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Abstract. Cardiac resynchronization therapy is a treatment option for
patients suffering from symptomatic heart failure. The problem with this
treatment option is, that 30% to 40% of the patients do not respond.
One reason might be the inappropriate placement of the left ventricular
lead via the coronary sinus. Therefore, endocardial pacing systems have
been developed. Nonetheless, the implantation of these devices requires
in addition to the knowledge of the anatomy and scar of the left ventricle
(LV), the information of the papillary muscles. As pacing in a papillary
muscles may lead to severe problems. To overcome this issue, a fully
automatic papillary muscle segmentation in 3-D LGE-MRI is presented.
First, the left ventricle is initialized using a registration based approach,
afterwards the short axis view of the LV is estimated. In the next step,
the blood pool is segmented. Finally, the papillary muscles are extracted
using a threshold based approach. The proposed method was evaluated
on six 3-D LGE-MRI data sets and were compared to gold standard
annotations from clinical experts. This comparison resulted in a Dice
coefficient of 0.72.

1 Introduction

Patients suffering from heart failure (HF) may be candidates for implantation
of a cardiac-resynchronization-therapy (CRT) device. CRT devices require one
lead to be positioned in the coronary vein system for pacing the left ventricle
(LV). Nonetheless, about 30% to 40% of the patients do not benefit from such
a system. There are various issues raised in medical literature. One reason is the
confined placement in the venous system [1,2]. To overcome this issue, current
research focuses on developing endocardial pacing systems, which allow for free
and unrestricted placement of a wireless lead inside the LV. For the implantation
of such an endocardial CRT pacing systems, the information about the left ven-
tricle’s anatomy, scar and in particular the papillary muscles and the chordae
tendineae are highly important. Placing an endocardial lead inside the LV in
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Fig. 1. Overview of the papillary muscles segmentation pipeline. First, the left ventricle
is initialized using a registration based approach. In the next step, the short axis view
is estimated with the help of principal component analysis. In the third step, the blood
pool is segmented in polar space. In the final step, the papillary muscles are extracted
using a threshold based approach.

a papillary muscle may lead to complications. However, information about the
propagation of papillary muscles is difficult to obtain. In current clinical prac-
tice, scar quantification is performed by segmenting the left ventricle in 2-D late
gadolinium enhanced (LGE) MRI. Recently, 3-D LGE-MRI acquisitions are de-
veloped that allow a full coverage of the entire heart within a single acquisition
and a high isotropic resolution [3]. Besides technological improvements regarding
image acquisition and the clear clinical demand, the challenge arises in the fast
and accurate image analysis. A first semi-automatic solution for myocardial seg-
mentation using solely 3-D LGE-MRI was proposed by Kurzendorfer et al. [4].
In this work, a fully automatic segmentation of the papillary muscles within the
left ventricle is presented in 3-D LGE-MRI.

2 Method

The papillary muscles segmentation pipeline consists of four major steps: First,
a two-step registration is performed for an initialization of the left ventricle. Sec-
ond, the principal components of the left ventricle are computed and a pseudo
short axis view is estimated. In the third step, the blood pool is segmented in
polar space. In the final step, the papillary muscles are segmented using a thresh-
old based approach. Fig. 1 provides an overview of the segmentation pipeline.

2.1 Left Ventricle Initialization

The left ventricle is initialized using a two stage registration [5] with an atlas
volume A ∈ RI×J×K , where I, J and K are the image image dimensions. The
segmentation of the atlas volume A was done manually resulting in a labeled
mask L. First, a similarity transform is performed, which allows scaling, rotation
and translation. To match the complex deformations of cardiac images a non-
rigid registration is applied afterwards. For the matching of the transformation
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a mutual information based similarity measure is used [6]. After the registration,
the transformation is applied to the atlas label map L of the atlas volume A,
resulting in a registered mask M ∈ RI×J×K .

2.2 Short Axis Estimation

After the location of the left ventricle is known, the short axis view is estimated
using principle component analysis [7]. Therefore, the vertices of the surface
of mask M are extracted using the marching cubes algorithm [8], resulting in
C ∈ RN×3, where N is the number of vertices. Subsequently, the covariance
matrix Σ of the contour points is calculated. Having the covariance matrix Σ
the singular value decomposition (SVD) is applied, which results in Σ = USVT ,
where U is a 3 × 3 matrix where the columns are orthogonal unit vectors. The
first column corresponds to the largest variation, i.e. the short axis view. The
second box of Fig. 1 shows the three unit vectors of M, with the first marked
in blue. In the next step, the offset to the center of rotation is calculated. Then,
the affine transformation around the unit vectors, considering the offset can be
applied to the image volume. The short axis view is needed for the segmentation
of the LV, as prior knowledge such as circularity and convexity can be applied.

2.3 Blood Pool Segmentation

As the rough outline of the blood pool is known through the atlas registration,
the volume can be cropped to the region of interest. The refinement of the
blood pool starts with the slice that corresponds to the center of mass of the
contour points C, see Fig. 2 (a) for an example. The polar image of the slice
is calculated, where the origin of the polar image corresponds to the center of
the found contours, as depicted in Fig. 2 (b). The segmentation is performed in
polar space for several reasons: The contours have a roughly circular shape in
the short axis view, therefore, in polar space they all have a similar horizontal
length. Furthermore, the size of the polar image is smaller, which allows for a
faster processing. Through this mapping the Cartesian coordinates (x, y) are
converted to polar coordinates (r, ρ). The contours Cs from the transformed
mask M are converted to polar space, where s corresponds to the current slice
index. Fig 2 (c) shows an example of the polar image with the transformed
contours. These contours are used to refine the boundaries of the blood pool. For
the refinement the edge information is extracted using the Canny edge detector.

