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Abstract
In case of an ischemic stroke, identifying and removing blood clots is crucial for a successful recovery. We present a novel
method to automatically detect vascular occlusion in non-enhanced computed tomography (NECT) images. Possible hyper-
dense thrombus candidates are extracted by thresholding and connected component clustering. A set of different features is
computed to describe the objects, and a Random Forest classifier is applied to predict them. Thrombus classification yields
98.7% sensitivity with 6.7 false positives per volume, and 91.1% sensitivity with 2.7 false positives per volume. The classifier
assigns a clot probability ≥ 90% for every thrombus with a volume larger than 100 mm3 or with a length above 23 mm, and
can be used as a reliable method to detect blood clots.

CCS Concepts
•Computing methodologies → Classification and regression trees; •Applied computing → Health care information systems;

1. Introduction

Stroke is a serious neurological disease, and constitutes a major
cause of death and disability worldwide, with 15 million people
suffering a stroke per year [RDW16]. The main reason for a stroke
is thrombosis, i.e., the formation of a blood clot inside a blood ves-
sel supplying the brain. Identifying and removing the clot is crucial
for a successful stroke recovery.

However, clot search is only conducted if a stroke is assumed,
but in some cases a patient comes into hospital for various symp-
toms and is not treated as a stroke patient in the first place. In such a
case, a routine computed tomography (CT) scan of the brain may be
acquired, but no active search for a thrombus is performed. An au-
tomated detection system in non-enhanced computed tomography
(NECT) images would decrease the probability to miss an obstruc-
tion, save time, and improve the clinical outcome.

To the best of our knowledge, no efforts have been made so far to
automatically detect vascular occlusion in NECT images. Instead,
several methods have been proposed to detect occlusion in CT an-
giography (CTA) data [MMD02, MAG14]. Nevertheless, studies
have shown that a thrombus can be discovered in NECT images
through its abnormal high density structure [LPG∗92, GFBV83].
Semi-automatic methods, which involve region growing methods
with manually defined seed points, have proven to allow for accu-
rate thrombus assessment [RJR∗10, KYC∗08].

In this paper, we extend the semi-automatic methods and present

a new approach that detects blood clots in NECT images com-
pletely automatically.

2. Material and Methods

This section describes the approach that is used for automatic oc-
clusion detection in NECT images. First, preprocessing is applied
to narrow the search space and extract possible candidates. Next,
several features are computed, which involve a probabilistic ves-
sel map that has to be registered to the patient. Finally, sampling
methods are applied and classification with a Random Forest (RF)
[Bre01] is performed.

2.1. Candidate Extraction

Candidate extraction consists of several steps. First, the skull is re-
moved by seeded region growing that includes only brain tissue
voxels ≤ 200 Hounsfield units (HU). Initial seed points are found
in the center of the middle axial slice.

Next, brain center and the dorsum sellae — an anatomical land-
mark belonging to the skull base — are determined and used later as
reference positions for location based features. Therefore, the brain
volume is computed in each single slice, beginning at the top axial
slice. The search stops when the volume starts to decrease and con-
tinues to decrease for three consecutive slices. The center of gravity
(CoG) of this slice is then defined as brain center. Subsequently, for
every slice below the brain center, the algorithm calculates the CoG
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Figure 1: Example of skull base (a) and connective tissue segmen-
tation (b).

and searches in a small square with 50 × 50 voxels around it for
voxels ≥ 200 HU. The topmost slice with a voxel fulfilling this
criteria is then defined as skull base voxel.

Additionally, the skull base serves as seed point for a region
growing method to segment connective tissue in the brain, which
is removed from the region of interest (ROI). The region growing
is performed with a 3D 6-connectivity in inferior vertical direction
for voxels≥ 60 HU. Skull base and connective tissue segmentation
can be seen in Fig. 1.

Finally, thrombus candidates are extracted by thresholding, in
such a way that only voxels ranging from 55 - 110 HU remain.
The threshold is chosen similar to the ones used in [RJR∗10] and
[KYC∗08]. To enable analysis of objects, connected voxels are
clustered using 3D connected component labeling [RK82] with 6-
connectivity. To remove noise and irrelevant objects, clusters with
a volume being smaller than 1.5 mm3 are discarded. In addition,
clusters larger than 500 mm3 can be discarded since a thrombus
doesn’t grow to this size [KYC∗08].

2.2. Feature Generation

35 features are calculated to describe a thrombus. The full list can
be found in Table 3. The features can be separated into intensity-
based features, geometrical features, and location-based features.

