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Abstract. The leading cause of death worldwide is ischaemic heart dis-
ease. Late gadolinium enhanced magnetic resonance imaging (LGE-MRI)
is the clinical gold standard to visualize regions of myocardial scarring.
However, the challenge arises in the segmentation of the myocardial bor-
der, as the transition of scar tissue and blood pool can be very smooth,
because the contrast agent accumulates in the damaged tissue and leads
to various enhancements. In this work, a random forest based boundary
detection approach is combined with a scar exclusion criterion. The fi-
nal endocardial and epicardial border is found with the help of dynamic
programming, which finds the distance weighted minimum through the
boundary cost array. The segmentation method is evaluated using a 5-
fold cross validation on 100 clinical LGE-MRI data sets. The Dice coef-
ficient resulted in an overlap of 0.83 for the endocardium as well as for
the epicardium.

1 Introduction

The leading cause of death worldwide is ischaemic heart disease [1]. For diag-
nosis in clinical routine cardiac magnetic resonance imaging is used, as it can
provide information on morphology, tissue characterization, blood flow or perfu-
sion [2,3]. The clinical gold standard for the assessment of myocardial viability
is late gadolinium enhanced magnetic resonance imaging (LGE-MRI) [4]. The
enhancement of the damaged tissue is based on the different contrast agent ac-
cumulation within the tissue, which is based on T1 weighted imaging [5]. There-
fore, necrotic tissue has high signal intensity, whereas the boundaries of the
myocardium are hardly enhanced. Consequently, the challenge is the accurate
and reliable segmentation of the myocardium for further tissue analysis. As the
quantification of the myocardial scar is needed for diagnosis, therapy planning
and patient prognosis.

Most segmentation approaches for LGE-MRI require the prior delineation of
the myocardium in Cine-MRI data of the same patient which are then propa-
gated to the LGE-MRI [6,7,8,9]. However, this contour propagation has several
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(a) Detected center (b) MACWE

Fig. 1. (a) Detected center of the left ventricle using circular Hough transforms and
circularity constraints. (b) Result of the morphological active contours without edges
approach (MACWE).

limitations. The cardiac phases from the Cine-MRI and the LGE-MRI may not
accurately match. Inter-slice shifts from multiple breath holds can arise. The
global position of the heart may change due to patient movement as contrast
has to be injected and the acquisition is done 10 to 20 minutes after injection.
Although these shifts may appear minor, they can lead to significant errors in
the scar quantification.

Thus, we propose a random forest based segmentation approach for 2-D
LGE-MRI, which is independent of Cine MRI. The major contribution of this
approach is, that steerable features are extracted in polar space for the endo-
cardial and epicardial boundary respectively. These features are used to train
two random forest classifiers, which results in two boundary probability maps
for the endocardium and epicardium, respectively. For the endocardium an ad-
ditional scar exclusion step is added. The final segmentation result is obtained
by a dynamic programming approach in polar space.

2 Materials and Methods

The segmentation of the left ventricle can be divided into several steps. First, the
left ventricle is detected using a combination of circular Hough transforms, Otsu
thresholding and circularity measures. In the second step, a region of interest
is identified using morphological active contours. In the third step, potential
endocardial boundary positions are detected by casting rays in a cylindrical
fashion. The boundary probability is estimated using a random forest classifier.
In addition, potential scar areas are excluded from the boundary probabilities.
In the final step, the optimal contour is obtained by applying a minimal cost
path search to the boundary cost array in polar space.



3

(a) Boundary candi-
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Fig. 2. (a) Potential boundary candidates, extracted using ray casting. (b) Boundary
detection result obtained from the trained random forest classifier. (c) Boundary cost
map in Cartesian coordinates.

2.1 Left Ventricle Detection

The left ventricle is detected in the mid slice of the 2-D LGE-MRI stack. First,
the Canny edge detector is used to extract the edges from the image [10]. In the
next step, circular Hough transforms are applied [11]. The radii of the circular
Hough transforms were in range of 17 mm to 35 mm with a step size of 2 mm
due to performance, which was defined according to the anatomical informa-
tion in literature [12]. The most prominent candidate is selected as potential left
ventricle blood pool candidate. To verify this position, an additional roundness
measure is applied. Therefore, Otsu’s thresholding is applied to the whole slice,
to convert the image into a binary mask [13]. Objects that are smaller than a
predefined threshold θo = 25 are removed. The threshold was defined heuristi-
cally. From the remaining objects the eccentricity, i.e. the roundness is estimated

R =
√

a2−b2

a2 , where a is the semi-major axis and b is the semi-minor axis of the

object. If the object is circular, R = 0. If the center points c1 and c2 of the
roundest object and the result of the circular Hough transform are within θc,
where θc =

√
(c1 − c2)2, the left ventricle has been accurately detected. Other-

wise, the user is asked to verify the center of the left ventricle. The result of the
left ventricle detection is shown in Fig. 1 (a).

