improved noise and sharpness characteristics compared to raw video data.

Super-Resolution Under Photometric Variations. Let us now examine the relia-
bility of super-resolution under challenging conditions in retinal imaging. One
common issue is a severe photometric variation during an examination that is
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(a) Low-resolution video frames with spatial and temporal illumination variations

(b) Super-resolution under photometric variations

Figure 7.10: Super-resolution under spatial and temporal photometric variations across
video frames. (a) Different low-resolution frames taken from a sequence with photometric
variations. (b) Super-resolution for five different subsequences taken from the input video
with K = 8 frames using the same reference frame.

caused by the light source of the camera and the patient anatomy. Notice that
photogeometric registration cannot entirely compensate such variations, e. g. in
case of oversaturations of the intensities.

Figure 7.10 (top row) shows this issue for a subset of video frames captured
from a glaucoma patient with brightness and contrast variations over time. Super-
resolution was applied to K = 8 frames in a sliding window scheme but using the
same reference frame for each window. This led to a set of L super-resolved images
x(1), . . . , x(L) obtained from L different windows but reconstructed in the same ref-
erence coordinate grid. The sensitivity of super-resolution regarding brightness
and contrast variations was examined by assessing the reproducibility [Krau 17]
of the super-resolved images x(l), l > 1 relative to the first image x(1).

In Fig. 7.11, this reproducibility is depicted by the SSIM and the normalized
mean absolute deviation (NMAD) over ten super-resolved images corresponding
to ten frame windows. Thus, a SSIM equal to one and a NMAD equal to zero
indicate a perfect reproducibility on two disjoint input sequences. In terms of
both measures, it is noticeable that inconsistencies among super-resolved images
increases with shorter temporal overlap and hence a higher variability of the illu-
mination. However, super-resolution achieved a reasonable reproducibility with
a SSIM of above 0.85 and NMAD below 0.03. Compared to the initial guess de-
termined by the temporal median, the proposed iterative algorithm resulted a bet-
ter reproducibility. This behavior is also noticeable by visual comparisons among
super-resolved images reconstructed from different frame windows as shown in
Fig. 7.10 (bottom row). Notice that severe photometric variations in the input
video were successfully compensated in super-resolved data, which confirms the
robustness of the proposed framework.
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Figure 7.11: Sensitivity of super-resolution against photometric variations. The sensitivity
was assessed by the reproducibility of super-resolved images for ten subsequences with
photometric variations relative to the super-resolved image reconstructed from the first
(variation-free) sequence. Reproducibility was measured by the SSIM and the NMAD.

Super-Resolution Under Eye Accommodation. Another condition of practical
relevance is eye accommodation, which impairs the reliability of super-resolution.

In Fig. 7.12 (top row), eye accommodation is shown for five video frames cap-
tured from a healthy subject. This resulted in out-of-focus blur that is increasing
over time. Similar to the previous experiment, super-resolution was performed in
a sliding window scheme based on K = 8 frames but with a fixed reference for
each window to study its sensitivity regarding this effect.

Figure 7.13 depicts the reproducibility measures for L super-resolved images
obtained in this experiment. The reproducibility characterized by these measures
was dropped for larger amounts of out-of-focus blur related to accommodation.
However, super-resolution provided a better reproducibility compared to its ini-
tial guess, which indicates a lower sensitivity regarding accommodation. More
specifically, moderate levels of accommodation were successfully compensated as
depicted for the first three cases in Fig. 7.12 (bottom row). In this experiment, se-
vere levels of eye accommodation that are related to a substantial amount of time
variant blur as shown for the last two cases could not be compensated.

7.4.3 Application to Super-Resolved Mosaicing

Besides the spatial resolution, another quality criterion of ophthalmic imaging sys-
tems is their FOV. In order to get a comprehensive view of the human retina for
diagnostic or interventional purposes, there is a strong need to capture retinal im-
ages with a wide FOV. This applies to technologies like the slit lamp, scanning
laser ophthalmoscopy or digital fundus cameras. In practice, however, this is chal-
lenging due the finite size of the human pupil and the fact that the pupil needs to
be dilated to increase the FOV. For this reason, software-based image registration
and mosaicing [Can 02, Catt 06, Adal 14, Zhen 14] have been proposed, which aims
at stitching multiple views of the retina.
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(a) Low-resolution video frames with eye accommodation over time

(b) Super-resolution under increasing eye accommodation

Figure 7.12: Super-resolution under out-of-focus blur due to eye accommodation over
time. (a) Low-resolution frames taken from a sequence with accommodation and increas-
ing out-of-focus blur from the first to the last frame. (b) Super-resolution for five different
subsequences taken from the input video with K = 8 frames using the same reference
frame and increasing out-of-focus blur from the first to the last frame.
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Figure 7.13: Sensitivity of super-resolution against out-of-focus blur due to eye accom-
modation. The sensitivity was assessed by measuring reproducibility of super-resolved
images associated with ten subsequences that show increasing out-of-focus blur relative
to the first subsequence. Reproducibility was measured by the SSIM and the NMAD.

This section demonstrates a novel combination of multi-frame super-resolution
with mosaicing techniques to enable super-resolved mosaicing. Unlike related
methods, this joint approach recovers a single mosaic view from low-resolution
video while simultaneously enhancing the spatial resolution. For the study of
super-resolved mosaicing, we employ the method proposed in [Kohl 16a] that re-
constructs a single retinal mosaic from multiple super-resolved images. This ap-
proach exploits a set of low-resolution frames Y that consists of n disjoint subsets
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(a) Low-resolution views (b) Super-resolved mosaic

Figure 7.14: Application of multi-frame super-resolution for image mosaicing. (a) Single
low-resolution images for nine different regions of the human retina extracted from video
data of a healthy subject. The different regions were scanned by asking the subject to
fixate nine different positions on a fixation target. (b) Super-resolved mosaic reconstructed
from the original video data of the nine regions. Figure reused from [Kohl 16a] with the
publisher’s permission ©2016 IEEE.

Yi, i = 1, . . . , n. Each subset Yi is represented by Ki consecutive frames taken from
Y and is referred to as a view. These views capture complementary regions on the
human retina due to eye motion during the examination.

In summary, super-resolved mosaicing is described by the following three-
stage procedure:

1. Eye tracking is used for a fully automatic selection of n views. This is done
in real-time using the optic disk as a robust feature for tracking [Kurt 14].

2. For each view Yi that is selected according to the tracking procedure, Ki
frames are utilized to reconstruct the corresponding super-resolved view xi.

3. The super-resolved views x1, . . . , xn are first geometrically and photometri-
cally registered and then stitched to a mosaic by adaptive averaging.

Figure 7.14 demonstrates super-resolved mosaicing on video data acquired
from one healthy subject. In this experiment, we examined the left eye without
dilating the pupil and asked the subject to fixate nine different positions on a fix-
ation target. This resulted in eye movements across the frames in the acquired
video sequence, and hence a scan of different regions of the retina as depicted in
Fig. 7.14. We employed super-resolution with magnification s = 2 for these views
with Ki = 8 frames as embedded in the proposed mosaicing framework. The final
mosaic was assembled from nine different views. On the one hand, the super-
resolution stage enhanced the spatial resolution of the original video data. On the
other hand, stitching of super-resolved views enlarged the FOV from ≈ 15◦ in the
video data to ≈ 30◦ in the mosaic image.
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7.5 Conclusion

This chapter introduced a new super-resolution framework for retinal fundus video
imaging as a novel diagnostic technique in ophthalmology. In order to reconstruct
high-resolution fundus images from a low-resolution video, natural human eye
movements during an examination are exploited. An image formation model was
introduced that models eye movements by affine image-to-image transformations
and considers spatial and temporal photometric variations across multiple frames.
Based on this model, an iterative super-resolution algorithm was introduced that
is steered by image quality self-assessment for the automatic selection of regular-
ization hyperparameters. Quality self-assessment is based on a continuous quality
measure that characterizes the level of sharpness and noise. The proposed mea-
sure has a mean Spearman rank correlation of 0.70 w. r. t. the PSNR, which shows
that it can act as surrogate for full-reference quality assessment in the absence of
ground truth data.

In a quantitative study, super-resolution enhanced the PSNR by 3.5 dB and the
SSIM by 0.07 compared to low-resolution data. Moreover, the sensitivity of au-
tomatic blood vessel segmentation was improved by 10 %. Super-resolution on
video data acquired with a mobile low-cost fundus camera provided images of
comparable quality to those of commercially available, but expensive and sta-
tionary cameras. This encourages the use of the proposed method within clinical
workflows, where cost-efficiency and mobility are essential, e. g. computer-aided
screening. In addition, super-resolved mosaicing was presented to reconstruct
high-resolution fundus images with enlarged FOV.

Future work needs to study the impact of the proposed framework to the di-
agnostic usability of fundus video imaging. One promising direction for future
research is the adoption of super-resolution within machine learning techniques
for computer-aided diagnosis regarding prevalent eye diseases [Bock 10, Abra 15].
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This chapter investigates new applications of super-resolution to facilitate inter-
ventional medical imaging. In this context, one emerging field of research is the
development of image guidance systems by means of hybrid range imaging to as-
sist surgeons during minimally invasive or open surgical procedures. These sys-
tems can be implemented based on active range sensor technologies that enable
the joint acquisition of surface data besides photometric information to provide
a comprehensive view of the underlying scene. However, one common issue of
these technologies is the low spatial resolution of todays range sensors, which
limits their applicability in medical workflows. In order to enhance the reliability
of image guidance, this chapter adopts the multi-sensor super-resolution frame-
work presented in Chapter 5. The following complementary imaging setups are
examined: 1) 3-D endoscopy to enhance minimally invasive surgical procedures
as well as 2) 3-D image guidance for open surgery. This chapter presents system
calibration approaches for both setups as a prerequisite for multi-sensor super-
resolution. In addition, a comprehensive evaluation for super-resolution based on
synthetic and ex-vivo datasets in both applications is reported.

An early study of super-resolution in 3-D endoscopy has been published by
Köhler et al. [Kohl 13b] and Haase [Haas 16]. These concepts have been later ex-
tended in [Kohl 14b] and [Kohl 15b] including their application in open surgery.

8.1 Introduction and Medical Background

In the area of interventional medical imaging, one recent trend is the usage of
range imaging technologies to gain 3-D surface information of patient anatomy
in addition to 2-D photometric data [Baue 13]. If both approaches are aggregated,
the combined setup enables intra-operative hybrid imaging of the anatomy. Com-
pared to pure 2-D imaging, the existence of additional range information features
various advantages for medical interventions. One of the most obvious benefits is
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Figure 8.1: Color and ToF range measurements of porcine organs along with textured
mesh representations to visualize sensor data fusion. Top row: ex-vivo data captured with
a hybrid 3-D endoscope in minimally invasive surgery (see Section 8.3.2). Bottom row: ex-
vivo data acquired with an imaging setup applicable for open surgery (see Section 8.3.3).

the expectation that range data holds the potential to offer the surgeon a more com-
prehensive view of patient anatomy in order to enhance the safety and efficiency of
surgical procedures. In addition, it initiated the development of novel techniques
for computer-assisted interventions to aid the surgeon. Some prominent examples
for such applications in the area of minimally invasive surgery include automatic
localization and collision avoidance for surgical instruments [Haas 13d, Wang 14].
More recently, 3-D abdomen reconstruction using range satellite cameras has been
proposed to improve orientation and navigation during minimally invasive pro-
cedures [Haas 13a]. Another use case widely investigated for open surgery is the
multi-modal registration of pre-operative, tomographic planning data with intra-
operative range information [Mers 11]. This has widespread applications for aug-
mented reality to aid surgeries or forensic medicine [Kilg 15].