Intensity-based Features

A thrombus can be distinguished from surrounding tissue by its
high density. Therefore, intensity characteristics of the candidate
and its surrounding tissue are computed. A cluster C is represented
by maximum(C), mean(C), and variance(C) of its voxel intensi-
ties. The hull H around each cluster includes all direct neighbor
voxels of a candidate. Based on the intensities of the hull voxels,
the following features are computed: minimum(H), maximum(H),
mean(H), variance(H), and maximum(H) − minimum(H). Addi-
tionally, mean(H) − mean(C) is computed, which compares hull
intensities with cluster intensities.

The last group of gray value features delivers morphological in-
formation of the lesion and its surroundings. Therefore, multi-scale
images are computed by convolving the image with Gaussian ker-
nels. Three different standard deviations 0.5 mm, 1.0 mm, and 1.5
mm are applied. The resulting intensities at the voxel position of

the candidate’s maximum intensity prior to filtering are then used
as features.

Geometrical Features

To describe the geometrical properties of a thrombus, the cluster
volume in mm3 is computed as well as the extents in horizontal (x),
vertical (y), and slice (z) direction, and the diagonal length of the
cluster’s bounding box. Furthermore, the two-dimensional shape is
analyzed in the slice where the candidate reaches the maximum
slice volume. In this slice, the 2D volume of the cluster and its
extents in x- and y- direction are computed, as well as the diagonal
length of the two-dimensional bounding box.

Since a thrombus usually has a thin elongated form, the rectan-
gularity and the aspect ratios are calculated to capture these shape
characteristics [Ros00]. The rectangularity is defined by the ratio
V/Vm of the object volume V and minimal bounding box vol-
ume Vm; and the aspect ratios a1 =

extent(x)
extent(y) , a2 =

extent(x)
extent(z) , and

a3 =
extent(y)
extent(z) put the different extents into relation.

Location-based Features

A thrombus can only appear in regions containing blood vessels.
To describe the location of a cluster, the horizontal, vertical, and
slice offset of the candidate’s CoG to the brain center, as well as
to the skull base are computed. Moreover, the Euclidean distances
of the CoG to these locations are computed. These information are
helpful since vascular occlusion are more likely to appear at the
beginning of an artery, i.e., close to the skull base.

In addition, two features are calculated to emphasize regions
where a thrombus can manifest. Therefore, a probabilistic vessel
map and a reference brain image are utilized. The reference brain
(atlas) is an image in a reference coordinate system, generated by
the Montreal Neurological Institute as an average over multiple
MRI scans of the brain [FEB∗11]. The probabilistic vessel map
is obtained by segmenting and averaging over numerous data sets
by Kemmling et al. [KWB∗12]. Alignment of the atlas and the ves-
sel map, as well as of the atlas and the current data set, is ensured
by diffeomorphic non-rigid registration [CHF02]. The values of the
registered vessel probability map are then summed up over all clus-
ter voxel positions, and the mean value is used as a feature. Addi-
tionally, the mean Euclidean distance of cluster voxels to the vessel
map’s centerlines is calculated.

2.3. Sampling and Classification

Since the candidate extraction technique covers a large part of the
brain and is only based on intensities, many clusters remain, but in
case of a stroke usually only one thrombus appears. Other possi-
ble negative clusters are, e.g., calcifications, artifacts, or bone that
has not been removed completely. As a consequence, the amount
of negative samples (majority class) exceed the number of positive
samples (minority class) by a factor of ∼ 250. This highly imbal-
anced data set leads to a poor detection rate if no sampling method
is used. To compensate this, a sequence of random under- and over-
sampling is applied to the training data [HG09]. First, randomly
selected negative samples are discarded such that ten times more
majority samples than minority samples remain. Next, randomly
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selected positive samples are duplicated until a balanced training
set is achieved. The sampling ratios are determined empirically.

As last step, training and classification is performed with a RF
classifier. Therefore, the RF implementation of the OpenCV C++
library [Bra00] is used. The model parameters that have to be deter-
mined are: number of trees, tree depth, minimal number of samples
required at a tree node for it to be split, and number of randomly
selected features at each node.

3. Experimental Setup

Thin-sliced reconstructions of NECT scans of the brain are avail-
able for 79 patients. Average slice width is 0.8 mm. Ground Truth
(GT) segmentation of thrombi to train the RF are obtained semi-
automatically with a region growing method, for which a seed point
and upper and lower threshold are determined manually in every
image. In each image one thrombus is present. The average throm-
bus volume is 73.8 mm3, ranging from 17.6 to 188.8 mm3; aver-
age thrombus length is 22.1 mm, ranging from 9.0 to 51.9 mm;
and mean thrombus cluster intensity is 63 HU, ranging from 52 to
75 HU.

