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ABSTRACT

For electrophysiology procedures, obtaining the information
of scar within the left ventricle is very important for diagno-
sis, therapy planning and patient prognosis. The clinical gold
standard to visualize scar is late-gadolinium-enhanced-MRI
(LGE-MRI). The viability assessment of the myocardium of-
ten requires the prior segmentation of the left ventricle (LV).
To overcome this problem, we propose an approach for fully
automatic LV segmentation in 2-D LGE-MRI. First, the LV is
automatically detected using circular Hough transforms. Sec-
ond, the blood pool is approximated by applying a morpho-
logical active contours approach. The refinement of the endo-
and epicardial contours is performed in polar space, consider-
ing the edge information and scar distribution. The proposed
method was evaluated on 26 clinical LGE-MRI data sets. This
comparison resulted in a Dice coefficient of 0.85 ± 0.06 for
the endocardium and 0.84 ± 0.06 for the epicardium.

Index Terms— Heart; Magnetic Resonance Imaging
(MRI); Image Segmentation

1. INTRODUCTION

For electrophysiology procedures, obtaining the information
of scar within the myocardium is important, but remains
a challenge. The quantification of the myocardial infarc-
tion is needed for diagnosis, therapy planning and patient
prognosis. The clinical gold standard to visualize scar is late-
gadolinium-enhanced magnetic resonance imaging (LGE-
MRI) [1]. These images are acquired 10 to 20 minutes after
contrast agent injection, of a gadolinium based contrast agent.
Areas of myocardial infarction will be enhanced because of
the contrast agent accumulation in the scar tissue [2].
The viability assessment of the myocardium often requires the
prior segmentation of the myocardial contours [3]. In clinical
routine manual outlining of the left ventricles myocardium
is the current practice. However, the manual delineation
of the left ventricles myocardium is complex, tedious, time
consuming and prone to intra- and inter-observer variabil-
ity. The main challenge of left ventricle (LV) segmentation
in LGE-MRI is the non-homogeneous intensity distribution
within the myocardium, resulting from the different contrast

agent accumulation in the damaged tissue. Therefore, the
challenge of LGE-MRI segmentation lies in the border de-
lineation. Hence, most segmentation methods most often
rely on the registration of the LGE-MRI to anatomical MRI
scans or shape priors [4, 5, 6, 7]. The segmented contours
from the anatomical scan are propagated to the LGE-MRI for
segmentation. However, this registration is challenging. Be-
tween both scans, the global position of the heart may have
changed due to patient movement or different breath-hold
levels. Furthermore, the cardiac phases may not precisely fit
to the LGE-MRI images. Even though these shifts appear
minor, they can lead to a significant error in the quantification
of myocardial scar.
To overcome these issues, we propose a fully automatic left
ventricle segmentation solely using 2-D short axis (SA) LGE-
MRI data.

2. METHODS

Our approach consists of four major steps. First, the left ven-
tricle is detected in the middle slice using circular Hough
transforms. Second, the blood pool is segmented by apply-
ing a morphological active contours approach without edges
(MACWE). In the third step, the endocardial contour is re-
fined in polar space using the edge and scar information and
applying a minimal cost path search (MCP). Fourth, the epi-
cardium is extracted considering the edge information and the
endocardial contour. Fig. 1 provides an overview of the seg-
mentation pipeline. These steps are detailed in the next sub-
sections.

2.1. Left Ventricle Detection

The automatic initialization of the left ventricle is an im-
portant part, in order to reduce the user interaction. The
left ventricle is detected in the middle slice of the 2-D SA
LGE-MRI stack. Therefore, circular Hough transforms are
applied to approximate the location of the left ventricle [8].
First, the center slice is filtered with a Canny edge detector,
to extract all edges from the images [9]. Gaussian smooth-
ing with a standard deviation of σ = 1.5 is applied. The
radius r for the circular Hough transform is in range of
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Fig. 1. Overview of the left ventricle segmentation pipeline in 2-D LGE-MRI. First, the left ventricle is detected using circular
Hough transforms. In the next step, the blood pool is segmented by applying a morphological active contours approach without
edges. In the third step, the endocardial border is refined in polar space. In the final step, the epicardial contour is extracted
considering the endocardial contour and the edge information.

r = {17, 19, 21, ..., 33, 35}mm. This range was defined us-
ing anatomical heart information as reported in literature [10].
The center point of the LV is then propagated to the succeed-
ing slices, which is detailed in Subsection 2.3.