In terms of the technical implementation of hybrid range imaging, there ex-
ist various approaches with individual pros and cons in image-guided surgery
[Maie 13, Maie 14]. One of the historically first approaches to gain range data
is stereo vision. Stereoscopy features a passive approach that utilizes geometric
correspondences across two views of the same scene, e. g. pairs of correspond-
ing points, to triangulate range data. The advantage of stereoscopy is that it can
capture highly accurate measurements under ideal situations and has been engi-
neered in stereo-based endoscopes [Fiel 09]. However, under realistic conditions
in image-guided surgery it is error prone due to repetitive image structures or
texture-less surfaces. In image-guided surgery, active senor technologies such as
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ToF [Penn 09] or structured light [Schm 12] provide a promising alternative and
hold the potential to capture dense range images in real-time. Unfortunately, one
of their major shortcomings are their spatial resolutions that are rather low com-
pared to modern color cameras. This means a major barrier to employ such sen-
sors in clinical workflows. Figure 8.1 depicts ex-vivo ToF measurements alongside
with high-resolution color images to visualize this issue for endoscopy and open
surgery. Here, the overlay of range and color data demonstrates the complemen-
tary natures of both technologies. While color sensors capture photometric infor-
mation of high spatial resolution, range sensors provide 3-D information that is ac-
quired at a lower resolution. Range sensors might also suffer from a low SNR due
to random or systematic errors, which is common in case of current ToF sensors
[Kolb 10, Furs 16]. In order to overcome the low spatial resolution of range sensors
in these systems, this chapter adopts the multi-sensor super-resolution framework
introduced in Chapter 5. Accordingly, we employ high-resolution color images as
guidance to super-resolve low-resolution range data.

The remainder of this chapter is structured as follows. Section 8.2 introduces
system calibration techniques to facilitate sensor data fusion for hybrid range imag-
ing in image-guided surgery as prerequisite for multi-sensor super-resolution. Sec-
tion 8.3 presents a quantitative simulation study along with ex-vivo experiments
for super-resolution in minimally invasive and open surgery workflows. Sec-
tion 8.4 draws a conclusion for these studies.

8.2 System Calibration and Sensor Data Fusion

The super-resolution method proposed in Chapter 5 has the goal to reconstruct
high-resolution range data from a set of low-resolution range images y(1), . . . , y(K)

to facilitate accurate 3-D measurements for image-guided surgery. This framework
is driven by high-resolution color images z(1), . . . , z(K) that encode photometric
information of the same scene. According to Chapter 5, color images are exploited
for motion estimation, spatially adaptive regularization as well as outlier detection
in the underlying reconstruction algorithm, see Fig. 8.2. This requires a pixel-wise
mapping across both modalities, which is unknown a priori. Accordingly, multi-
sensor super-resolution necessitates a system calibration to establish the mapping.

In this section, two calibration schemes are presented that are applicable to hy-
brid range imaging systems in image-guided surgery. This includes a homography
approach that is applicable to beam splitter setups as well as a stereo vision approach
that involves intrinsic and extrinsic camera calibrations. For more technical details
on these approaches and their comparative evaluation, we refer to [Haas 16].

8.2.1 Sensor Data Fusion using a Homography

The first approach assumes that a 3-D surface is measured by a single optical sys-
tem that acquires range and photometric information simultaneously. This can be
implemented by means of a beam splitter that decomposes incoming light into
two parts according to the wavelength, see Fig. 8.3. Range and photometric data is
captured by two separate sensors that have the same view to the underlying scene.
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Figure 8.2: Flowchart of multi-sensor super-resolution for hybrid range imaging in image-
guided surgery. The sensor fusion between range and color images is gained by system
calibration using geometric correspondences among both modalities. Then, the fused im-
ages are used for motion estimation and the reconstruction of super-resolved range data.

In order to perform sensor data fusion, we employ the calibration approach
introduced by Haase et al. [Haas 13b] that has been later adopted for multi-sensor
super-resolution in [Kohl 13b]. For the task of system calibration, let uy and uz be a
pair of corresponding points on a checkerboard calibration pattern in a range and
a color image, respectively1. The relationship between these points is modeled
according to:

ũz ∼= Hyzũy, (8.1)

where ũz ∈ R3 and ũy ∈ R3 denote the points uz and uy in homogeneous coordi-
nates [Hart 04]. The homography Hyz ∈ R3×3 describes this mapping up to scale
denoted by ∼=. For system calibration, a set of point correspondences is identified
by a self-encoded marker [Form 11] and the homography Hyz is found by least-
squares estimation [Brad 00]. Then, the homography is used to fuse range and
color images in a common coordinate system. In the proposed framework, each
color image is warped towards the corresponding range image, up to a scale factor
to preserve the spatial resolution.

The use of a homography offers a couple of useful properties. One essential
property is the possible inversion of the mapping between both modalities. In
addition, the homography enables sensor data fusion solely with corresponding
point pairs without involving intrinsic or extrinsic camera calibration. In prac-
tice, the estimated homography leads to re-projection errors of subpixel accuracy
[Haas 13b], which enables a highly accurate sensor data fusion. In this chapter, this

1In order to detect feature points in range data, the amplitude images provided by a ToF sensor
after contrast enhancement and binarization as shown in [Haas 13b] can be used.
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Figure 8.3: Geometry of the system setup for the simultaneous acquisition of range and
photometric data with one common optical system. The beam splitter decomposes in-
coming light into a range and a photometric signal. In this approach, the mapping of
photometric data towards a range image (and vice versa) is modeled by a homography.

approach is utilized for hybrid 3-D endoscopy. Here, it provides the acquisition of
color and range data through one single endoscope equipped with a beam splitter.

8.2.2 Sensor Data Fusion using Stereo Vision

The second approach considers the case that a 3-D surface is captured with two
separate cameras with respective optical systems. These cameras acquire color and
range information of the same scene from different viewpoints. Using a temporal
synchronization, we can combine both modalities. The advantage of this setup is
that it is not necessary to combine range and color sensors by a common optical
system, see Fig. 8.4. This is beneficial as it increases the flexibility in terms of the
camera hardware. In the applications presented below, this setup is examined for
image-guided open surgery.

Unlike in the beam splitter setup, the system calibration cannot be described
by a homography. As a consequence, one needs to perform stereo camera cali-
bration [Hart 04] to fuse color and range images. In this work, sensor fusion is
accomplished according to the calibration method introduced in [Haas 12] that
has been later used for multi-sensor super-resolution in [Kohl 15b]. First, a point
u = (uy, vy) on the range camera image plane with the measured range value y is
re-projected to the 3-D space according to:

Ũ ∼= P−1
y
(
uy vy y 1

)> , (8.2)

where Py ∈ R4×4 is the range camera projection matrix as shown in the calibration
approach of Park et al. [Park 11]. Subsequently, the re-projected point given in
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Figure 8.4: Geometry of the system setup for the simultaneous acquisition of range and
photometric data with two separate sensors and optics. The mapping of photometric data
towards a range image is determined by stereo calibration for both cameras.

homogeneous coordinates Ũ ∈ R4 can be projected onto the image plane of the
color camera. Using the re-projected point in Eq. (8.2), the corresponding pixel
position in homogenous coordinates is given by:

ũz ∼= PzŨ

= PzP−1
y
(
uy vy y 1

)> ,
(8.3)

where Pz ∈ R3×4 denotes the projection matrix of the color camera. The projection
matrices Pz and Py in Eq. (8.3) are determined by intrinsic and extrinsic camera
calibration. This is done using checkerboard calibration patterns to establish point
correspondences for the calibration and least-squares optimization. The calibra-
tion procedure yields the intrinsic calibration matrices Ky ∈ R3×3 for the range
camera and Kz ∈ R3×3 for the color camera as well as the extrinsic parameters
given by the rotation matrix R ∈ R4×4 and the translation vector t ∈ R4. Simi-
lar to the homography approach, this method is used to warp color images to the
domain of the range data up to a scale factor. However, notice that the calibrated
mapping is not invertible and is affected by occlusions.

Compared to the homography approach, a stereo calibration suffers from short-
comings in terms of its accuracy under practical conditions. In particular, the cali-
bration accuracy is highly dependent on the reliability of the measured range data
as these measurements are used for the re-projection in Eq. (8.2). In order to deal
with random measurement noise, the calibration is performed on preprocessed
range data using the filter pipeline proposed in [Wasz 11c]. Moreover, for the com-
pensation of systematic errors in the range data [Kolb 10], the extrinsic parameters
are further refined after stereo calibration. For this purpose, the translation vector
t is refined by optimizing the normalized mutual information [Plui 03] between
range and color data to alleviate a potential bias in the calibration.
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Figure 8.5: Color and range image obtained from an artificial laparoscopic scene. Simu-
lated data (bottom row) is generated from the ground truth (top row) using subsampling,
blurring as well as conditions of ToF endoscopy like specular highlights.

8.3 Experiments and Results

This section present an experimental evaluation of multi-sensor super-resolution
for hybrid range imaging systems in image-guided surgery. For a quantitative
evaluation, a comprehensive simulation study is presented to validate accuracy
and robustness of super-resolution in the desired applications. Subsequently, the
applicability of the proposed framework is demonstrated by ex-vivo experiments
for hybrid 3-D endoscopy as well as image guidance in open surgery.

8.3.1 Simulated Data Experiments

In the following study, we used artificial hybrid range data from the publicly avail-
able Multi-Sensor Super-Resolution Datasets2 for a quantitative evaluation. These
range and color images were obtained from an artificial laparoscopic scene under
the conditions of minimally invasive surgery using the RITK [Wasz 11a]. Ground
truth range and color images were gained from the artificial 3-D model and both
modalities were perfectly aligned to exclude the influence of calibration errors in
this baseline experiment. Color images were encoded with a pixel resolution of
640×480 px and disturbed by a Gaussian PSF (σPSF = 0.5) as well as additive
Gaussian noise (σnoise = 0.001). The corresponding range images were simulated
with a pixel resolution of 64×48 px. To analyze the influence of systematic errors,
the simulation considered the following effects of ToF imaging and surgical inter-
ventions. First, as opposed to space invariant noise, Gaussian noise in range data

2https://www5.cs.fau.de/research/data/multi-sensor-super-resolution-datasets/

https://www5.cs.fau.de/research/data/multi-sensor-super-resolution-datasets/
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Table 8.1: Overview of range super-resolution algorithms along with their parameter set-
tings. Multi-sensor super-resolution is employed with different algorithm profiles (MSR,
AMSR, AMSR-OD). Single-sensor super-resolution (SSR) is considered as the baseline.