Classifier performance is evaluated and optimal RF model pa-
rameters are determined using nested cross validation (CV), which
ensures a clear separation between training and validation data for
an unbiased evaluation [VS06]. We split the 79 volumes into 8 dis-
junct folds and perform 8-fold nested CV. In nested CV, an inner
loop is used to perform tuning of the parameters while an outer
loop is used to evaluate the performance. In both loops, one fold
is used for testing, and the remaining folds for training. Note that
sampling methods are only applied to the training data.

4. Results

4.1. Classification Performance

Classification of the thrombus candidates with a RF generates a
probabilistic value p ∈ [0,1]. Thus, a cutoff value has to be deter-
mined to make a final class assignment. The results of the nested
CV for different cutoff values can be seen in the confusion matrix
in Table 1. With p ≥ 0.25, only one thrombus is missed, and 527
false positives (FPs) are generated. With p ≥ 0.50, 7 thrombi are
missed, and 217 FPs remain.

The performance measures for different cutoffs are listed in Ta-
ble 2. The highest sensitivity with lowest FPs is achieved with a
cutoff p ≥ 0.25, yielding sensitivity of 0.987 and FP/volume of
6.67. If the median cutoff p ≥ 0.5 is chosen, a sensitivity of 0.911
and an average number of FP per volume of 2.747 is achieved. With
p≥ 0.75, sensitivity is 0.759 while only∼ 1 FP per volume is pro-
duced. With p≥ 0.90, more than 50% are detected, and only 0.392
FP/volume. Specificity and accuracy are close to 1.0 in each case.

Furthermore, the relationships between the probability a throm-
bus candidate is assigned, and the thrombus volume and the throm-
bus length, are illustrated in Fig. 2. All thrombi with a volume
≥ 100 mm3 or a length ≥ 23 mm are assigned a probability higher
than 90%. The smaller the thrombus, the more likely a lower prob-
ability is assigned. However, also smaller candidates can achieve a

Table 1: Confusion matrix obtained after nested CV with different
cutoff values p.

Pos. Neg.
GT Pos. 78 1
GT Neg. 527 19130

(a) p ≥ 0.25

Pos. Neg.
GT Pos. 72 7
GT Neg. 217 19440

(b) p ≥ 0.50

Table 2: Performance measures for different cutoffs.

Cutoff probability
0.25 0.50 0.75 0.90

sensitivity 0.987 0.911 0.759 0.519
FP/volume 6.671 2.747 1.025 0.392
specificity 0.973 0.989 0.996 0.998
accuracy 0.973 0.989 0.995 0.997

high probability. The only samples that achieve a probability≤ 0.5
are small lesions with a volume ≤ 25 mm3 or a length ≤ 11 mm.

4.2. Feature Importance

In RF, the feature importance (FI) indicates how much the feature
decreases the prediction uncertainty, and can be calculated for ev-
ery feature. The result is displayed in Table 3. The most important
features are extent in x-direction, diagonal length, and volume of
the candidate, followed by the two features that are derived from
the vessel probability map. 10 Features fall below a FI value of 1.0
and can be omitted. Table 4 shows the performance of the classi-
fier with different feature selection. Classifying without the features
derived from the vessel probability map slightly reduces the sensi-
tivity and increases the number of FP per volume. Omitting the 10
features with lowest importance yields the same sensibility, and the
number of FP per volume is only slightly increased.

5. Discussion

The goal of this work is to detect vascular occlusion. Hence, the
most important measure is the sensitivity, i.e., the probability of
detection. Our implemented system is able to detect all but one
thrombus, proving that the goal can be fulfilled with the proposed
method. The high values of specificity and accuracy show that most
of the negative samples are correctly classified as such, but these
measures don’t possess high importance, as the negative samples
are produced by the same system in the previous steps.

Although a sensitivity close to 1.0 can be achieved, a higher de-
tection rate has the downside of producing more FPs. Therefore,
a trade-off has to be made. In case of a clinical application, de-
tecting positive samples is more important than producing a false
alarm, because a FP has no consequence for the patient, whereas a
missed thrombus can have severe impact on the clinical outcome.
However, a false alarm takes up time of a radiologist and has a neg-
ative impact on the clinic’s cost efficiency, and, therefore, the rate
should not be too high. Thus, the cutoff p ≥ 0.50 might be a rea-
sonable trade-off, producing a detection rate of 91.1% and 2.7 FP
per volume.
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(a) Relation between output probability and 3D volume.

(b) Relation between output probability and diagonal length.

Figure 2: Relation between output probability and thrombus vol-
ume (a), and between output probability and thrombus length (b).