To extract minor edges, the standard deviation σG of the Gaussian smoothing
is set to 2.5, as depicted in Fig. 2 (d). Having the edge image E, a minimal cost
path (MCP) search is initialized using six equally spread points from Cs. The
MCP finds the distance weighted minimal path through the edge image E. The
costs for one move from point pi to point pj is calculated as follows

c(pi,pj) =
d

2
E(pi) +

d

2
E(pj), (1)
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(a) (b) (c) (d) (e)

Fig. 2. (a) Slice in short axis orientation, which corresponds to the center of mass of
the mask M marked as a red dot. (b) Corresponding image in polar space, where the
origin (red dot) corresponds to the center of mass in Cartesian coordinates. (c) Polar
image with the transformed contour points Cs in polar space. (d) Edge information
from the Canny edge detector with a Gaussian smoothing of σ = 2.5. (e) Final result
of the MCP.

where d = ||pi − pj ||2. The diagonal moves vs. the axial moves are of different
length and therefore, the path costs c are weighted accordingly. The cost path
is calculated as the sum of the costs at each point of the path. The result of
the MCP is visualized in Fig. 2 (e). The contours from the MCP are converted
back to Cartesian coordinates, see Fig. 3 (a). As papillary muscles close to the
endocardial border may be included, the convex hull is calculated, as depicted
in Fig. 3 (b). After the first contour is refined, these steps are repeated for the
subsequent slices in the pseudo SA view until the base and apex are reached. In
addition, the information about the shape, radius and center is used to garantee
for inter-slice smoothness.

2.4 Papillary Muscles Segmentation

In the next step, the papillary muscles can be segmented. In the first step,
morphological erosion is applied to the blood pool contour with a radius of 2
pixels. Afterwards, Otsu thresholding is applied to the blood pool region only.
All the pixels that are less than the Otsu threshold θO are defined as possible
candidates for the papillary muscles. However, if there are not more than 7 pixels
connected, it is declared as noise and they are not considered as candidates for
the papillary muscles. The final result of the segmented papillary muscles for one
slice is visualized in Fig. 3 (c).

After the segmentation is finished, the segmentation mask of the blood pool
and the papillary muscles are exported as 3-D surface meshes and can be used
for further procedure planning and guidance. See Fig. 3 (d) for an example, with
the papillary muscles visualized in blue and the surface of the blood pool in red.
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(a) (b) (c) (d)

Fig. 3. Final steps of the segmentation pipeline. (a) Contour points after the MCP in
Cartesian coordinates. (b) Convex hull of the MCP, resulting in the final result for the
blood pool refinement. (c) Final result showing the blood pool contour in red and the
papillary muscles in blue. (d) Result in 3-D, the blood pool is visualized in red and the
papillary muscles in blue.

3 Evaluation and Results

The fully automatic segmentation of the papillary muscles was evaluated on six
clinical LGE-MRI data sets (sparse GRE prototype sequence and reconstruction,
spatial resolution (1.3mm)3) from individual patients. The data was acquired
with a 3T MAGNETOM Skyra scanner (Siemens Healthcare GmbH, Erlangen,
Germany). Gold standard annotations of the papillary muscles were provided
by two clinical experts. The annotations were performed using MITK. Given
the gold standard annotations, the segmentation was evaluated using the Dice
coefficient (DC) and the Jaccard index (JI). The DC is a quantitative measure for
the segmentation quality, as it measures the proportion of the true positives in
the segmentation. The JI measures the union overlap between two segmentation
masks. Both scores range from 0 to 1, with 1 corresponding to perfect overlap.
For both scores the whole 3-D volume was considered. The segmentation of the
papillary muscles resulted in a DC of 0.72 ± 0.08. The best segmentation result
had a DC of 0.85 and the worst a DC of 0.61. For the Jaccard index similar
observations could be made, with a mean JI of 0.57 ± 0.10. The best JI had a
value of 0.74 and the worst of 0.44.

The evaluation was performed on an Intel i7 with 2.80GHz equipped with
16 GB RAM. The whole segmentation pipeline needs less than 4 minutes imple-
mented with Python, single-threaded.

4 Discussion and Conclusion

The results are summarized in Table 1. The proposed method achieved a DC of
0.72 and a JC of 0.57. The relatively low Dice coefficient can be attributed to the
fact, that in one data set the papillary muscles were scarred and sometimes in
addition some parts of the chordae tendineae were included in the segmentation.

In sum this work presents a simple and efficient approach for papillary mus-
cle segmentation in 3-D LGE-MRI. The segmented papillary muscles as well as
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Description Mean ± Std Min Max Inter-Obs

Dice 0.72 ± 0.08 0.61 0.85 0.96 ± 0.06

Jaccard 0.57 ± 0.10 0.44 0.74 0.93 ± 0.11

Table 1. Papillary muscles segmentation results using the Dice coefficient and the
Jaccard index.

the information about myocardial scarring and the anatomy of the left ventricle
can be extracted from one sequence and then be used to plan the procedure. In
addition, the papillary muscles can be overlaid onto the fluoroscopic images and
used during the intervention for guidance. Future work will include the investi-
gation of scarred myocardium and papillary muscles for further improvement of
the segmentation algorithm. A clear benefit of this approach is that all relevant
information for a CRT procedure can be extracted from a single LGE-MRI data
set.

Disclaimer: The methods and information presented in this paper are based on
research and are not commercially available.
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