Reconstruction algorithm Algorithm properties

Motion Adaptive Outlier
estimation regularization detection

Single-sensor super-resolution direct 7 7

(SSR)

Multi-sensor super-resolution filter-based 7 7

(MSR)

Adaptive multi-sensor super-resolution filter-based 3 7

(AMSR) τ0 = 0.025, Nxz = 7

Adaptive multi-sensor super-resolution filter-based 3 3

with outlier detection (AMSR-OD) τ0 = 0.025, Nxz = 7 ρ0 = 0.5

was simulated to be distance-dependent with a maximum standard deviation of
σnoise = 10 mm in the scene space. Second, specular highlights in color images
were simulated as a common issue in endoscopy [Haas 14]. These specular high-
lights resulted in range measurements disturbed by Perlin noise in the affected im-
age regions. Finally, range data was corrupted by flying pixels [Kolb 10] that were
generated by randomly flipping 20 % of all pixels located on depth discontinuities.

The artificial model was used to generate image sequences of the scene from
different perspectives along with surgical instruments, see Fig. 8.5. Movements of
an hand-held endoscope were simulated by a randomly generated rigid motion of
the virtual camera in the scene space. In addition, movements of surgical instru-
ments and soft tissue were simulated to consider realistic conditions in minimally
invasive surgery. We use the superposition of these 3-D movements that appear
as 2-D subpixel motion in range and color images as a cue for super-resolution.

We examine the reconstruction methods that were previously introduced in
Section 5.5 using a Huber prior with δHuber = 5 · 10−4 and λ = 0.8. See Tab. 8.1
for an overview of the configurations of the different multi-sensor techniques.
Throughout the following experiments, the single-sensor reconstruction algorithm
(SSR) that works solely on the range data is considered as the baseline and com-
pared to the different multi-sensor methods (MSR, AMSR, and AMSR-OD).

Accuracy Analysis. In order to conduct a baseline experiment, four artificial
datasets (S1 - S4) were generated from the given laparoscopic scene. Throughout
all experiments, super-resolution was performed with magnification s = 4 and
K = 31 frames, where the central one was used as reference for variational op-
tical flow computation [Liu 09]. The reconstructions were conducted in a sliding
window scheme using K successive frames to obtain single super-resolved images.

The statistics of the PSNR and SSIM of super-resolved range data reconstructed
by the different algorithms on ten randomly generated image sequences per dataset
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Figure 8.6: Single-sensor super-resolution (SSR) versus the different multi-sensor algo-
rithms (MSR, AMSR, and AMSR-OD) on an artificial laparoscopic scene. The statistics
(mean ± standard deviation) of the PSNR and SSIM measures were determined on four
datasets (S1 - S4) with known ground truth range data. For each dataset, super-resolution
was applied for ten consecutive image sequences using sliding window processing.

are reported in Fig. 8.6. Notice that multi-sensor super-resolution consistently
outperformed the single-sensor approach on all datasets. The most substantial
improvements were obtained under challenging situations for optical flow esti-
mation due to motion of soft tissue and instruments along with movements of the
virtual endoscope. The multi-sensor formulation considerably increased the ac-
curacy of the motion estimate using the underlying filter-based technique, which
resulted in accurate range super-resolution. In addition, spatially adaptive regu-
larization (AMSR) leveraged the reconstruction of depth discontinuities compared
to non-adaptive regularization (MSR). This affects the measurement of anatomical
structures or surgical instruments. Moreover, outlier detection (AMSR-OD) en-
hanced the robustness against individual misregistered frames as well as outliers
in the low-resolution range data, e. g. space variant random noise or systematic er-
rors. This is notably for situations where the filter-based motion estimation cannot
establish a reliable displacement field since optical flow computation on color im-
ages entirely failed. See Fig. 8.7 for a visual comparison on two example datasets
(S2 and S3) in these situations. Here, the full combination of the proposed multi-
sensor techniques (AMSR-OD) provides reliable range data including accurate re-
constructions of soft tissue and surgical instruments.

Robustness Analysis. In terms of the robustness, multi-sensor super-resolution
is affected by the conditions in image-guided surgery. Let us study two important
issues that are related to motion estimation and system calibration.

One important problem case is the uncertainty of optical flow estimation un-
der realistic conditions. This issue was investigated by intentionally disturbing the
optical flow determined on color images by zero-mean, normal distributed noise
with standard deviation σOFL in each displacement component. In practice, this
situation might appear in texture-less regions on organ surfaces resulting in un-
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(a) Input range (b) SSR (c) MSR

(d) AMSR (e) AMSR-OD (f) Ground truth

Figure 8.7: Super-resolution reconstruction (K = 31 frames, 4× magnification) on two
datasets of an artificial laparoscopic scene. First and third row: comparison of low-
resolution range data to single-sensor super-resolution (SSR) and the different multi-
sensor approaches (MSR, AMSR, and AMSR-OD) for the dataset S2. Notice that direct
motion estimation on range data as implemented by the SSR approach failed, which re-
sulted in unreliable super-resolved range information. Second and fourth row: compari-
son for the dataset S3. Note that outlier detection as implemented by AMSR-OD compen-
sated for outliers in optical flow that are related to difficult motion types, e. g. endoscope
movements superimposed with independently moving surgical instruments.
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Figure 8.8: Robustness analysis of different multi-sensor approaches (MSR, AMSR, and
AMSR-OD) using the single-sensor approach (SSR) as baseline. (a) Sensitivity regarding
optical flow corrupted by Gaussian noise with standard deviation σOFL measured in pixels
of the color images. (b) Sensitivity regarding calibration errors simulated by translational
misalignments of length εt measured in pixels of the color images.

reliable displacement fields. Figure 8.8a shows the impact of noisy optical flow
for the dataset S1 at different noise levels σOFL measured in terms of pixels of the
color images. Notice that even for large noise levels, the different multi-sensor
approaches were nearly insensitive to noisy optical flow and considerably outper-
formed the single-sensor reconstruction. This behavior is related to the filter-based
motion estimation as an integral part of multi-sensor super-resolution, which gets
rid of the noise present in the optical flow of the color images.

So far, the fusion among color and range data was assumed to be exact. In prac-
tice, however, the actual accuracy is highly affected by unavoidable calibration er-
rors. This influences the reliability of the multi-sensor reconstruction as it relies
on accurate sensor data fusion. For a robustness analysis, small misalignments
between both modalities were intentionally induced in the simulation process to
consider calibration errors. These misalignments were obtained by randomly gen-
erated translations of the color images relative to the range data. The behavior
of super-resolution at different misalignments measured by the translation length
εt in terms of pixels of color data is shown in Fig. 8.8b for the dataset S1. No-
tice that in contrast to single-sensor super-resolution, the accuracy of the different
multi-sensor approaches dropped under increasing misalignments. In particular,
spatially adaptive regularization as well as outlier detection were sensitive regard-
ing this effect, while filter-based motion estimation was less affected. However, the
different multi-sensor approaches still outperformed the competing single-sensor
approach confirming a reasonable robustness against calibration errors.

8.3.2 Application to Hybrid 3-D Endoscopy

This section demonstrates the application of multi-sensor super-resolution in the
area of minimally invasive surgery. For this study, ex-vivo experiments were con-
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ducted by measuring porcine organs with a hybrid 3-D endoscope3. Range data
was captured with a ToF sensor that features a pixel resolution of 64×48 px at
a frame rate of 30 Hz. The corresponding color sensor provides a resolution of
640×480 px. Both sensors are combined in a single optical system that is equipped
with a beam splitter to synchronize the acquisition of range and color images
[Haas 13b]. Therefore, the homography approach presented in Section 8.2.1 was
used for calibration and sensor data fusion.

To induce motion, the endoscope was shifted over time relative to the organ
surface. In addition, surgical instruments were moved to consider the conditions
of minimally invasive procedures. Super-resolution was performed with magnifi-
cation s = 4 and K = 31 consecutive frames, where the central frame was chosen
as reference for optical flow [Liu 09].

Reconstruction Results. Figure 8.9 depicts a comparison among the different re-
construction algorithms to low-resolution range data on one example dataset. In
this application, we are particularly interested in reliable reconstructions of soft
tissue surfaces and artificial objects, e. g. the instrument tips. It is worth noting
that these structures are difficult to detect in the measured range data.

In comparison to the single-sensor reconstruction (SSR), the proposed filter-
based motion estimation substantially improved the reliability of the computed
displacement fields. This resulted in a superior accuracy of the multi-sensor algo-
rithm (MSR) in terms of the reconstruction of anatomical structures and surgical
instruments. In contrast to the filter-based approach, direct optical flow estimation
on range data as implemented for the single-sensor reconstruction was error prone
and did not capture endoscope or instrument movements appropriately. Notice
that spatially adaptive regularization (AMSR) enhanced the multi-sensor recon-
struction even further. This translated into a superior recovery of depth disconti-
nuities. Moreover, outlier detection (AMSR-OD) got rid of non-Gaussian noise re-
lated to systematic distance- and intensity-dependent errors in ToF imaging. This
considerably improved the reconstruction of soft tissue surfaces.

Range Data Quality Assessment. Two no-reference quality measures are used to
quantitatively assess the reliability of range data. One criterion is noise reduction
on reconstructed surfaces. To this end, a blind SNR estimation is performed. The
measure that is used in this work is computed for flat surfaces according to:

Qsnr = 10 log10

(
µflat

σflat

)
, (8.4)

where µflat and σflat denote the mean and standard deviation of the range measure-
ments in a rectangular region of interest, respectively. This measure is defined in
dB and the higher Qsnr, the more accurate the reconstruction of the surface.

Besides reliable surface reconstruction, another goal is the accurate reconstruc-
tion of object transitions. For this purpose, regions of interests that contain an

3All experiments for this study were conducted with the hybrid 3-D endoscope prototype man-
ufactured by the Richard Wolf GmbH, Knittlingen, Germany.
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Figure 8.9: Super-resolution reconstruction (K = 31 frames, 4× magnification) for hybrid
ToF/RGB endoscopy on a porcine liver. First and third row: high-resolution color image
and low-resolution range data in comparison to super-resolved range images obtained by
single-sensor super-resolution (SSR) as well as the different multi-sensor algorithms (MSR,
AMSR, and AMSR-OD). Second and fourth row: zoom-in for an image region that contains
surgical instruments. Notice that single-sensor super-resolution failed to provide reliable
range information, while the different multi-sensor algorithms considerably enhanced the
accuracy of range information for soft tissue and the surgical instruments.
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Table 8.2: Mean± standard deviation of the no-reference quality measures Qsnr and Qedge
in the ex-vivo study for hybrid 3-D endoscopy. Both measures were determined using
manually selected regions of interest in low-resolution and super-resolved range data
gained by the different reconstruction algorithms. In total, nine datasets with six man-
ually selected regions per dataset were used.