The high FP rate for high sensitivities is due to the fact that the
extraction step covers a large part of the brain, while only bone and
connective tissue are excluded. This leaves many negative clusters
in the image, and makes sampling methods necessary to compen-
sate for the imbalanced data set. Typical FP clusters are structures
inside the middle cerebral artery (MCA) (Fig. 3a), or the basilar
artery (Fig. 3b), where the vessel map exhibits high probability
values. These FPs are hard to avoid, since a thrombus can likely
emerge at these locations. Other typical FP samples are large hyper-
dense clusters referring to noise (Fig. 3c). All FPs can be discarded
quickly after visual assessment through a radiologist.

Negative clusters and, consequently, the number of FPs, could be
reduced with an increased value for the lower threshold limit dur-
ing candidate extraction, but proper threshold selection is a difficult
task. A higher threshold requires a higher density for the blood clot
in order to extract it properly. Even with the chosen lower bound of
55 HU, some lesions are not fully segmented after candidate extrac-
tion. The one thrombus that is missed is such an under-segmented
case. On the other hand, lower thresholds have shown to produce
too many leakage effects into surrounding tissue, and the cluster is

Table 3: List of feature importances.

Feature Feature Importance
extent(x) 11.55
Diagonal length 9.69
3D volume 8.06
Mean vessel probability map value 5.14
Mean distance to vessel map 4.90
2D volume 4.62
Max(H) − Min(H) 4.42
Gaussian at σ = 0.5 4.42
extent(z) 4.19
extent(x) in maximum slice 4.08
offset(y) to brain center 3.57
Min(H) 3.19
Rectangularity 3.13
Mean(C) 3.00
Max(C) 2.83
Mean(H) − Mean(C) 2.72
extent(y) 2.20
Mean(H) 1.87
Variance(C) 1.79
Aspect ratio a1 1.71
2D diagonal length in maximum slice 1.54
3D distance to skull base 1.49
3D distance to brain center 1.47
offset(z) to skull base 1.36
extent(y) in maximum slice 1.11
Gaussian at σ = 1.0 0.88
Max(H) 0.84
offset(x) to brain center 0.74
Aspect ratio a3 0.66
offset(x) to skull base 0.59
Aspect ratio a2 0.50
offset(y) to skull base 0.48
Variance(H) 0.45
offset(z) to brain center 0.41
Gaussian at σ = 1.5 0.22

Table 4: Performance comparison with different feature selection
(p ≥ 0.5): I) All features are used; II) All features without vessel
probability map; III) Only the 25 features with FI above 1.0.

I II III
sensitivity 0.911 0.861 0.911
FP/volume 2.747 4.013 2.975

consequently not recognized as thrombus. The chosen lower bound
extracts all samples without leakage effects.

Furthermore, FPs could be reduced with a higher cutoff value,
but in this case, more of the small clots would be missed. However,
all large thrombi are detected with a high probability. This is impor-
tant since large occlusion cause the most severe damage. Examples
of such certain classifications are shown in Fig. 3d and 3e.

The high probability for large clots is verified by the feature im-
portance calculation. Next to volume and length, the extent in x-
direction has proven to be the most important feature, because most
thrombi possess an elongated structure along the MCA. Another
important factor is the the vessel map, which provides two valuable

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

128



P. Löber, B. Stimpel, C. Syben et al. / Automatic thrombus detection

(a) False Positive inside the
MCA.

(b) False Positive inside the
basilar artery.

(c) False Positive referring to
noise.

(d) Right MCA occlusion. (e) Left MCA occlusion.

Figure 3: Examples of false positive and true positive findings.

features. These outweigh the other location-based features, which
might be due to the fact that they describe the location more precise
than the reference positions in the center of the brain and the skull
base.

Although the results look promising, our method has limitations.
First, the used data is already in the standardized atlas coordinate
system. Some processing steps rely on the slice orientation and
therewith require thin slices. With commonly used thick slice pro-
tocols resampling could become a problem if the orientation dif-
fers. In addition, our classification is performed on a candidate level
within CT, but not on a patient level. If binary classification for
presence of thrombus should be evaluated on a patient level, a neg-
ative control cohort of patients without occlusion is required.

6. Conclusion

We presented a fully automatic detection and classification method
for vascular occlusion in NECT images. The proposed approach
achieves a high detection rate, including all large MCA occlusion,
while the number of FPs is in a reasonable range. A trade-off
between sensitivity and number of FPs per volume can be made
to adapt the method to the needs of the application. The method
could prove valuable in clinical environment in order to detect
blood clots and, respectively, to reduce the probability to miss a
stroke. More sophisticated candidate extraction techniques such as
an adaptive thresholding method might improve the performance in
future works. With more training data, the method can be extended
to deep learning approaches, which have gained huge successes in
classification tasks in recent years [KSH12].
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