2.2. Blood Pool Segmentation

Having the rough location of the left ventricle, the center point
from the LV detection is used as initialization for a morpho-
logical active contours approach without edges [11]. The
MACWE algorithm does not need well defined borders, as
the stopping of the curve evolution is not dependent on edges,
instead it uses image statistics from the inside as well as from
the outside of the contour. Furthermore, it is less sensitive to
initial configuration and to model parameters. The difference
to standard active contour approaches without edges is, that
the partial differential equations are replaced by morpholog-
ical operations, as they are less computational expensive and
more stable. The energy functional for the segmentation takes
the content of the interior and exterior areas of the contour C
into account. The functional for the contour C is dependent
on the image slice I and defined by

F (c1, c2,C) = µ · L(C) + ν ·A(C)+

λ1

∫
Ω

||I(x)− c1||dx+ λ2

∫
Ω

||I(x)− c2||dx,
(1)

where the non-negative parameters µ = 1, ν = 1, λ1 = 1
and λ2 = 2 ∈ R control the strength of each term, L denotes
the length of the contour C and A the area of the contour C.
For a fixed contour, c1 and c2 are the mean intensity values of
the area inside Ω and outside Ω of the contour C. Therefore,
an implicit version of the functional F of Equation 1 can be
defined [11]. For the starting of the contour evolution, a circle
is initialized using the detected center from the LV detection
and a radius of 10 pixels. The MACWE is stopped after 15
iterations, heuristically chosen. See the second box of Fig. 1
for an example result from the MACWE evolution.

2.3. Endocardial Contour Refinement

After the blood pool approximation of the left ventricle, the
contour C is used for the refinement of the endocardial bor-
der. As the rough outline of the LV is known, the image I is
cropped around the region of interest, to perform further im-
age processing steps on the cropped image.
The polar image is calculated, where the origin of the polar
image corresponds to the center of the blood pool. Through
this mapping the Cartesian coordinates (x, y) are converted to
polar coordinates (r, ρ). The maximum radius is selected, to
cover all potential myocardium boundaries. The estimated
contours C from the blood pool are also converted to po-
lar coordinates and used to refine the endocardial boundary.
Fig. 2 (a) depicts an example of the polar image and the con-
verted contours. In the polar image the edge information is
extracted by applying the Canny edge detection [9]. To ex-
tract minor edges, a Gaussian smoothing with a standard de-
viation of σ = 1.5 is used, see Fig. 2 (b) for an example. In
addition, the mean intensity µbp and the standard deviation
σbp of the blood pool are estimated, using the intensity values
inside the contour obtained from the MACWE approach. In
the next step, all pixels that are greater than the mean intensity
µbp plus the standard deviation σbp are defined as potential
myocardial scar and labeled with 1, the non-scar pixels are
marked with 0. All pixels with increasing radius after the po-
tential scar candidates are labeled with 1, resulting in a scar
map, as visualized in Fig. 2 (c). The scar map is combined
with the edge image, which derives the cost array for the min-
imal cost path search, as shown in Fig. 2 (d). Six equally
distributed points are selected from the converted blood pool
contours C and the minimal cost path search is initialized to
find the optimal contour [12]. The MCP finds the distance
weighted minimal cost path through the cost array. The cost
path is calculated as the sum of the costs at each point of the
path, where edge pixels have 0 costs and non edge pixels 1.
The diagonal versus axial moves are of different length and
therefore the path costs are weighted accordingly. The result
of the MCP is illustrated in Fig. 2 (e). After the refinement,
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Fig. 2. Final steps of the segmentation pipeline. (a) Polar
image with the converted contour points from the blood pool
segmentation. (b) Edge image using the Canny edge detection
(c) Scar map. (d) The cost array is derived from the edge
image and the scar map. (e) Final result of the minimal cost
path search.

the contour C is converted back to Cartesian coordinates. As
the result might be frayed and papillary muscles close to the
endocardial border may be included, the convex hull is cal-
culated for the estimated points. This assumption is based on
the fact that the left ventricles cavity is convex in the SA view.
The final contour C is derived from the smallest convex poly-
gon, as depicted in the third box of Fig. 1. This is based on
the fact that the left ventricles cavity is convex in the short
axis orientation.
After the first contour is refined, the information of the loca-
tion of the LV is used for the initialization of the MACWE
for the succeeding slices in basal and apical direction. The re-
finement steps are repeated for every slice. Furthermore, the
radius and area of the previous curve are considered for the
refinement of the lower and upper slices.