Measure Low-res. data Super-resolved data

SSR MSR AMSR AMSR-OD

Qsnr 7.2 ± 2.8 10.6 ± 2.1 10.6 ± 2.1 11.4 ± 2.3 11.8 ± 2.4
Qedge 1.9 ± 0.4 2.4 ± 0.7 2.7 ± 1.1 3.1 ± 1.7 3.2 ± 2.0

edge between two structures in the range data are analyzed. The range values
are described by a Gaussian mixture model (GMM) consisting of two components
that represent foreground and background range values, respectively. Then, the
quality measure to assess the reconstruction of depth discontinuities is defined as:

Qedge =
wb(µb − µ)2 + w f (µ f − µ)2

wbσ2
b − w f σ2

f
, (8.5)

where µ denotes the mean range value in the selected region, and µb and µ f are the
mean values of the background and the foreground, respectively. Similarly, σb and
σf are the standard deviations, and wb and w f are the weights associated with the
GMM components. This model is fitted to the range values using k-means cluster-
ing (k = 2). Notice that lower estimates of σb and σf along with larger differences
between µb and µ f indicate a better discrimination between foreground and back-
ground. Accordingly, the higher Qedge the better the underlying reconstruction.

Six image regions per dataset containing flat surfaces and depth discontinu-
ities were manually selected. The respective statistics of Qsnr and Qedge for nine
datasets are summarized in Tab. 8.2. In comparison to raw range data, the combi-
nation of all multi-sensor techniques (AMSR-OD) leads to an increase of Qsnr and
Qedge by 64 % and 68 %, respectively. The different multi-sensor algorithms also
improved the reconstruction of flat surfaces and depth discontinuities in compari-
son to a single-sensor approach (SSR). These properties express a higher reliability
of range data to facilitate segmentation or object detection [Haas 13c].

8.3.3 Application to Image Guidance in Open Surgery
Let us now demonstrate the application of multi-sensor super-resolution for im-
age guidance in open surgery. In contrast to hybrid 3-D endoscopy, a stereo cam-
era setup was developed for ex-vivo measurements on a porcine liver. In order to
measure the liver surface, range data was captured with a PMD CamCube 3 ToF
camera that provides a pixel resolution of 200×200 px at a frame rate of 30 Hz. A
Grasshopper2 camera with a resolution of 1200×1200 px was used to acquire color
images and was temporally synchronized to the range sensor. Both cameras were
coupled on a tripod with a baseline that was chosen as small as possible to min-
imize occlusions. This stereo setup was calibrated according to Section 8.2.2 and
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Table 8.3: Mean± standard deviation of the no-reference quality measures Qsnr and Qedge
in the ex-vivo study of image-guided open surgery. Both measures were determined us-
ing manually selected regions of interest in low-resolution and super-resolved range data
gained by the different reconstruction algorithms. In total, four datasets with six manually
selected regions per dataset were used.

Measure Low-res. data Super-resolved data

SSR MSR AMSR AMSR-OD

Qsnr 17.8 ± 0.9 21.7 ± 1.5 22.0 ± 1.4 22.1 ± 1.4 22.1 ± 1.4
Qedge 3.9 ± 0.9 5.0 ± 1.0 6.6 ± 1.3 6.7 ± 1.4 6.7 ± 1.4

color images were fused with the range data based on the intrinsic and extrinsic
camera parameters.

The motion required for super-resolution was induced by small vibrations of
the tripod. Super-resolution was performed with magnification factor s = 4 using
K = 31 consecutive range images, where the central one was chosen as reference
for optical flow [Liu 09].

Reconstruction Results. Figure 8.10 shows a qualitative comparison among low-
resolution range data acquired under this setup and super-resolution using the
different reconstruction algorithms. In this use case, super-resolution aims at re-
constructing reliable surface information of the measured porcine liver.

Similar to the ex-vivo experiments for minimally invasive surgery, one can ob-
serve that direct optical flow estimation on low-resolution range data was error
prone. This resulted in a poor surface reconstruction provided by the single-sensor
approach (SSR), which is particularly visible by blurred boundaries of the porcine
liver. The different multi-sensor approaches (MSR, AMSR, and AMSR-OD) were
less sensitive to this issue due to the higher reliability of the filter-based motion
estimation driven by the color images. Note that in this application, the quality
gain achieved by spatially adaptive regularization was limited since surfaces were
typically more smooth and thus edges could not be exploited by the underlying
regularization technique. Moreover, outlier detection did not achieved substantial
quality gains due to the higher reliability of the motion estimate and the measured
range data.

Range Data Quality Assessment. Super-resolved and low-resolution range data
was quantitatively assessed in six image regions per dataset. The statistics of Qsnr
and Qedge evaluated on four datasets are summarized in Tab. 8.3. In comparison
to raw range data, combining the multi-sensor techniques (AMSR-OD) leads to
an increase of Qsnr and Qedge by 24 % and 72 %, respectively. The multi-sensor
reconstruction algorithms also outperformed the single-sensor approach (SSR) re-
garding the reconstruction of depth discontinuities. It is worth noting that this is
essential for the further usage of range information for image guidance, e. g. in
augmented reality [Mers 11, Kilg 15].
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(a) Input RGB (b) Input range (c) SSR

(d) MSR (e) AMSR (f) AMSR-OD

Figure 8.10: Super-resolution reconstruction (K = 31 frames, 4× magnification) for
ex-vivo experiments in image-guided open surgery on a porcine liver. First and third
row: high-resolution color image and low-resolution range data in comparison to super-
resolved range images obtained by single-sensor super-resolution (SSR) as well as the dif-
ferent multi-sensor algorithms (MSR, AMSR, and AMSR-OD). Second and fourth row:
zoom-in for different areas on the boundary of the porcine liver. Notice that multi-sensor
super-resolution considerably enhanced the accuracy of the reconstructed liver surface.
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(a) Original (b) Super-resolution (4×magnification)

Figure 8.11: Fusion of color and range information depicted as a textured 3-D mesh visual-
ization in hybrid 3-D endoscopy (top row) and image guidance for open surgery (bottom
row). (a) 3-D mesh based on low-resolution range data acquired with ToF sensors. (b) 3-D
mesh based on super-resolved range data obtained by multi-sensor super-resolution (4×
magnification). Figure reused from [Kohl 15b] with the publisher’s permission.

8.4 Conclusion

This chapter investigated super-resolution in image-guided surgery based on hy-
brid range imaging. One of the fundamental limitations of this technology to-
wards clinical applications is the low spatial resolution of current range sensors.
In order to alleviate this issue, multi-sensor super-resolution was adopted to gain
high-resolution range images from low-resolution ones using color images as guid-
ance. To this end, domain-specific system calibration schemes to enable sensor
data fusion among range and color images were introduced.

Two application areas were investigated in a simulation study as well as ex-
vivo experiments on porcine organs: 1) hybrid 3-D endoscopy for minimally in-
vasive surgery, and 2) image guidance in open surgery. In both areas, super-
resolution enhanced the reliability of surface information and enabled the recon-
struction of anatomical structures or artificial objects like surgical instruments that
were barley detectable in low-resolution measurements. In ex-vivo experiments
using ToF sensors, the proposed techniques improved the reliability of surface
and depth discontinuity measurements compared to raw range data by more than
24 % and 68 %, respectively. Super-resolved range data can be augmented with
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high-resolution color images for a comprehensive representation of the measured
scene, see Fig. 8.11. This can be considered as a key requirement regarding appli-
cations for computer-assisted interventions, e. g. tracking [Haas 13d] and segmen-
tation [Haas 13c] of surgical instruments as well as augmented reality [Mers 11] to
name a few.

Different to related filter-based preprocessing techniques proposed for image-
guided surgery [Wasz 11b], super-resolution appropriately models physical effects
of image formation like motion among successive frames or the underlying camera
PSF. The general-purpose model used in this work can be extended even further
by domain-specific effects like specular highlights or intensity related uncertainty
of range measurements [Reyn 11]. However, super-resolution comes to a higher
computational effort, which means a practical limitation for specific workflows
with real-time constraints. Therefore, future work needs to consider an efficient
implementation to enable real-time processing. This might be achieved by the
use of efficient motion estimation methods [Plye 14] or by a massively parallel
implementation of the reconstruction algorithm [Wetz 13].



Part IV

Summary and Outlook
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Summary

Multi-frame super-resolution is a software-based approach to overcome physical
limitations regarding the spatial resolution of digital sensor technologies. This
pursues the objective of enabling high-resolution imagery based on cost-effective
systems retrospectively. To this end, we investigated novel computational meth-
ods and their applications with emphasis on medical imaging workflows. This
thesis covers both, classical super-resolution applied to image data of a single
modality as well as multi-sensor super-resolution in hybrid imaging.

Chapter 2 of this work concerned a theoretical study of multi-frame super-
resolution using the Fourier transform. More specifically, we described super-
resolution from a signal processing point of view as a linear inverse problem in
multi-channel sampling. This concept was utilized to show the relationship to the
Nyquist-Shannon sampling theorem and to discuss the meaning of the magnifica-
tion factor. Eventually, we proved and discussed conditions to achieve uniqueness
of super-resolution reconstruction.

In the sequel, the main research findings of this thesis were divided into three
parts.

Numerical Methods for Multi-Frame Super-Resolution. Part I concerned the
development of super-resolution methods for a single imaging modality. We fo-
cused on multi-frame algorithms that aim at reconstructing single high-resolution
images from sequences of low-resolution frames by exploiting subpixel motion
across the input images.

Chapter 3 introduced the computational framework utilized throughout this
work along with a review on current super-resolution paradigms. We introduced
a mathematical model to describe the physics of digital imaging. This image for-
mation model was discretized to make it accessible for the development of nu-
merical algorithms from a Bayesian estimation perspective. More specifically, as
two of the most fundamental approaches, we presented maximum likelihood (ML)
and maximum a-posteriori (MAP) estimation to gain point estimates of a latent
high-resolution image from noisy, low-resolution observations. Numerous algo-
rithms, building upon the Bayesian paradigm, that have been developed over the
past years are prone to fail under practical conditions. Most of these methods
are particularly sensitive regarding model parameter uncertainties like inaccurate
subpixel motion estimation.

Chapter 4 proposed a novel algorithm to meet the requirements regarding
robustness in real-world applications. To this end, we introduced a weighted
Bayesian observation model to consider outliers in the reconstruction algorithm.

181



182 Summary

Furthermore, we introduced a weighted prior distribution that encourages spar-
sity to model the statistical appearance of natural images. Super-resolution was
implemented as iteratively re-weighted energy minimization to simultaneously
estimate high-resolution images and latent model confidence weights. We showed
the relationship of this iteration scheme to majorization-minimization (MM) algo-
rithms and rigorously proved its convergence. In comparative experimental evalu-
ations with focus on challenging real-world conditions like space variant noise, in-
accurate motion estimation, or photometric variations, the proposed method out-
performed the state-of-the-art. For instance, in a benchmark with inaccurate mo-
tion estimation, iteratively re-weighted minimization improved the peak-signal-
to-noise ratio (PSNR) by 0.7 decibel (dB) and the structural similarity (SSIM) by
0.04 compared to related robust algorithms. The optimization algorithm also re-
lies on a minimal amount of manual parameter tuning making it attractive for real
applications. It was also further customized in the super-resolution algorithms
developed in the remainder of this thesis.