2.2 Endocardial Boundary Estimation

After the left ventricle is detected in the center slice of the MRI stack, this
information is used for the boundary detection of the endocardium. The mid-
slice is a good slice to start with the segmentation, as the result can be used to
propagate in basal and apical direction. To get a rough estimate of the blood pool
outline, a morphological active contours without edges (MACWE) approach is
applied [14]. This approach alone is not sufficient to get the outline of the blood
pool as in LGE-MRI the transition between blood pool and myocardial scar
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(e) Boundary cost combined with scar map

(f) MCP result

Fig. 3. (a) Mid slice image after polar transformation. (b) Boundary cost map obtained
from the trained random forest classifier in polar coordinates. (c) Potential scar can-
didates which have an intensity value greater than θst and are not within the blood
pool. (d) Scar map, where all scar candidates with increasing radius are labeled with
1. (e) Final endocardial boundary cost map, resulting from the combined boundary
detection result and the scar map. (f) Final result of the minimal cost path (MCP)
search in polar coordinates.

can be very smooth, see Fig. 1 (b). However, it gives us a rough outline of the
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blood pool. This outline can be used to extract potential endocardial boundary
candidates using circular ray casting. Therefore, the image is converted to polar
coordinates. Boundary candidates are then selected for N equidistant points
along R rays, as depicted in Fig. 2 (a) in Cartesian coordinates. Each potential
boundary candidate is then classified using a trained random forest classifier.
The result of the classification is illustrated in Fig. 2 (b) as cost map.

Boundary Map Generation: The performance of any classifier is limited by
the discriminative power of the features used for training. Steerable features were
used [15], as they are computationally efficient and can capture the orientation
and scale. In total 16 features were extracted for each boundary candidate, based
on local intensity and gradient, which result in a feature vector x ∈ R1×16,
that is used for training and detection. For a given boundary candidate p(x, y)
with the intensity I and the gradient g = (gx, gy), the following features are

extracted: I,
√
I, 3
√
I, I2, I3, log I, ||g||,

√
||g||, 3

√
||g||, ||g||2, ||g||3, log ||g||, gx,

gy,
√
g2x + g2y, div(g). Note, that all the features are extracted in polar space,

which is the steerable space. The center position in Cartesian space, i.e. origin
in polar space, has not influence on the classification result.

The training of the random forest is based on ground truth annotations
from which positive as well as negative samples are extracted. For the training
pathologic as well as healthy subjects are used, to generate a broad range for the
training data base. After the training, the classifier can predict the endocardial
boundary probability pendo(x) ∈ [0, 1]. The endocardial boundary probability
can be interpreted as costs c, where c = 1 − pendo. If the boundary probability
is very high, the costs are close to 0.

To improve the detection of the boundaries from scarred myocardium, an
additional scar exclusion step is added. Given the mean intensity of the blood
pool µbp and the standard deviation σbp, the scar threshold θst is defined as
θst = µbp +σbp. All the pixels above this threshold and outside of the blood pool
are defined as potential scar candidates, see Fig. 3 (c). The scar map is generated
from the scar candidates, where all pixels with increasing radius from potential
scar candidates are labeled with 1, as depicted in Fig. 3 (d). If a boundary
probability overlaps with the scar map, the boundary potentials are impaired,
see Fig. 3 (e).

Segmentation: In the next step, the final segmentation result of the endocar-
dial contour has to be obtained from the endocardial cost map. Therefore, a
dynamic programming approach is used in polar space, to compute the optimal
endocardial contour from one end to the other end of the polar image [16]. The
minimal cost path (MCP) search is used [17], which finds the distance weighted
minimum path through the cost array. The cost path is calculated as the sum
of the costs for each move and weighted by the length of the path. The result
of the MCP is shown in Fig. 3 (f). After the optimal path is found, the contour
is transfered back to Cartesian coordinates, see Fig. 4 (a). The convex hull is
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(a) Result MCP (b) Convex hull (c) Final result (d) 3-D modell

Fig. 4. (a) Result of the minimal cost path search in Cartesian coordinates. (b) Convex
hull of the final result. (c) The final result of the boundary estimation for the endo-
cardium in red and the epicardium in yellow. (d) 3-D model of the endocardial and
epicardial contour in red and yellow, respectively.

calculated from the contour, as papillary muscles close to the endocardial border
might be included, as visualized in Fig. 4 (b).