2.4. Epicardial Contour Extraction

For the epicardial contour extraction the previously found en-
docardial contour points are used. The contour extraction is
performed in polar space. As the epicardium has to be greater
than the endocardium, the radius is enlarged by repi = 5. The
previously calculated edge image from the endocardial refine-
ment is used. The edges within the endocardial segment are
erased. Having the enlarged endocardial contour, the closest
edge with increased radius, in a certain margin is searched
for. Afterwards, the newly found edge points are converted
back to Cartesian coordinates. As the result is frayed, the
convex hull is estimated to smooth the contour. The final re-

Segmentation Results
Endo Epi Inter-Obs.

DC 0.85 0.84 0.96
ASD [mm] 2.54 3.32 0.64

Table 1. Quantitative results of the LV segmentation using
the Dice coefficient (DC) and the average surface distance
(ASD). The results are shown separately for the endocardial
(Endo) and epicardial (Epi) contour, as well as the inter ob-
server variability.

sult for the endocardial and epicardial contour is depicted in
the fourth box of Fig. 1.

3. EVALUATION AND RESULTS

The automatic segmentation of the LV endocardium and epi-
cardium was evaluated on 26 clinical LGE-MRI data sets
from individual patients. The inversion recovery LGE-MRI
sequences were acquired with a Siemens MAGNETOM Aera
1.5T scanner (Siemens Healthcare GmbH, Erlangen, Ger-
many). The slice thickness was set to 8 mm, with a pixel size
of (1.59-2.08 × 1.59-2.08) mm2 and the spacing between the
slices was set to 10 mm. Each data set contained between
10 and 13 SA slices. The parameters set, were equal for
all cases. Gold standard annotations of the LV endo- and
epicardium were provided by two clinical experts. Given
the gold standard annotations, the Dice coefficient (DC) as a
quantitative score of the segmentation quality and the average
surface distance (ASD) between the gold standard annotation
and the segmentation result are evaluated. In addition, the
inter-observer variability between the observers is investi-
gated.
The automatic segmentation of the endocardium resulted in
an overlap of 0.85 ± 0.06. The best segmentation result had
a Dice coefficient of 0.94 and the worst a DC of 0.71. For the
epicardium, an overall Dice coefficient of 0.84 ± 0.06 was
achieved. The best segmentation of the epicardium yielded
a Dice coefficient of 0.95 and the worst a Dice coefficient
of 0.72. The inter-observer variability between the two ob-
servers resulted in a DC of 0.96 ± 0.03 for the endocardium
and 0.97 ± 0.03 for the epicardium. The average surface
distance had a mean distance of 2.54 mm ± 1.54 mm for the
endocardium and 3.32 mm ± 1.71 mm for the endocardium.
The results are summarized in Table 1. The qualitative results
for one data set are presented in Fig. 3.

4. DISCUSSION AND CONCLUSION

The segmentation of the LV endo- and epicardium has been
studied in literature, but only a few focused on LGE-MRI data
only [5, 13]. The presented work solely uses LGE-MRI for
the contour segmentation. In one data set, there was a huge



Fig. 3. Qualitative results for one data set from base to apex,
with a DC of 0.73. The first row shows the gold standard
annotation from the clinical expert. The second row depicts
the result from the proposed segmentation pipeline.

equally distributed myocardial scar around the blood pool in
the apex. This resulted in the reduced Dice coefficient of 0.71
for the endocardium and 0.72 for the epicardium. Another
problem is the delineation of the left ventricular outflow track,
therefore larger errors occur in the more basal regions.
In the course of this work an automatic segmentation method
for the left ventricle’s endo and epicardium has been pre-
sented that provides accurate and consistent results using 2-D
LGE-MRI. A clear benefit of the presented method is that
solely LGE-MRI is used for the segmentation.
Disclaimer: The methods and information presented in this paper
are based on research and are not commercially available.
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