Multi-Sensor Super-Resolution for Hybrid Imaging. Part II concerned super-
resolution for multiple modalities. In this area, referred to as hybrid imaging, we
studied two complementary problem statements.

Chapter 5 introduced multi-sensor super-resolution for a single modality un-
der the guidance of a second one. We studied the case that both modalities are co-
registered but complementary regarding their spatial resolutions. Accordingly, we
proposed a guidance image driven framework comprising three key components:
First, filter-based motion estimation is used to obtain displacement fields from
optical flow on high-resolution guidance data to avoid error-prone motion estima-
tion on low-resolution frames. Second, feature-based adaptive regularization is
used to exploit correlations in terms of discontinuities between low-resolution and
guidance data. Third, outlier detection using iteratively re-weighted minimization
driven by image similarity assessment on the guidance data is employed. These
techniques were validated for hybrid 3-D range imaging, where high-quality color
images steer super-resolution of range data. Overall, the multi-sensor methodol-
ogy led to gains of 0.9 dB in terms of peak-signal-to-noise ratio (PSNR) and 0.02 in
terms of structural similarity (SSIM) over a straightforward application of super-
resolution solely on the range data.

Chapter 6 generalized multi-sensor super-resolution to jointly super-resolve a
set of modalities. To this end, we dropped the usage of guidance data to facili-
tate a wider range of hybrid imaging setups. This methodology builds on multi-
channel images as the underlying mathematical concept. Its key notion is the con-
sideration of mutual dependencies between image channels in a Bayesian model.
Different to feature-based regularization, mutual dependencies are captured by a
novel locally linear regression (LLR) prior. This model was used to develop an
alternating minimization scheme building upon the robust algorithm presented in
Chapter 4. It is applicable in color-, multispectral-, and range imaging as well as
further applications beyond classical multi-frame super-resolution like joint seg-
mentation and resolution enhancement. As the primary insight, multi-channel
reconstructions outperformed sequential channel-wise reconstructions that essen-
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tially ignore inter-channel dependencies. In color imaging as a classical use case,
the proposed method led to a gain of 1.5 dB in terms of PSNR and 0.04 in terms of
SSIM compared to channel-wise super-resolution of color images.

Super-Resolution in Medical Imaging. Part III addressed applications in med-
ical imaging with focus on diagnostic and interventional use cases. The methods
investigated in this part pursue the common goal of overcoming the resolution
limitations of recently developed imaging technologies as important step towards
their clinical use.

Chapter 7 presented a new framework to approach super-resolution in the
area of retinal imaging. This framework targets at the reconstruction of a high-
resolution retinal image from a low-resolution video acquired from the human
eye background. For this purpose, we introduced an image formation model tai-
lored to the conditions of retinal video imaging and exploited natural eye move-
ments. Moreover, we presented a quality self-assessment scheme to estimate a
high-resolution image driven by an objective no-reference measure of image noise
and sharpness. This method was evaluated for low-cost retinal imaging on real
video data of healthy subjects and glaucoma patients. In this study, it led to an
image quality comparable to those of commercially available, but expensive and
stationary cameras. Furthermore, super-resolution was able to enhance common
image analysis tasks like automatic blood vessel segmentation, where it increased
the sensitivity by 10 % compared to a direct segmentation on low-resolution im-
ages. The proposed method can serve as a valuable tool for high-resolution im-
agery in clinical workflows with high demands on cost-efficiency and mobility,
e. g. screening applications.

Chapter 8 examined super-resolution to aid hybrid range imaging for image-
guided surgery. This concerns an adoption of the multi-sensor framework intro-
duced in Chapter 5, where high-resolution color images steer super-resolution on
low-resolution range data. To make this method usable for this particular domain,
we introduced two system calibration schemes for sensor data fusion among both
modalities: a beam splitter setup to measure geometric and photometric informa-
tion through a single optical system as well as a stereo vision setup that combines
distinct cameras. We conducted comprehensive experiments in two fields of to-
day’s surgery using these setups, namely 3-D endoscopy for minimally invasive
procedures and image guidance for open surgery. In ex-vivo experiments using
Time-of-Flight (ToF) sensors, multi-sensor super-resolution improved the reliabil-
ity of surface and depth discontinuity measurements compared to raw range data
by more than 24 % and 68 %, respectively. This is an essential step towards reliable
geometric measurements of anatomical structures or artificial objects like surgical
instruments. In combination with high-resolution photometric information, this
can provide surgeons a comprehensive view of the underlying scene.
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Outlook

Apart from the theory and applications investigated in this thesis, there is a great
number of opportunities for future work. Below, we summarize several promising
directions for further research that are related to this work.

Extension of the Image Formation Model. Throughout this work, we limited
ourselves to the algorithm design for linear image formation models that build
upon several idealizing assumptions. One of the pitfalls is the assumption of
isotropic and space invariant blur related to the camera point spread function
(PSF) that is known a priori. This assumption is reasonable in case of optical blur
as mainly considered in the investigated applications but might be violated under
different conditions. Some typical examples include atmospheric or motion blur,
where the modeling by simple isotropic kernels is inappropriate. Consequently,
the underlying image formation model needs to be revised to tackle these effects.
However, recent attempts to handle motion blur [Ma 15] or more general space
variant models [Sore 10] might provide a basis towards tackling these challenging
situations.

Another crucial limitation is the assumption that raw data untouched by cam-
era internal preprocessing is accessible by super-resolution algorithms via the cam-
era interface. This is convincing for scientific or medical applications but might be
violated by low-cost consumer cameras that employ compression codecs, which
limits the efficiency of super-resolution. Thus, modeling data compression is im-
portant to break into new application areas. Related work considered this aspect
by new image priors tailored to compressed video reconstruction [Bele 09].

Despite the simplicity of the underlying model and the aforementioned limita-
tions, the modular design of the proposed algorithms developed from a Bayesian
perceptive makes them flexible regarding revisions or extensions. This enables the
tailoring of these algorithms to new domains either by adapting the image forma-
tion model or by considering new effects in the design of image priors.

Extension to Video Super-Resolution. This thesis considered the use case of
reconstructing single images of enhanced spatial resolution from a set of low-
resolution frames. Consequently, super-resolution buys an improved spatial res-
olution at the price of a decreased temporal one that is lost in the reconstruction.
One interesting extension comprises video super-resolution that targets at the simul-
taneous estimation of an entire high-resolution video from a low-resolution one.
Although this could be approached by a successive use of image super-resolution
in a temporal sliding window mode, special algorithms have already been intro-
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duced to solve this highly ill-posed problem by exploiting temporal consistencies
in natural videos [Zibe 07, Dirk 16]. This can also be achieved by fast incremental
algorithms [Su 11] to accelerate video super-resolution.

As most of the presented algorithms are extendable by these concepts, one
promising direction for future work is their transfer from classical image to video
super-resolution. In particular, the robust estimation techniques proposed in Chap-
ter 4 provide a sensible basis to approach video super-resolution that involves
additional issues regarding robustness. Such techniques might also contribute to
new applications that would benefit from additional temporal information, e. g.
diagnostic medical imaging investigated in Chapter 7.

Extension to Learning-Based Methods. In contrast to this work that approaches
super-resolution in an unsupervised way, learning-based methods gained enormous
interest over the past years. This class of algorithms aims at learning the map-
ping among low-resolution and high-resolution images from training data. This
can be done via sparse signal representation and dictionary learning [Yang 10].
More recently, current deep learning architectures made their entrance into single-
image super-resolution including deep convolutional neural networks [Dong 14,
Kim 16a, Kim 16b] or generative adversarial learning [Ledi 16].

Such architectures are also extendable to the multi-frame case [Liao 15, Kapp 16].
In spite of their success as demonstrated in recent works, these methods heavily
rely on the existence of large training datasets to learn the mappings among the
low-resolution and high-resolution domains. Nevertheless, given a reliable train-
ing, they enable efficient resolution enhancement in contrary to algorithms that
involve time-consuming numerical optimizations based on generative modeling.
Hence, future research needs to consider hybrid super-resolution schemes by com-
bining the individual strengths of these complementary paradigms.

Theoretical Considerations. An essential question in the research of image super-
resolution is the question whether there exist fundamental limits of the investi-
gated algorithms. More specifically, it is worthwhile to derive upper bounds re-
garding the spatial resolution reachable by super-resolution and thus an effective
magnification factor. A basic study of this question under ideal conditions in the
Fourier domain comprising noise-free sampling was presented in Chapter 2. This
demonstrated that the effective magnification is bounded by the band limitation
of the signal that needs to be reconstructed.

Several attempts have been made to derive fundamental limits in more general
situations but based on simplifying assumptions. In [Bake 02], Baker and Kanade
reported that classical reconstruction-based algorithms as studied in this thesis
tend to be less profitable under an increasing magnification factor. Later, Lin and
Shum [Lin 04] presented quantitative statements for this fact using the perturba-
tion theory of linear systems under translational motion and a box shaped PSF.
Tanaka and Okutomi [Tana 05] extended these studies for an arbitrary space in-
variant PSF by formulating the condition number theorem. However, in addition
to a pure translation, the underlying assumption of an infinite number of low-
resolution observations means an oversimplification. Thus, one unsolved aspect
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in the research community is the derivation of tighter bounds regarding the perfor-
mance of super-resolution. This needs to consider real-world conditions including
more general motion models and different sources of error like image noise.

Practical Considerations. The practical aspects for future work concern the us-
ability of the presented algorithms. This mainly includes two considerations.

One aspect is the amount of parameter calibration that comes along with the
usage of super-resolution. This is due to the fact that most of the presented tech-
niques involve several tuning parameters in the underlying image formation model
or the employed numerical optimization algorithms. Some examples are the PSF
kernel, scale parameters, or regularization weights. In Chapter 4, we introduced
an optimization scheme that provides a scale and regularization parameter esti-
mation to minimize the amount of manual parameter tuning. With a similar mo-
tivation, we proposed quality self-assessment in Chapter 7 to objectify the choice
of a regularization weight in a particular application domain. Future work needs
to extend these concepts to rigorously reduce the number of user-defined param-
eters following the same lines of thought as used in related field, e. g. image auto-
denoising [Kong 13]. This also includes research in the area of objective quality
assessment [Yega 12] as the main building block of these techniques. Such a fully
automatic parameter tuning could lead to a further improved robustness, flexibil-
ity, and user-friendliness of super-resolution algorithms.