After the contour is refined in the mid-slice, the information is used for the
boundary detection in apical and basal direction. The center is propagated to the
succeeding slices and the MACWE is initialized. The boundary detection using
the random forest classifier, the scar map generation, and the MCP is repeated
for all succeeding slices until the base and apex is reached.

2.3 Epicardial Boundary Estimation

After the endocardial contour is found, the epicardial contour can be estimated.
The segmentation starts again with the mid-slice and the result of the refined
endocardial contour is used as an initialization for the boundary detection.

Again a random forest classifier is trained for the epicardial boundary de-
tection using the same 16 features as for the endocardial border estimation,
resulting in an epicardial boundary probability p(x)epi. The result of the epicar-
dial boundary detection is used as cost array for the minimal cost path search.
The MCP is applied in polar coordinates for the same reasons as mentioned
before. The MCP finds the distance weighted minimal path from the left to the
right end of the polar image. The result is then transfered back to Cartesian
coordinates and the convex hull is taken. The result is depicted in Fig. 4 (c).

The endocardial contour estimation is repeated till the apex and base is
reached. Afterwards the contours are extracted as 3-D surface models using the
marching cubes algorithm [18]. The output is a list of vertices and faces which
are saved in the *.stl or *.obj file format. Fig. 4 (d) shows an example of a 3-D
surface mesh, where the endocardium is visualized in red and the epicardium in
yellow.
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Endo Epi Inter Endo Inter Epi

Dice 0.83 ± 0.08 0.83 ± 0.08 0.95 ± 0.06 0.96 ± 0.05

MSD 3.55 ± 2.08 4.12 ± 2.11 0.89 ± 1.14 0.93 ± 1.13

Table 1. Segmentation results for the endocardium (Endo), epicardium (Epi) and inter
observer variability using the Dice coefficient and the mean surface distance.

3 Evaluation and Results

The automatic segmentation of the left ventricle’s endo- and epicardium was
evaluated on 100 clinical LGE-MRI data sets. The inversion recovery 2-D LGE-
MRI sequences were acquired with a Siemens MAGNETOM Area 1.5T scanner
(Siemens Healthcare GmbH, Erlangen, Germany). The slice thickness was 8-
10 mm, with a pixel size of (1.59-2.08 × 1.59-2.08) mm2 and the spacing between
the slices was set to 10 mm. Each data set contained between 10 and 13 short axis
slices. Gold standard annotations of the LV endo- and epicardium were provided
by two clinical experts. The annotations were preformed using MITK [19]. The
observers were asked to outline the endocardial and epicardial contour separately.

Given the gold standard annotations, the segmentation was evaluated using
different measures, the volumetric Dice coefficient (DC) and the mean surface
distance (MSD). Furthermore, the inter-observability was evaluated. The eval-
uation itself was performed by a 5-fold cross validation, e.i. 20 sequences were
excluded from the training of the random forest classifier and used for testing. In
Table 1 the average values and the standard deviation of the computed metrics
are presented for the endocardium and epicardium. In Fig. 5 the qualitative re-
sults of the segmentation are presented. The first row depicts the raw data from
base to apex. The second row shows the gold standard annotation of one clini-
cal expert, where the endocardial contour is orange and the epicardial contour
green. The last row illustrates the result of the proposed segmentation algorithm,
where the endocardium is red and the epicardium yellow.

The proposed approach was implemented in Python (single threaded, no
optimization) and needs less than 10 seconds for the entire segmentation on a
computer equipped with an Intel i7 2.8 GHz CPU and 16 GB of RAM.

4 Discussion and Conclusion

The presented work solely uses LGE-MRI data for the segmentation of the left
ventricle, compared to most work reported in literature, which make use of Cine
MRI and propagate the contours [6,7,8,9]. Albà et al. [20] computed directly
the contours from LGE-MRI. Our results are in the same range of the reported
errors in literature. However, a direct comparison to the method is not possible,
as the data sets differ.
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Fig. 5. Comparison of the segmentation result for one data set. From top to bottom:
native slices without any contours, gold-standard annotation from clinical expert, and
segmentation result of the proposed method.

The proposed method achieved a DC of 0.83 for the endocardium and epi-
cardium. The biggest differences occur in the basal region, as the delineation of
the left ventricular outflow tract is not always clear. The poor performance of
the MSD is mainly due to the larger error in the apex and the left ventricular
outflow tract. However, the results in the mid-cavity are convincing, which can
be seen in Fig. 5. It is expected, that incorporating a model will directly improve
the segmentation result.

In the course of this work, it has been shown that rather simple features
can be used for the boundary detection of the endocardium and epicardium. In
combination with a minimal cost path search, accurate and consistent results can
be achieved. The clear benefit of the method is the independence of registration
to Cine MRI and the speed.

Disclaimer: The methods and information presented in this paper are based
on research and are not commercially available.
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