Another aspect is the consideration of the computational complexity. While the
main scope of the proposed algorithms is accurate resolution enhancement in a ret-
rospective way, their use is computationally demanding. Non-parallelized imple-
mentations of these methods yield run times in the range of seconds up to several
minutes growing linearly with the most relevant parameters, i. e. the number of
observed low-resolution pixels and the desired magnification. This might reduce
the acceptability in time-critical environments and does not meet real-time con-
straints. Example applications concerned by this issue include computer-assisted
interventions as addressed in Chapter 8. For these reasons, future work needs to
study efficient implementations of the proposed algorithms. Promising opportu-
nities towards an interactive use of super-resolution could exploit parallelizations
of the reconstruction algorithm [Wetz 13] or the motion estimation [Plye 14] using
modern graphics processing units. Other possibilities are hardware-based imple-
mentations, e. g. using field programmable gate arrays [Bowe 08].
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Appendix

A.1 Multi-Frame Super-Resolution and the Sampling
Theorem

A.1.1 Uniqueness for Ideal Sampling

In this appendix, we investigate the conditions to provide unique super-resolution
for ideal and real sampling in the Fourier domain based on [Tsai 84, Kim 90, Teka 92].
Let us first consider the case of ideal sampling. The conditions to guarantee a
unique solution are summarized by Theorem 2.2.

Theorem 2.2 (Uniqueness for ideal sampling). Let s = K be the super-resolution
magnification factor and K be the number of channels in a multi-channel sampling process,
where ti with i = 1, . . . , K and t1 = 0 are the corresponding channel offsets and T is the
sampling pitch. Then, the solution of the linear inverse problem in Eq. (2.18) is unique if
and only if: tj 6= c1ti + c2T for all 1 ≤ i < j ≤ K and c1, c2 ∈ Z.

Proof. For a unique solution of the linear problem in Eq. (2.18), the matrix W needs
to be non-singular. Due to the block structure of W according to Eq. (2.16), we
consider the reconstruction of frequencies Xn,−L, . . . , Xn,L−1 for n = 1, . . . , N. This
can be written as the solution of the linear equation system:


Y (1)[n]
Y (2)[n]

...
Y (K)[n]

 =


W(1)

n,−L W(1)
n,−L+1 . . . W(1)

n,L−1

W(2)
n,−L W(2)

n,−L+1 . . . W(2)
n,L−1

...
...

...
W(K)

n,−L W(K)
n,−L+1 . . . W(K)

n,L−1


︸ ︷︷ ︸

Wn


Xn,−L

Xn,−L+1
...

Xn,L−1

 , (A.1)

where the elements W(k)
n,m are calculated according to Eq. (2.17) for k = 1, . . . , K

and m = −L, . . . , L − 1. Notice that the overall system matrix W in Eq. (2.18) is
non-singular iff the matrices Wn are non-singular for all n = 1, . . . , N.

Based on Eq. (2.17), we can decompose Wn for an arbitrary sample index n
with n = 1, . . . , N according to [Kim 90]:

Wn = UnVn, (A.2)
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where Un is a complex-valued diagonal matrix that contains the non-zero elements
Un,kk = exp

(
−j2π fstk

( n
N + L

))
for k = 1 . . . , K. Vn is given by the Vandermonde

matrix:

Vn =


1 exp (j2π fst1) exp (j2π fst1)

2 . . . exp (j2π fst1)
2L−1

1 exp (j2π fst2) exp (j2π fst2)
2 . . . exp (j2π fst2)

2L−1

...
...

...
...

1 exp (j2π fstK) exp (j2π fstK)
2 . . . exp (j2π fstK)

2L−1

 , (A.3)

where the nodes exp (j2π fstk) are located on the complex unit circle.
Since Un is always non-singular, Wn is non-singular iff Vn is non-singular. That

is, the Vandermonde determinant det(Vn) of Vn needs to be non-zero, which is the
case for distinct nodes [Horn 12]. Thus, we have:

det(Vn) =
K

∏
i=1

K

∏
j=i+1

(
exp (j2π fsti)− exp

(
j2π fstj

) )
6= 0

⇔ exp (j2π fsti)− exp
(

j2π fstj
)
6= 0

⇔ exp (j2π fsti) 6= exp
(

j2π fstj
)

,

(A.4)

for all 1 ≤ i < j ≤ K. In order to guarantee a non-zero determinant det(Vn) and
thus a unique solution of Eq. (2.18), it follows:

det(Vn) 6= 0⇔ exp (j2π fsti) 6= exp
(

j2π fstj
)

⇔ tj 6= c1ti + c2
1
fs

⇔ tj 6= c1ti + c2T,

(A.5)

for all 1 ≤ i < j ≤ K and c1, c2 ∈ Z. This shows the desired condition and
completes the proof.

A.1.2 Uniqueness for Real Sampling

Let us now prove the conditions regarding uniqueness in case of real sampling.
These conditions are summarized by the following theorem.

Theorem 2.3 (Uniqueness for real sampling). Let s = K be the super-resolution mag-
nification factor and K be the number of channels in multi-channel sampling with offsets
ti = 0 for all i = 1, . . . , K and sampling pitch T. Each channel x(i)(t) is affected by a blur
kernel H(i)( f ) denoted by H(i) in matrix notation. Then, the solution of the linear inverse
problem in Eq. (2.20) is unique if and only if:

1. ∑K
i=1 ciH(i) 6= 0 for all ci 6= 0 and i = 1, . . . , K (linear independent blur kernels)

2. ∑K
i=1

∣∣∣H(i)( n
N fs + m fs

)∣∣∣ 6= 0 for all m = −L, . . . , L− 1 (kernel cut-off frequency)
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Proof. If we consider the reconstruction of frequencies Xn,−L, . . . , Xn,L−1 for an ar-
bitrary n with n = 1, . . . , N and exploit the block structure of the matrix H in
Eq. (2.20), the corresponding linear system is given by:


Y (1)[n]
Y (2)[n]

...
Y (K)[n]

 =


H(1)

n,−L H(1)
n,−L+1 . . . H(1)

n,L−1

H(2)
n,−L H(2)

n,−L+1 . . . H(2)
n,L−1

...
...

...
H(K)

n,−L H(K)
n,−L+1 . . . H(K)

n,L−1


︸ ︷︷ ︸

Hn


Xn,−L

Xn,−L+1
...

Xn,L−1

 , (A.6)

where the elements H(k)
n,m in the quadratic matrix Hn are calculated according to the

corresponding blur kernels for k = 1, . . . , K and m = −L, . . . , L− 1. Let us assume
that the channel offsets in Eq. (2.20) are given by ti = 0 for all i = 1, . . . , K. Then,
we can assemble the matrix Hn according to:

Hn =
H(1) (( n

N + L
)

fs
)

H(1) (( n
N + (L− 1)

)
fs
)

. . . H(1) (( n
N − (L− 1)

)
fs
)

H(2) (( n
N + L

)
fs
)

H(2) (( n
N + (L− 1)

)
fs
)

. . . H(2) (( n
N − (L− 1)

)
fs
)

...
...

...
H(K) (( n

N + L
)

fs
)

H(K) (( n
N + (L− 1)

)
fs
)

. . . H(K) (( n
N − (L− 1)

)
fs
)
 .

(A.7)

Note that H in Eq. (2.20) is non-singular iff Hn has full rank for all n = 1, . . . , N.
A full rank of the quadratic matrix Hn is equivalent to linearly independent rows.
That is:

K

∑
i=1

cn,i
(

H(i) (( n
N + L

)
fs
)

. . . H(i) (( n
N − (L− 1)

)
fs
))> 6= 0, (A.8)

for all cn,i 6= 0. This translates into:

K

∑
i=1

ciH(i) 6= 0, (A.9)

for all ci 6= 0, which is equivalent to independent blur kernels and shows the first
condition in Theorem 2.3. Moreover, we need to guarantee that all columns of Hn
are non-zero. That is:

K

∑
i=1

∣∣∣H(i)
( n

N
fs + m fs

)∣∣∣ 6= 0 (A.10)

for all m = −L, . . . , L − 1. This shows the second condition in Theorem 2.3 and
completes the proof.
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A.2 Robust Multi-Frame Super-Resolution with Sparse
Regularization

A.2.1 Relationship to Majorization-Minimization Algorithms

In this appendix, we prove Theorem 4.1 to establish the connection between it-
eratively re-weighted minimization and majorization-minimization (MM) algo-
rithms. First, let us present several important properties of the Huber loss and
the mixed L1/Lp norm. The following lemma states that the Huber loss function
can be written as the solution of a weighted minimization problem.

Lemma A.1. The Huber loss function φHuber(z) in Eq. (4.43) can be written as a weighted
minimization problem:

φHuber(z) = min
β∈R+

0

{
βz2 + σ2

noiseρ(β)
}

(A.11)

ρ(β) =

{
1
β − 1 if 0 ≤ β < 1

0 if β ≥ 1.
. (A.12)

Proof. Obviously, φHuber(z) is a convex function and when β ≥ 1, it is monoton-
ically increasing. Thus, the optimal weight is β∗ = 1 in case of z2 ≤ σ2

noise or
β∗ = σnoise/|z| in case of z2 > σ2

noise, where the later comes from the first order
optimality condition. Comparing the objective values we get the optimal weight:

β∗ =

{
1 if |z| ≤ σnoise
σnoise
|z| otherwise

. (A.13)

Therefore, the solution of the weighted minimization in Eq. (A.11) yields:

min
β∈R+

0

{
βz2 + σ2

noiseρ(β)
}
=

{
z2 if |z| ≤ σnoise

2σnoise|z| − σ2
noise otherwise

, (A.14)

which coincides with the Huber loss φHuber(z) in Eq. (4.43).

Next, let us employ the weighted minimization problem in (A.11) to define a
majorizing function for the Huber loss. This function is provided by the following
lemma.

Lemma A.2. The Huber loss φHuber(z) in Eq. (4.43) is majorized at zt−1 by:

φ̃Huber

(
z, zt−1

)
=

{
z2 if |zt−1| ≤ σnoise
σnoise
|zt−1|z

2 + σ2
noise

(
|zt−1|
σnoise

− 1
)

otherwise
. (A.15)
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Proof. For this proof, let us first assume that |zt−1| ≤ σnoise. Then, φ̃Huber
(
z, zt−1)

coincides with φHuber(z) according to the definitions of both functions.
If |zt−1| > σnoise and β = σnoise/|zt−1| ∈ [0, 1], the function φ̃Huber

(
z, zt−1) can

be reformulated according to Lemma A.1:

φ̃Huber

(
z, zt−1

)
= βz2 + σ2

noiseρ(β)

=
σnoise

|zt−1|z
2 + σnoise

∣∣∣zt−1
∣∣∣− σ2

noise

≥ φHuber(z) ,

(A.16)

where the equality holds true for z = zt−1. Thus, φ̃Huber
(
z, zt−1) is a majorizing

function for φHuber(z) at zt−1.

Next, we define a majorizing function for the mixed L1/Lp norm. This function
is established by the following lemma.

Lemma A.3. The mixed L1/Lp norm φp(z) in Eq. (4.44) for p ∈ [0, 1] is majorized at
zt−1 by:

φ̃p

(
z, zt−1

)
=

|z| if |zt−1| ≤ σprior

p
(

σprior

|zt−1|

)1−p
|z|+ (1− p)σ1−p

prior|zt−1|p otherwise
. (A.17)

Proof. Let us first consider the case |zt−1| ≤ σprior. Then, φ̃p
(
zt−1, zt−1) coincides

with φp
(
zt−1) according to the definitions of both functions.

Let us now consider the case |zt−1| > σprior. Since φp(z) is monotone and con-
cave downwards, the Taylor series expansion for |z| > σprior yields the inequality:

φp(z) ≤ φp

(
zt−1

)
+
(

z− zt−1
)
· d

dz
φp(z)

∣∣∣
z=zt−1

= σ
1−p
prior

∣∣∣zt−1
∣∣∣p + (z− zt−1

)
· sign

(
zt−1

)
σ

1−p
priorp

∣∣∣zt−1
∣∣∣p−1

= p
(

σprior

|zt−1|

)1−p
|z|+ (1− p)σ1−p

prior

∣∣∣zt−1
∣∣∣p

≤ φ̃p

(
z, zt−1

)
,

(A.18)

and φp
(
zt−1) = φ̃p

(
zt−1, zt−1) if z = zt−1. Hence, φ̃p

(
z, zt−1) is a majorizing func-

tion for φp(z) at zt−1.

Notice that the majorizing functions φ̃Huber
(
z, zt−1) and φ̃p

(
z, zt−1) are non-

negative and provide upper bounds for φHuber(z) and φ̃p(z), respectively. Hence,
minimization can be performed by an MM algorithm [Hunt 04]. Based on these
properties, we can establish Theorem 4.1.

Theorem 4.1. The convex energy function F̃(x, xt−1) in Eq. (4.45) is a majorizing func-
tion for the non-convex energy function F(x) in Eq. (4.42) at x = xt−1.
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Proof. According to Lemma A.2 and since the majorization relation is closed under
the formation of a sum of non-negative terms [Hunt 04], it follows:

L̃
(

x, xt−1
)
= (y−Wx)> Bt (y−Wx) +

KM

∑
i=1

ρ
([

y−Wxt−1
]

i

)
≥ L(x) ,

(A.19)

with equality for x = xt−1, where ρ(·) is given by (4.46) and:

L(x) =
KM

∑
i=1

φHuber([y−Wx]i) . (A.20)

Hence, the confidence-aware data fidelity term L̃
(
x, xt−1) is a majorizing function

for L(x). Similarly, Lemma A.3 yields:

R̃
(

x, xt−1
)
=
∣∣∣∣AtSx

∣∣∣∣
1 +

NS

∑
i=0

τ
([

Sxt−1
]

i

)
≥ R(x) ,

(A.21)

with equality for x = xt−1, where τ(·) is given by (4.47) and:

R(x) =
NS

∑
i=1

φp([Sx]i) . (A.22)

Thus, the regularization term R̃
(
x, xt−1) is a majorizing function for R(x). Then,

F̃(x, xt−1) = L̃
(
x, xt−1) + λR̃

(
x, xt−1) majorizes F(x) in Eq. (4.42) at x = xt−1 for

λ ≥ 0, which completes the proof.

A.2.2 Convergence Analysis
This appendix provides the proof of Theorem 4.2 according to [Kohl 16b] to ana-
lyze the convergence of iteratively re-weighted minimization. Let us first present
one important property of the L1/Lp norm regularization term. For the sake of
notational brevity, this regularization is reformulated according to:

R(z) = ∑
i 6∈I(z)

|zi|+ ∑
i∈I(z)

σ
1−p
prior|zi|p, (A.23)

where the index set I(z) is defined as I(z) = {i : zi > σprior} based on the scale
parameter σprior. Without loss of generality, we consider in the following analysis
the case σprior = 1. Note that if σprior 6= 1, one can use a normalization of z to
satisfy this condition. In this situation, for the L1/Lp norm regularization term
with the index set I(z), the following inequality is fulfilled:

Lemma A.4. For all index sets I(z) = {i : zi > 1} and I ′ with the sparsity parameter
p, where p ∈ [0, 1], there is:

∑
i 6∈I(z)

|zi|+ ∑
i∈I(z)

|zi|p ≤ ∑
i 6∈I ′
|zi|+ ∑

i∈I ′
|zi|p. (A.24)
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Proof. Subtracting the left hand side in Eq. (A.24) by the right hand side, we have:

∑
i 6∈I(z)

|zi| − ∑
i 6∈I ′
|zi|+ ∑

i∈I(z)
|zi|p − ∑

i∈I ′
|zi|p

= ∑
i∈I ′\I(z)

|zi| − ∑
i∈I(z)\I ′

|zi|+ ∑
i∈I(z)\I ′

|zi|p − ∑
i∈I ′\I(z)

|zi|p

= ∑
i∈I ′\I(z)

(|zi| − |zi|p)− ∑
i∈I(z)\I ′

(|zi| − |zi|p) .

(A.25)

Notice that for p ∈ [0, 1] it follows that |zi| ≥ |zi|p if and only if zi ≥ 1, i. e.,
i ∈ I(z). Thus, |zi| − |zi|p < 0, ∀i ∈ I ′\I(z) and |zi| − |zi|p ≥ 0, ∀i ∈ I(z)\I ′.
From these inequalities, it follows that:

∑
i∈I ′\I(z)

(|zi| − |zi|p)− ∑
i∈I(z)\I ′

(|zi| − |zi|p) ≤ 0.

Hence, the inequality in Eq. (A.24) is true for all index sets I(z) and I ′.

Now, we can establish Theorem 4.2, which shows the convergence of iteratively
re-weighted minimization in terms of the energy function value F(x).

Theorem 4.2. Let x1, . . . , xT be an iteration sequence obtained by iteratively re-weighted
minimization. Then, for all t = 2, . . . , T there exists a strict positive β such that:

F(xt−1)− F(xt) ≥ β
∣∣∣∣Wxt−1 −Wxt∣∣∣∣2

2. (4.48)

Proof. For the sake of notational brevity, we present this proof by assuming the
identity for the sparsifying transform, i. e. S = I. Note that in the general case
where S 6= I, we can include the transform S to the optimization problem by re-
formulation as a constrained problem.

According to Lemma A.1, we reformulate the energy function F(xt) by writing
the Huber loss as a weighted minimization problem:

F(xt) = λR(xt) +
KM

∑
i=1

min
β∈R+

0

{
β
[
Wxt − y

]2
i + σ2

noiseρ(β)
}

≤ λR(xt) +
KM

∑
i=1

{
βt

i
[
Wxt − y

]2
i + σ2

noiseρ(βt
i)
}

,

(A.26)

where the weights βt
i for i = 1, . . . , KM are computed from xt−1 according to

Eq. (4.23) and σnoise is the scale parameter of the observation model that is assumed
to be constant over the iterations. Comparing the weights βt

i given by Eq. (4.23)
and Eq. (A.13), one can verify that:

F(xt−1) = λR(xt−1) +
KM

∑
i=1

{
βt

i

[
Wxt−1 − y

]2

i
+ σ2

noiseρ(βt
i)

}
. (A.27)
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Hence, we can derive the inequality condition for the energy function value among
successive iterations:

F(xt−1)− F(xt)

≥
(
Wxt−1 − y

)>Bt(Wxt−1 − y
)
−
(
Wxt − y

)>Bt(Wxt − y
)

+ λ

(
∑

i 6∈I(xt−1)

∣∣xt−1
i

∣∣+ ∑
i∈I(xt−1)

∣∣xt−1
i

∣∣p − ∑
i 6∈I(xt)

∣∣xt
i
∣∣− ∑

i∈I(xt)

∣∣xt
i
∣∣p),

(A.28)

where Bt is constructed as Bt = diag
(

βt
1, . . . , βt

KM
)
. This inequality condition can

be rearranged according to:

F(xt−1)− F(xt)

≥
(
xt−1 − xt)>W>BtW

(
xt−1 − xt)+ 2

(
Wxt−1 −Wxt)>Bt(Wxt − y

)
+ λ

(
∑

i 6∈I(xt−1)

∣∣xt−1
i

∣∣+ ∑
i∈I(xt−1)

∣∣xt−1
i

∣∣p − ∑
i 6∈I(xt)

∣∣xt
i
∣∣− ∑

i∈I(xt)

∣∣xt
i
∣∣p)

≥ βt
∥∥∥Wxt−1 −Wxt

∥∥∥2

2
+ 2
(
Wxt−1 −Wxt)>Bt(Wxt − y

)
+ λ

(
∑

i 6∈I(xt−1)

∣∣xt−1
i

∣∣+ ∑
i∈I(xt−1)

∣∣xt−1
i

∣∣p − ∑
i 6∈I(xt−1)

∣∣xt
i
∣∣− ∑

i∈I(xt−1)

∣∣xt
i
∣∣p),

(A.29)

where the last inequality is based on Lemma A.4 and βt = mini βi
t. Then, the

weight β = mint βt is strictly positive and:

F(xt−1)− F(xt)

≥ β
∥∥∥Wxt−1 −Wxt

∥∥∥2

2
+ 2
(
Wxt−1 −Wxt)>Bt(Wxt − y

)
+ λ

(
∑

i 6∈I(xt−1)

∣∣xt−1
i

∣∣+ ∑
i∈I(xt−1)

∣∣xt−1
i

∣∣p − ∑
i 6∈I(xt−1)

∣∣xt
i
∣∣− ∑

i∈I(xt−1)

∣∣xt
i
∣∣p).

(A.30)

Since xt is the solution of iteratively re-weighted minimization at iteration t, it
follows:

0 ∈ ∂

∂x

{
(Wx− y)> Bt (Wx− y) + λ

NS

∑
i=1

αt
i |xi|

} ∣∣∣∣∣
x=xt

, (A.31)

where αt
i is computed from the weighting function in Eq. (4.25). Thus, it follows

for the subgradient:

2W>Bt (Wxt − y
)
+ λct

i α
t
i = 0, ∀i

ct
i ∈


{1}, if xt

i > 0
[−1, 1] if xt

i = 0
{−1}, if xt

i < 0
.

(A.32)
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Substituting the condition in Eq. (A.32) into Eq. (A.30) and using the fact that
ct

i x
t
i = |xt

i | and |ct
i | ≤ 1, leads to:

F(xt−1)− F(xt) ≥ β
∥∥∥Wxt−1 −Wxt

∥∥∥2

2

+ λ ∑
i 6∈I(xt−1)

(∣∣xt−1
i

∣∣− ∣∣xt
i
∣∣+ ct

i
(
xt

i − xt−1
i
))

+ λ ∑
i∈I(xt−1)

(∣∣xt−1
i

∣∣p − ∣∣xt
i
∣∣p + p

∣∣xt−1
i

∣∣p−1ct
i
(
xt

i − xt−1
i
))

≥ β
∥∥∥Wxt−1 −Wxt

∥∥∥2

2

+ λ ∑
i 6∈I(xt−1)

(∣∣xt−1
i

∣∣− ∣∣xt
i
∣∣+ (∣∣xt

i
∣∣− ∣∣xt−1

i

∣∣))
+ λ ∑

i∈I(xt−1)

(∣∣xt−1
i

∣∣p − ∣∣xt
i
∣∣p + p

∣∣xt−1
i

∣∣p−1(∣∣xt
i
∣∣− ∣∣xt−1

i

∣∣))
≥ β

∥∥∥Wxt−1 −Wxt
∥∥∥2

2

+ λ ∑
i∈I(xt−1)

(∣∣xt−1
i

∣∣p−1
(
(1− p)

∣∣xt−1
i

∣∣+ p
∣∣xt

i
∣∣− ∣∣xt−1

i

∣∣1−p∣∣xt
i
∣∣p))

≥ β
∥∥∥Wxt−1 −Wxt

∥∥∥2

2
,

(A.33)

where the last inequality is according to Lemma 1 in [Chen 14] as corollary of
Young’s inequality, which completes the proof.

Since F(x) is a lower-bounded function, F(xt) converges to an extreme value. If
xt also converges to an extreme value denoted by x∗, this estimate satisfies:

0 ∈ ∂

∂x

{
(Wx− y)> Bt (Wx− y) + λ

NS

∑
i=1

αt
i |xi|

} ∣∣∣∣∣
x=x∗

. (A.34)

As a consequence, x∗ is a stationary point of the non-convex problem in Eq. (4.42).
Notice that there can be the situation F(xt) = F(xt−1) but x does not converge

to a stationary point, i. e. xt 6= xt−1. This is the case if the following conditions are
fulfilled:

1. xt − xt−1 is in the null space of the system matrix, i. e. W(xt−1 − xt) = 0.

2. The index sets among successive iterations are identical, i. e. I(xt) = I(xt−1).

3. The estimates in the index set I(xt) among successive iterations are identical,
i. e. |xt

i | = |x
t−1
i | for all i ∈ I(xt).

4. The objective value of the regularization term among successive iterations is
identical, i. e. R

(
xt) = R

(
xt−1)

However, in practice this situation can be avoided. For instance, if the system
matrix W has full rank, the null space is {0}, i. e. xt = xt−1 if F(xt) = F(xt−1).
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A.3 Multi-Sensor Super-Resolution using Locally Lin-
ear Regression

A.3.1 Majorization-Minimization for Tukey’s Biweight Loss
Let us consider the 1-D minimization problem:

ẑ = argmin
z

φxij(z) . (A.35)

We can reformulate the minimization of the non-convex loss function φxij(z) as an
MM algorithm according to [Ochs 15]. This leads to the iteratively re-weighted
least squares (IRLS) scheme:

zt = argmin
z

κ(zt−1)z2, (A.36)

κ(z) =
d
dz φxij(z)

z
, (A.37)

where κ(z) is the underlying weighting function. In case of Tukey’s biweight loss
defined in Eq. (6.14), we can compute the gradient according to:

d
dz

φxij(z) =

z
(

1− z2

σ2
LLR,ij

)2

if |z| ≤ σ2
LLR,ij

0 otherwise
. (A.38)

This leads to corresponding weighting function for IRLS:

κ(z) =


(

1− z2

σ2
LLR,ij

)2

if |z| ≤ σ2
LLR,ij

0 otherwise
. (A.39)

A.3.2 Estimation of the Regression Coefficients
If we omit the iteration index for the sake of notational clarity, the regression coef-
ficients associated with the k-th pixel in the image channels xi and xj are estimated
according to:

(C̃ij,k, b̃ij,k) = argmin
Cij,k,bij,k

F(Cij,k, bij,k), (A.40)

where:

F(Cij,k, bij,k) = ∑
l∈ωLLR(k)

κij,l
(
Cij,kxi,l + bij,k − xj,l

)2
+ εijC2

ij,k. (A.41)

Computing the zero-crossings of the derivative of this energy function w. r. t.
the unknown regression coefficient bij,k yields:

∂

∂bij,k
F(Cij,k, bij,k) = 2 ∑

l∈ωLLR(k)
κij,l

(
Cij,kxi,l + bij,k − xj,l

)
= 0. (A.42)
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If we rearrange this condition, we can compute the regression coefficient bij,k in
closed-form:

bij,k =
1

ZωLLR(k)(Kij)

 ∑
l∈ωLLR(k)

κij,lxj,l − Cij,k ∑
l∈ωLLR(k)

κij,lxi,l

 ,

= EωLLR(k)
(
xj, Kij

)
− Cij,k · EωLLR(k)

(
xi, Kij

)
, (A.43)

where:

EωLLR(k)(z, K) =
1

ZωLLR(k)(K) ∑
l∈ωLLR(k)

κlzl, (A.44)

ZωLLR(k)(K) = ∑
l∈ωLLR(k)

κl. (A.45)

Notice that the estimation of this regression coefficient involves box filtering op-
erations denoted by EωLLR(k)(·, ·) for the channels xi and xj with a normalization
of the filter kernel according to ZωLLR(k)(K). These box filters can be implemented
efficiently using integral images, see e. g. [He 13, Hore 14].

Computing the zero-crossings of the derivative of the energy function w. r. t.
the regression coefficient Cij,k yields:

∂

∂Cij,k
F(Cij,k, bij,k) = 2 ∑

l∈ωLLR(k)
κij,l

(
Cij,kxi,l + bij,k − xj,l

)
xi,l + 2εijCij,k

= 0. (A.46)

If we substitute the expression for the regression coefficient bij,k given by Eq. (A.43),
this condition can be rearranged according to:

Cij,k ∑
l∈ωLLR(k)

κij,lx2
i,l + bij,k ∑

l∈ωLLR(k)
κij,lxi,l − ∑

l∈ωLLR(k)
κij,lxi,lxj,l + εijCij,k

= Cij,k ∑
l∈ωLLR(k)

κij,lx2
i,l − ∑

l∈ωLLR(k)
κij,lxi,lxj,l + εijCij,k

+
1

ZωLLR(k)(Kij)

 ∑
l∈ωLLR(k)

κij,lxj,l − Cij,k ∑
l∈ωLLR(k)

κij,lxi,l

 ∑
l∈ωLLR(k)

κij,lxi,l

= Cij,k

 ∑
l∈ωLLR(k)

κij,lx2
i,l −

1
ZωLLR(k)(Kij)

 ∑
l∈ωLLR(k)

κij,lxi,l

2

+ εij


+

1
ZωLLR(k)(Kij)

∑
l∈ωLLR(k)

κij,lxi,l ∑
l∈ωLLR(k)

κij,lxj,l − ∑
l∈ωLLR(k)

κij,lxi,lxj,l

= 0. (A.47)

Thus, we can compute the regression coefficient Cij,k in closed-form:

Cij,k =
EωLLR(k)

(
xi � xj, Kij

)
− EωLLR(k)

(
xi, Kij

)
· EωLLR(k)

(
xj, Kij

)
EωLLR(k)

(
xi � xi, Kij

)
+ 1

ZωLLR(k)(Kij)
εij

, (A.48)

where we can again use box filtering of the image channels xi and xj.
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J. Hornegger. “Automatic No-Reference Quality Assessment for Reti-
nal Fundus Images using Vessel Segmentation”. In: International Sym-
posium on Computer-Based Medical Systems (CBMS), pp. 95–100, IEEE,
Porto, Portugal, Oct. 2013.

[Kohl 13b] T. Köhler, S. Haase, S. Bauer, J. Wasza, T. Kilgus, L. Maier-Hein,
H. Feussner, and J. Hornegger. “ToF Meets RGB: Novel Multi-Sensor
Super-Resolution for Hybrid 3-D Endoscopy”. In: International Con-
ference on Medical Image Computing and Computer Assisted Intervention
(MICCAI), pp. 139–146, LNCS Vol. 8149, Part I, Springer, Nagoya,
Japan, Sep. 2013.

[Kohl 14a] T. Köhler, A. Brost, K. Mogalle, Q. Zhang, C. Köhler, G. Michelson,
J. Hornegger, and R. P. Tornow. “Multi-Frame Super-Resolution with
Quality Self-Assessment for Retinal Fundus Videos”. In: International
Conference on Medical Image Computing and Computer Assisted Interven-
tion (MICCAI), pp. 650–657, LNCS Vol. 8673, Part I, Springer, Cam-
bridge, MA, Sep. 2014.

[Kohl 14b] T. Köhler, S. Haase, S. Bauer, J. Wasza, T. Kilgus, L. Maier-Hein,
H. Feussner, and J. Hornegger. “Outlier Detection for Multi-Sensor
Super-Resolution in Hybrid 3D Endoscopy”. In: Bildverarbeitung für
die Medizin (BVM), pp. 84–89, Springer, Aachen, Germany, March
2014.

[Kohl 15a] T. Köhler, R. Bock, J. Hornegger, and G. Michelson. “Computer-Aided
Diagnostics and Pattern Recognition: Automated Glaucoma Detec-
tion”. In: G. Michelson, Ed., Teleophthalmology in Preventive Medicine,
pp. 93–104, Springer, Berlin, Heidelberg, 2015.

[Kohl 15b] T. Köhler, S. Haase, S. Bauer, J. Wasza, T. Kilgus, L. Maier-Hein,
C. Stock, J. Hornegger, and H. Feussner. “Multi-Sensor Super-
Resolution for Hybrid Range Imaging with Application to 3-D En-
doscopy and Open Surgery”. Medical Image Analysis, Vol. 24, No. 1,
pp. 220–234, July 2015.

[Kohl 15c] T. Köhler, J. Jordan, A. Maier, and J. Hornegger. “A Unified Bayesian
Approach to Multi-Frame Super-Resolution and Single-Image Up-
sampling in Multi Sensor Imaging”. In: Proceedings of the British
Machine Vision Conference (BMVC), pp. 143.1–143.12, BMVA Press,
Swansea, UK, Sep. 2015.

[Kohl 15d] T. Köhler, A. Maier, and V. Christlein. “Binarization Driven Blind De-
convolution for Document Image Restoration”. In: German Conference
on Pattern Recognition (GCPR), pp. 91–102, LNCS Vol. 9358, Springer,
Aachen, Germany, Oct. 2015.



Bibliography 227

[Kohl 16a] T. Köhler, A. Heinrich, A. Maier, J. Hornegger, and R. P. Tornow.
“Super-Resolved Retinal Image Mosaicing”. In: IEEE International
Symposium on Biomedical Imaging (ISBI), pp. 1063 – 1067, IEEE, Prague,
Czech Republic, Apr. 2016.

[Kohl 16b] T. Köhler, X. Huang, F. Schebesch, A. Aichert, A. Maier, and J. Horneg-
ger. “Robust Multiframe Super-Resolution Employing Iteratively Re-
Weighted Minimization”. IEEE Transactions on Computational Imaging,
Vol. 2, No. 1, pp. 42 – 58, March 2016.

[Kohl 17] T. Köhler, M. Bätz, F. Naderi, A. Kaup, A. K. Maier, and C. Riess.
“Benchmarking Super-Resolution Algorithms on Real Data”. arXiv
preprint arXiv:1709.04881, pp. 1–10, Sep. 2017.
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